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Understanding spacelike singularities is a major Challenge for

string theory

Big Bang/Big Crunch, Black holes
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Schwarzschild black holes in AdS

Quantum gravity in an AdS5 black hole background can be de-

scribed by an SU(N) Super Yang-Mills at finite temperature on

S3.
Witten, Maldacena,...
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AdS/CFT provides a full non-perturbative framework to

address the problem.
Horowitz and Ross, Maldacena, ...
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Understanding the black hole singularity from
thermal Yang-Mills ?

Classical gravity corresponds to the large N and large ‘t Hooft

coupling limit of the YM theory.

To understand the singularity,

1. find manifestations of the black hole singularity in the large

N and large ‘t Hooft coupling limit of the YM theory;

2. from these manifestations, understand whether (and how)

• finite N effects (gs), or

• finite ‘t Hooft coupling effects (α′)

resolve the singularity.
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Challenge: The singularities are hidden behind the
horizons

Many people have explored how to extract physics beyond the

horizon from the boundary theory correlation functions.

Balasubramanian, Ross; Louko, Marolf, Ross; Maldacena; Kraus, Ooguri, Shenker ...

Certain geodesics of the bulk geometry which go inside the

horizon may be visible from boundary theory correlation

functions.

In particular, Fidkowski et al found a subtle signal in YM theory

of geodesics which approach the singularity.
L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker
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Outline

1. Establish a direct connection between boundary momentum

correlators and bulk geodesics.

2. Find signals of the singularity in momentum space correla-

tors.

3. Introduce new gauge invariant observables in the boundary

theory whose divergences reflect the presence of the bulk

singularity.

4. Discuss the resolution of the singularity at finite N.
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Thermal YM correlation functions

We consider (suppressing spatial coordinates)

O  (0)  

O  (t)  
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−β H
O (t) O(0) =

−β H
O (t) O(0) ] =G+ (t) = Tr [ e 

β: inverse Hawking temperature.

The boundary operator O is dual to a bulk scalar field φ of mass

m, with conformal dimension ∆ of O given by

∆ = 2 + ν, ν =

√

m2 + 4
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One can also consider

O  (0)  

O 
 

(t) 
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IV

IG12 ) =( t G+ (t - i  =
β
−
2

)

We will be interested in momentum space correlators G+(ω, l)

with ω the frequency and l angular momentum on S3.

Note

G12(ω, l) = e−
βω
2 G+(ω, l)
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Boundary correlators from gravity

G+(ω, l) can be obtained via AdS/CFT by solving the Laplace

equation for the bulk scalar field φ, which in momentum space

becomes the Schrodinger equation

(

−∂2
z + Vl(z)

)

φωl(z) = ω2φωl(z)

z: tortoise coordinate.

φωl (z): Fourier component of φ.

Information about the geometry is contained in the potential Vl.
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We consider normalizable modes φωl with the normalization

φωl(z) ≈ e−iωz−iδω + eiωz+iδω, z → +∞ .

This determines

φωl(z) ≈ C(ω, l)z
1
2+ν + · · · , z → 0 .

Then

G+(ω, l) =
(2ν)2

2ω

eβω

eβω − 1
C2(ω, l)



Hard to extract information about the bulk geometry directly

from G+(ω, l).

We would like to know how the presence of the bulk singularity

is reflected in G+(ω, l).



Analytic properties

• The boundary YM theory has a continuous spectrum despite

being on S3.

This is due to the presence of the horizon in the bulk.

• One can analytically continue G+(ω, l) to complex ω and l.

• We find that the only singularities of G+(ω, l) in the complex

ω-plane are poles (quasi-normal poles of the black hole).
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Quasi-normal poles

For l not too large,
Nunez and Starinets; Cardoso, Natario and Schiappa; Siopsis

Re ω

Ιm ω
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Large operator dimension limit

To make connection with the bulk geometry, consider the limit

ω = νu, l = νk, ν ≫ 1, (ν =

√

m2 + 4)

Then G+ can be expanded in the large ν limit as

G+(νu, νk) ≈ 2ν eνZ(u,k) (1 + · · ·) + · · ·

Z(u, k) and higher order terms of the expansion can be worked

out explicitly from the Schrodinger equation.

In the large ν limit, the mass of the corresponding bulk particle is

large and its propagation should approximately follow geodesics.
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Relation with bulk geodesics I

Since the bulk geometry has Killing vectors along t and S3 di-

rections, a bulk geodesic can be characterized by integrals of

motion (E, q).

We find that Z(u, k) can be identified as the Legendre transform

of the geodesic distance of a bulk spacelike geodesic with (E, q)

starting and ending at the boundary

u = iE, k = iq

Note: ω = νu, l = νk.
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For each complex pair (ω, l)

G+(ω, l) → Z(u, k) → complex bulk geodesic

In principle one can map out the full bulk geometry if G+(ω, l)

is known for all complex (ω, l) (an inverse scattering problem).

We will now look at some examples with k = 0.



Relation with geodesics II

For real ω, the geodesic lies in the Euclidean section of the

complexified spacetime

i t

For real ω → ±∞, the geodesic approaches the boundary

UV/IR connection
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For ω pure imaginary, the geodesic probes the region inside the

horizon.

i
ii

As |ω| → ∞, the geodesic approaches the singularity.

UV/UV connection

15



Summary I

We thus find

Re ω

Ιm ω

singularity

singularity

boundaryboundary
horizon

The lines of poles of G+(ω, l) “create” new asymptotic regions

in the complex-ω plane corresponding to the regions around the

singularity.
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Signal of the singularity I

To probe the singularity, we consider ω → ±i∞

G+(ω, l = 0) ∼

(

∓i
ω

2

)2ν
e
iω

(

±β̃
2−

iβ
2

)

• G+(ω) decays exponentially along the imaginary ω axis. The

decay is controlled by the parameter

B = β̃ + iβ

• Valid at finite ν.
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Coordinate space correlation functions

G12(t) =
∫ ∞

−∞

dω

2π
e−iωt G12(ω)

∼
∫

du e−iνut−1
2νuβ eνZ(u,k)

• The Fourier integral can be evaluated using the saddle point

approximation in the large ν limit.

• Bulk geodesics with end point separation given by t appear

as saddle points of the Fourier integral.

• Fourier integrals give a precise prescription for summing over

geodesics.

18



-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Ιm ω

Re ω

Contour plot of the imaginary part of the exponent of the inte-
grand.

The saddle on the imaginary axis corresponds to a geodesic pass-
ing inside the horizon.

The geodesic which goes inside the horizon does not contribute
to the correlation function in the saddle point approximation.

L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker
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New gauge invariant observables and signals of the
singularity (II)

New observables:

H12(τ) =
∫

C2

dω

2π
e−iωτG12(ω)

Re ω

Ιm ω

C1

C2

The divergence of H12(τ) for τ → ±β̃
2 reflects the divergence of

a spacelike geodesic approaching the singularity.
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Signal amplification process

The geodesic which goes inside the horizon does not contribute

to coordinate space correlation function G+(t) in the saddle point

approximation.

However, through the process

G+(t) → G+(ω) → G12(ω) → H12(τ)

the signal of the singularity is amplified.

Recall G12(ω, l) = e−
βω
2 G+(ω, l).
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Yang-Mills theory at finite N ?

At finite N , the YM theory on S3 has a discrete spectrum, i.e.

finite number of states below any given energy.

This should be true even for coupling of order O(1).

In particular

G+(ω) = 2π
∑

m,n
e−βEmρmnδ(ω − En + Em)

m, n sum over the physical states of the theory.
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Resolution of the singularity at finite N ?

N = infty

Re ω

Ιm ω

x   x   x   x    x   x   x   x   x   x x   x   x   x    x   x   x   x   x   x

finite N

Re ω

Ιm ω

singularity

singularity

boundaryboundary
horizon

The discrete spectrum at finite N appears to be in conflict with

the presence of the horizon.

This suggest the horizon and the singularity are approximate

concepts valid only in large N expansion.
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Fate of the singularity

The previous argument does not tell us in detail how the singu-

larity is resolved. We can consider two logical possibilities:

1. The singularity is already resolved by α′-effects in perturba-

tive string theory, i.e. at infinite N by finite ’t Hooft coupling

effects.

2. The singularity is resolved only at finite N .

If possibility 2 is realized, then the singularity should be visible

in weakly coupled YM and one should be able to address the

singularity problem by focusing on the large N limit.
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Summary

• Wightman functions evaluated at imaginary frequencies can

probe the region inside the horizon.

• The presence of the singularity implies exponential decay for

G+(ω, l) along the imaginary frequency axis.

• We constructed new observables in YM theory which appear

to directly probe the singularity.

• The horizon and singularity should be resolved at finite N .
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