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Outline of the talk

I. Introducing noncritical M-theory
Motivation and definition
Two-dimensional Type 0A, 0B as solutions
The space of all vacua
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Time-dependent solutions: e.g., interpolating
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I.

Noncritical M-theory

for noncritical strings
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Motivation

10 years since the second string revolution, string theory is a
unique theory, but not (always) of strings.

The starfish diagram:

M?

IIA

IIB

het. E

het. O

11d sugra
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Motivation

10 years since the second string revolution, string theory is a
unique theory, but not (always) of strings.

The starfish diagram:

M?

IIA

IIB

het. E

het. O

11d sugra

(narrow vs. broad sense of “M-theory”)
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Ultimately, we wish to understand how to solve the theory . . .
. . . but the degrees of freedom of M-theory remain mysterious.
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Ultimately, we wish to understand how to solve the theory . . .
. . . but the degrees of freedom of M-theory remain mysterious.

It would be desirable to have a complete understanding of the
starfish diagram (the “whole elephant”, or moduli space of
solutions), and understand the underlying degrees of freedom in
the process.

We will adress this goal in the highly controlled context of
two-dimensional noncritical strings.
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Type 0A and 0B strings in two
dimensions

Type 0B theory:

Gauged U(N) matrix model of an N ×N matrix M ,

S0B = βN

∫
dtTr

(
1
2
(DtM)2 +

1
4α′

M2 + . . .

)
in a double scaling limit, involving N →∞.

Eigenvalues λ ofM act as free fermions, theory can be formulated
in terms of a second-quantized nonrelativistic Fermi field ψ(λ, t)
in 1 + 1 dimensions. Double-scaling limit: εF → 0 with

µ = NεF ∼
1
gs
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fixed and playing the role of the 0B string coupling.

Type 0A theory:

A U(N) × U(N + q) quiver matrix model of an N × (N + q)
matrix M ,

S0B = βN

∫
dtTr

(
(DtM)†DtM +

1
2α′

M†M + . . .

)
in the double scaling limit. N fermions in 1 + 1 dimensions, in a
potential modified by q.

q has several physical meanings:

• net D0-brane charge (0A has stable D0’s & anti-D0’s)

• background RR flux, of a RR two-form field strength
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fixed and playing the role of the 0B string coupling.

Type 0A theory:

A U(N) × U(N + q) quiver matrix model of an N × (N + q)
matrix M ,

S0B = βN

∫
dtTr

(
(DtM)†DtM +

1
2α′

M†M + . . .

)
in the double scaling limit. N fermions in 1 + 1 dimensions, in a
potential modified by q.

q has several physical meanings:

• net D0-brane charge (0A has stable D0’s & anti-D0’s)

• background RR flux, of a RR two-form field strength

• angular momentum on a plane.
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Noncritical M-theory for noncritical
strings

We are looking for “noncritical M-theory”.
Some desired properties may include:

• D0-charge reinterpreted as momentum along an extra,
compact dimension (S1) of M-theory (i.e., expect the RR
1-form to be a KK gauge field);

• The string coupling gs related to the radius of the extra S1;

• Type 0A, 0B, . . . string theories should be solutions;

• Expect 2+1 dimensional solutions, beyond ĉ = 1 string theory.
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Such a theory indeed exists.

How to find it: In the matrix model language? In the string
effective action language?

Our philosophy: The ĉ = 1 string theories are fully defined via
the double-scaled Fermi theory. Look for the nonperturbative
formulation of M-theory in the same language.

The angular dimension on the plane is the extra dimension of
M-theory.
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Such a theory indeed exists.

How to find it: In the matrix model language? In the string
effective action language?

Our philosophy: The ĉ = 1 string theories are fully defined via
the double-scaled Fermi theory. Look for the nonperturbative
formulation of M-theory in the same language.

The angular dimension on the plane is the extra dimension of
M-theory.

Wait, isn’t this proposal counterintuitive?

Intuition from critical M-theory: R11 ∼ gs; large radius
corresponds to strong string coupling.

In ĉ = 1, string coupling grows towards the origin, and the weakly
coupled regime at infinity, where R3 is large.



10

String coupling vs. the radius R3

A parable:

Consider the Einstein-Hilbert action in D + 1 dimensions,

1
`D−1
D+1

∫
dD+1X

√
GR(G),

reduce to the string-frame effective action,∫
dDx

√
ge−2φ (R(g) + . . .) .

For D = 2, we get

R3 =
`3
g2

s

Hence, strong string coupling corresponds to large radius.
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Nonperturbative noncritical M-theory
as a Fermi liquid in 2+1 dimensions

Start with a nonrelativistic Fermi field theory of Ψ(t, λ1, λ2) (a
spinless field), on flat R3 (parametrized by t, λi, i = 1, 2), in the
upside-down harmonic oscillator potential,

SM =
∫
dt d2λ

(
iΨ†∂tΨ +

1
2
Ψ†(∆ + ω2

0λ
2 + . . .)Ψ

)
.

Noncritical M-theory:= double-scaling limit of this system.

Careful double-scaling limit involves a regulating cutoff, by non-
universal pieces in the potential. We will regulate by placing
an infinite wall at some distance

√
2Λ from the origin in the λi

plane (ω0 = 1).
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The moduli space of all solutions

Theory easily quantized, using info from double-scaled 1 + 1
fermions.
Two natural representations:

Cartesian coordinates

Expansion in products of wavefunctions of Type 0B theory,

Ψ(t, λi) =
∫
d2E aα1α2(E1, E2)ei(E1+E2)tψα1(E1, λ1)ψα2(E2, λ2)

with anticommutation relations:

{aα1α2(E1, E2), a
†
α′1α′2

(E′
1, E

′
2)} = δ2(Ei − E′

i)δα1α′1
δα2α′2
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Polar coordinates λ, θ

Expansion in Type 0A wavefunctions,

Ψ(t, λ, θ) =
∑
q∈Z

eiqθ

∫
dE aq(E)eiEtψq(E, λ)

(again, q is the Type 0A RR-flux).

More on the double-scaling limit

Two parts:

• Introduce cutoff Λ, N fermions, take N →∞;

• Simultaneously, identify the scaling variable (typically, a
product of N with a conserved quantity, such as energy
or angular momentum).
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General philosophy on the moduli space of solutions:

A state is specified by declaring how each canonical pair of
oscillators acts on it. Typically, two such different states are not
in each other’s Hilbert spaces; represent (excitations of) different
vacua.

Most states do not have a “smooth” hydrodynamic description
(such as in terms of the bosonic profile of a Fermi surface).

Spacetime is an emergent property: For states that do have a
hydrodynamic description (bosonization).

Time-dependent solutions emerge on an equal footing with static
solutions.

Thus, the free fermions define the starfish diagram.
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Type 0A and 0B string vacua as
solutions

Type 0A strings in the linear dilaton vacuum

Pick a value of q. Define |0A, µ〉 by filling only that sector, up
to −µ:

aq(E)|0A, µ〉 = 0, E > −µ,
a†q(E)|0A, µ〉 = 0, E < −µ,

and
aq′(E)|0A, µ〉 = 0, q′ 6= q, for all E.

(Note: This is not equivalent to just naively sending µ → ∞ in
sectors of q′ 6= q after the double-scaling limit.)
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Type 0B strings in the linear dilaton vacuum

Pick a value of E2. Define |0B, µ〉 by filling only that sector, up
to −µ:

aα1α2(E1, E2)|0B, µ〉 = 0, E1 > −µ,
a†α1α2

(E1, E2)|0B, µ〉 = 0, E1 < −µ,
and

a†α1α2
(E1, E

′
2)|0B, µ〉 = 0, E′

2 6= E2, for all E1.

Comments:

• Unlike in Type 0A, the choice of E2 does not add a new
parameter – shift of E1 equivalent to shift in µ.

• T-duality between Type 0A and 0B is non-obvious in this
M-theory framework (just as it is not obvious between IIA and
IIB in critical M-theory).
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Type 0B strings in the linear dilaton vacuum

Pick a value of E2. Define |0B, µ〉 by filling only that sector, up
to −µ:

aα1α2(E1, E2)|0B, µ〉 = 0, E1 > −µ,
a†α1α2

(E1, E2)|0B, µ〉 = 0, E1 < −µ,
and

a†α1α2
(E1, E

′
2)|0B, µ〉 = 0, E′

2 6= E2, for all E1.

Comments:

• Unlike in Type 0A, the choice of E2 does not add a new
parameter – shift of E1 equivalent to shift in µ.

• T-duality between Type 0A and 0B is non-obvious in this
M-theory framework (just as it is not obvious between IIA and
IIB in critical M-theory).
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II.

The (2+1)-dimensional vacuum
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The 2+1 dimensional vacuum of
noncritical M-theory

The regulated theory at finite N has an obvious solution |M, µ〉:
Fill every state up to a uniform Fermi energy −µ, (irrespective
of q, etc.).

aq(E)|M, µ〉 = 0, E > −µ, all q

a†q(E)|0A, µ〉 = 0, E < −µ, all q.
We will refer to this state as the “M-theory vacuum.”
This is the noncritial analog, for strings in the linear dilaton
background, of the 11-dimensional Minkowski solution of critical
M-theory.

Let us explore some of the properties of |M, µ〉.
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The 2+1 dimensional vacuum of
noncritical M-theory

The regulated theory at finite N has an obvious solution |M, µ〉:
Fill every state up to a uniform Fermi energy −µ, (irrespective
of q, etc.).

aq(E)|M, µ〉 = 0, E > −µ, all q

a†q(E)|0A, µ〉 = 0, E < −µ, all q.
We will refer to this state as the “M-theory vacuum.”
This is the noncritial analog, for strings in the linear dilaton
background, of the 11-dimensional Minkowski solution of critical
M-theory.

Let us explore some of the properties of |M, µ〉.
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Vacuum energy of noncritical M-theory

We shall calculate the exact vacuum energy of this solution.

Recall first how it works in string theory (Type 0 or bosonic in
the linear dilaton background):

Define the density of states ρ(µ). In terms of ρ(µ), the energy
of the ground state is given by

F0 ∼
∫
µρ(µ) dµ.

Asymptotic expansion in weak string coupling 1/µ:

ρ(µ) ∼ ln(µ/Λ) +O(1/µ2).



21

This gives for the ground-state energy

F0 ∼ µ2 ln(µ/Λ) + ln(µ/Λ) +O(1/µ2).

This is reinterpreted as the sum over connected Riemann surfaces.

ln(µ/Λ) is the volume of the Liouville dimension.

All terms in this series are nontrivial, and given in terms of
Bernoulli numbers.
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Vacuum energy: Leading order in 1/N

For the M-theory vacuum, look first at the leading order in 1/N ,
identify the scaling variable.

N →∞ is the semiclassical limit. We have

N =
∫
d2pd2λ

(2πh̄)2
θ(

1
2
p2 − 1

2
λ2 − ε)

The density of states is

ρ(ε) = h̄
∂N

∂ε
∼

∫ √
2Λ

√
2ε

λ dλ ∼ (−ε+ Λ)/h̄.
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This gives

F0 ∼
ε3F
h̄3 + . . .

Hence:

• The scaling variable is µ ≡ −εFN , just as in ĉ = 1 string
theory;

• The leading log of string theory disappears; instead, the
leading (“tree-level”) term in the vacuum energy scales as µ3.
(We shall write this as κ−2.)

• The natural expansion parameter is 1/µ ∼ κ2/3. Recall
heterotic M-theory in 11d!

• The volume dependence is absent from the leading term in F0
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• Particle-hole duality predicts that ρ should be an even
function!
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Vacuum energy: The double-scaling
limit

Thus, the double-scaling limit is defined as in string theory,
N →∞ and εF → 0 while µ = iεFN is fixed.

The double-scaled density of states in M-theory can be evaluated
(in several equivalent ways),

ρ(µ) ∼
∫ ∞

0

dT cos(µT )
1

sinh(T/2)

∑
q

e−|q|T/2 =
∫ ∞

0

dT cos(µT )
1/2

sinh2(T/4)
.

This is an exact formula.

The expression diverges in a trivial way, calculate ∂ρ/∂µ instead,
or regulate by Λ. (The divergence is µ-independent.)
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Vacuum energy: The weak coupling
expansion

1/µ is a dimensionless (in ω0 = 1 units) coupling constant in
M-theory, analogous to the string coupling.

We can expand in small 1/µ. We get:

∂ρ

∂µ
= −1

2
+O(1/µ).

This reproduces our WKB expectation, ρ ∼ µ.

Now look at higher orders in 1/µ. They can be viewed as an
infinite sum of nonzero, multiloop contributions to the vacuum
energy of Type 0A with all possible values of the RR flux q. They
all sum to zero!
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Hence, the perturbative vacuum energy is one-loop exact in
perturbation theory,

F0 ∼ −
µ3

6
+ c2µ

2 + c1µ+ C0.

There could be nonperturbative corrections, which we now
determine.
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Vacuum energy: The strong coupling
expansion

Expand our exact formula

∫ ∞

0

dT cos(µT )
1/2

sinh2(T/4)
.

in powers of µ. One gets

ρ(µ) ∼
∞∑

m=1

(2πµ)2m B2m

(2m)!
+ c.
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Using the definition of Bernoulli numbers,

∞∑
n=0

Bn

n!
xn =

x

ex − 1
,

and properties of Bernoulli numbers, we get

ρ(µ) =
µ

e2πµ − 1
−B1µ = µ

(
1

e2πµ − 1
+

1
2

)
+ c.

This looks very suggestive of a dual bosonic DoF (the Planck
distribution)!

µ plays effectively the role of the Debye frequency ωD in this
bosonic dual.
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Vacuum energy: The exact formula

This exact formula can now be integrated to get the vacuum
energy F0, which then can be re-expanded in powers of 1/µ:

F0 ∼ −
µ3

6
+ cµ2 +

∞∑
k=1

(
µ2

2πk
+

µ

2π2k2
+

1
4π3k3

)
e−2πkµ.

This is an infinite series of nonperturbative instanton-like
contributions, each of which is one-loop exact, and starts at
order κ2/3 compared to the perturbative leading term!
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M-theory at finite temperature

The calculation can be extended to Euclidean compactified time.
The free energy Γ(µ,R) is given by

∂2Γ
∂µ2

∼
1

2πR
∂

∂µ

sin
(

1
2πR

∂
∂µ

) πµ

tanh(πµ)
.

Unlike the string-theory free energy, this does not exhibit any
obvious T-duality. (Just as in the case of critical M-theory.)
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Symmetries of noncritical M-theory

The following quantities

a1 = (p1 − λ1)et, b1 = (p1 + λ1)e−t,

a2 = (p2 − λ2)et, b2 = (p2 + λ2)e−t

are conserved. They represent elementary constituents of the
symmetry algebra, which is generated by

Wm1m2n1n2 = am1
1 am2

2 bn1
1 b

n2
2 ,

for ni,mi = 0, 1, . . .. This is an M-theory generalization of the
w∞ symmetry algebras of ĉ = 1 string theories.

(Up to) quadratic charges form a closed subalgebra. Both H
and J are such quadratic charges.
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Fermi surface (=solution) preserved by only a subalgebra. Other
symmetries spontaneously broken by the solution.

Notice that the Fermi surface of the M-theory vacuum defines
AdS3 in the phase space R2,2.
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Observables of noncritical M-theory

A natural bosonic observable: Density of eigenvalues

ρ(t, λi) = Ψ†Ψ(t, λi).

M-theory analog of the massless tachyon (& RR scalar) of ĉ = 1
strings:

W (t, x1, x2) =
∫
d2λe−x·λΨ†(t, λi)Ψ(t, λj)

In fact, in the M-theory vacuum it is convenient to define

W̃ (t, r, θ) =
∫ ∞

√
2µ

dλe−r|λ|Ψ†(t, λi)Ψ(t, λj),
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with θ the angle on the eigenvalue plane. This is very reminiscent
of formulas for multidimensional bosonization from condensed
matter.

In some states, W behaves semiclassically. For those states, it is
likely that a dual, spacetime description in terms of an effective
(hydrodynamic) action for W can be found.
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with θ the angle on the eigenvalue plane. This is very reminiscent
of formulas for multidimensional bosonization from condensed
matter.

In some states, W behaves semiclassically. For those states, it is
likely that a dual, spacetime description in terms of an effective
(hydrodynamic) action for W can be found.
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III.

Spacetime physics as hydrodynamics

of the Fermi surface
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Hydrodynamic equations for the Fermi
surface

can be derived just as in noncritical string theory.



37

Hydrodynamic equations for the Fermi
surface

can be derived just as in noncritical string theory.

Choose, for example, p1 = P (p2, λ1, λ2, t) as the dependent
variable. Then the EoM is

∂tP = λ1 − (λ2∂p2 + p2∂λ2)P − P∂λ1P.

(Of course, sometimes it is useful to switch to another
representation, such as in polar coordinates.)

Various static as well as time-dependent solutions can be easily
found.
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Some static solutions

A simple modification |M̃, µ〉 of the M-theory vacuum:
Fill up to −µ for even q, and down to −µ for odd q.

This is an example of a slightly exotic state, which nevertheless
seems hydrodynamical (but slightly outside the EoM for the
Fermi surface).

Another example:

Define a family of Fermi surfaces via

1
2
p2
1 +

1
2
p2
2 −

1
2
λ2

1 −
1
2
λ2

2 + Ω(p1λ2 − p2λ1) = −µ.

(Ω: angular velocity). Playing with Ω and µ, one can interpolate
between Fermi surfaces set by H and J .
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An interesting duality

Consider the Fermi surface given by

p1λ2 − p2λ1 = q.

A linear canonical transformation maps this to

1
2
p̃2
1 +

1
2
λ̃2

1 −
1
2
p̃2
2 −

1
2
λ̃2

2 = −µ̃

Under this map, H ↔ J̃ , J ↔ H̃.

Duality to the Hamiltonian of the thermofield dynamics of free
fermions in the rightside-up harmonic oscillator potential.
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Contact with the Itzhaki-McGreevy, . . . string theory (and its
M-theory lift).



41

Some time-dependent solutions

Use the time-dependent charges to find time-dependent solutions
for the EoM of the Fermi surface.

For example,

1
2
p2
1 +

1
2
p2
2 −

1
2
λ2

1 −
1
2
λ2

2 + c1(p1 + λ1)e−t + c2(p2 − λ2)et = −µ

(with c1, c2 constants) is a typical such solution.

It represents a Type 0B string theory in the far past, evolving via
the M-theory phase, and decaying into another Type 0B theory
in the future.

Novelty compared to string theory: well-defined macroscopic
initial and final states.
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Tachyon scattering can be studied in this time-dependent
background. Is it possible to define a unitary S-matrix?
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Tachyon scattering can be studied in this time-dependent
background. Is it possible to define a unitary S-matrix?
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IV.

Conclusions
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Lessons for string/M-theory
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Lessons for string/M-theory

• Moduli space of solutions fully defined via fermions
• Spacetime emergent as a hydrodynamic description of only
some states
• DoF of M-theory (nonrelativistic fermions/D-branes)
Recall [P.H., hep-th/0502006]: K-theory classifies stable Fermi
surfaces.
• Remarkable “moral” similarities with M(atrix) theory
• and holographic field theory.
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Lessons for string/M-theory

• Moduli space of solutions fully defined via fermions
• Spacetime emergent as a hydrodynamic description of only
some states
• DoF of M-theory (nonrelativistic fermions/D-branes)
Recall [P.H., hep-th/0502006]: K-theory classifies stable Fermi
surfaces.
• Remarkable “moral” similarities with M(atrix) theory
• and holographic field theory.

Lessons for quantum gravity

• Two successful approaches to quantum gravity in 2 + 1
dimensions so far:
Chern-Simons theory, critical string/M-theory. Noncritical M-
theory might be a third. Indications that the topological nature
of the CS formulation is combined with propagating DoF.
• Vacuum energy (≈ cosmo. constant) has fascinating features;



45

• The theory is Machian: No fermions, no spacetime.
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• The theory is Machian: No fermions, no spacetime.

The End


