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The landscape poses challenges for our understanding
of string theory, but also, for the first time, provides a
framework which might allow us to connect string theory
to nature⇒ LHC; Cosmology/Astrophysics

What is the Landscape? String theory vacua:

1. SUSY Flat Space, Nsusy > 4 Continuous Infinity

2. SUSY ADS Nsusy > 4 Continuous, Discrete Infinity

3. SUSY AdS Nsusy = 4 (IIA Theories∗): Discrete in-
finities (in IIA theories with fluxes)

*DeWolfe, Giryavets,Kachru; Villadoro and Zwirner; Derendinger,
Kounnas, Marios Fabio Zwirner; Camara, Font, Ibanez

1



But the source of current interest is Non SUSY AdS,
DS.

Challenges:

• Finite, infinite? [Douglas talk]

• Utility of effective field theory in a theory of gravity
(Banks, Gorbatov,MD; Banks; Freivogal, Susskind);
IIA improves situation (Kachru et al).

• Assuming landscape exists, need to formulate a sen-
sible cosmology; determine how to weight different
states.

• Selection effects? Anthropics? (If necessary, hold
your nose) – how to implement?

• Even granted some anthropic selection, it is hard
to understand how the landscape picture can re-
produce many features of the laws of nature at low
energies, e.g. θqcd. (Witten’s talk – why not ax-
ions? Perhaps, but, e.g., KKLT: approximate susy,
all moduli fixed ⇒ no axions).
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Paths to Prediction in the Landscape

Today, I won’t approach these hard questions. Rather
narrow focus to a subset of vacua for which Kachru et
al, Douglas et al have done some analysis and statistics,
as a prototype for understanding how predictions might
emerge from the landscape [Denef review].

• Can we hope to make predictions? Most promising
are questions related to traditional issues of nat-
uralness. After all, the problem of naturalness is

precisely the issue that some features of the Stan-

dard Model seem improbable. These are precisely
the sorts of questions for which statistics might be
useful.

• While some sort of anthropic selection may be re-
quired to understand features of nature, like the
value of the cosmological constant, this does not
mean that prediction is impossible. Question is
one of correlations. E.g. Λ, GF ⇒ Supersymme-
try? RS? Technicolor? Or not?
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• Identify three branches of the landscape, distin-
guished by the statistics of susy breaking on each.
Within each branch, statistics are generic (e.g. re-
sult of Douglas/Denef for SUSY breaking branch).
Relative numbers on each branch require micro-
physical understanding. Within particular branches,
more detailed phenomenological predictions may be
possible.

• It is probably not true that, e.g., all metastable dS
vacua in the landscape are equally probable. But

the success of Weinberg’s argument suggestions
that there is some reasonably democratic sampling
of states. We will proceed on the assumption that
the more states with a given property, the more
likely that property.

• It is well known (e.g. Aguirre) that, even if one ac-
cepts some role for anthropic selection, it is difficult
– perhaps impossible – to decide a priori what set
of parameters anthropic considerations select. At
best, we can hope to say that if some parameter
changes by ∆, with all others fixed, life is impossi-
ble. If imposing this as a prior on the distribution
leads to an interesting prediction, I will take this
as a success. Other parameters should either be
random, or explained as features of the underlying
distribution. Today mainly Λ, GF

A Faustian Bargain? If we can do statistics well enough,
and are willing to impose priors using such rules, the first
predictive framework for string theory.

4



The KKLT Construction

IIB on orientifold of Calabi Yau Space with D-branes,
fluxes. Two types of moduli: complex structure moduli
and dilaton, zi. Complex structure moduli, ρa. In pres-
ence of RR and NS-NS three form fluxes, superpotential
(GVW) for dilaton, complex structure moduli. Fixes this
set of moduli.

Integrate out these moduli. KKLT Superpotential:

W = Wo + eicρ (1)

Leads to fixing of ρ as well, ρ ∼ −1
c
ln(Wo). So All Moduli

Fixed. Valid(?) approximation for Wo � 1, large fluxes
(g ∼ 1

N
).

KKLT also suggested a mechanism to obtain SUSY
breaking: adding D3 branes to these configurations. In
a warped geometry, could even give hierarchically small
susy breaking (and again, a roughly controlled approxi-
mation).
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Douglas: Important to Study Statistics

Many distributions are known (esp. Douglas and Denef
(DD)):

• Number of susy states of order

Nsusy =
∑

~N

∫
dMδ(DiW ) ≈ Lb3

∫
dM√

gf(M) (2)

The prefactor is potentially quite large (b3 ∼ 100,
L ∼ 1000).

• Distribution of Wo in Susy states:
∫

d2Wo at small

Wo. [Not a surprise;
∫

d2Wof(Wo) =
∫

d2Wof(0).
Just need dense, non-singular at Wo = 0.]

• Distribution of couplings:
∫

d2g (DD: uniform in
SL(2, Z) of IIB).

• Distribution of warping scales:∫
d2Mwarp

M2
warp ln(Mwarp)

– as would be expected from dynamical symmetry

breaking, e−
8π2

g2 .

• Distribution of states with broken susy, small Λ

N (Λ < Λo, |F | < F ∗) = NsusyF
∗6. (3)

Will give a simple explanation of this shortly.
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Branches of the flux landscape

Among the states of the landscape studied in IIB com-
pactifications, three types can be distinguished:

1. Unbroken supersymmetry at tree level, Wo 6= 0.

2. Unbroken susy, Wo = 0.

3. Broken supersymmetry at tree level

These distinctions are not, by themselves, sharp – in
field theory, we know that non-perturbative effects can
break supersymmetry and give rise to non-vanishing W .
But we will see that there is a sharp distinction – there
are three distinct branches in the distribution of super-
symmetry breaking scales.
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SUSY Breaking on the W 6= 0 Branch

While susy is unbroken to all orders in ρ, there is no
reason to expect that this is exact. Low energy dynam-
ics, the D3 effects of KKLT, etc. may break it. Both
suggest a similar distribution of breaking scales.

KKLT: D3 branes explicitly break supersymmetry. In a
warped geometry (Klebanov-Strassler), suppression of
breaking by M2

warp. So SUSY breaking distribution:

∫ d2M2
3/2

M2
3/2

ln(M2
susy)

. (4)

Low energy dynamical breaking similar. Calling µ the

scale of susy breaking (m3/2 = µ2

Mp
)

µ4 = e−c8π2

g2 (Mp = 1)

Uniform distribution in g2 → dm2
3/2

m2
3/2

(− ln(m2
3/2

))
.

On this branch, small cosmological constant and the
facts just mentioned do not predict low energy super-
symmetry. We can ask, how many states have cosmo-
logical constant smaller than a give value.
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Simplified model:

Λ = µ4 − 3|Wo|2

F1(Λ < Λo) =

∫ Wmax

0

d2Wo

∫ ln(|Wo|2+Λo)

ln(|Wo|2)
d(g−2)g4

≈
∫ Wmax

0

d2Wo
Λo

|Wo|2
(−1/ ln(Wo))

2

Distribution of m3/2 flat on a log scale

Imposing the value of the weak scale as an additional
requirement can favor supersymmetry breaking at the
weak scale.This is a realization of conventional natural-

ness.
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Weak Scale and Naturalness

Require mH < TeV :

m2
H = µ2 − |W |2. (5)

If
∫

d2µ (Susskind, Thomas): still a log distribution of
susy breaking scales.

∫
d2m3/2TeV2

m2
3/2

If
∫

d2µ
µ2 :

∫
d2m3/2TeV2

m4
3/2
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The W=0 Branch: Supersymmetry Breaking

at Very Low Energies

There are a class of states with Wo = 0. So a δ-function
distribution.

One might expect that Wo generated dynamically (as in
gaugino condensation). Distribution smeared out:

∫
d2Wof(Wo) ∼

∫
d2Wo

W 2
o

(6)

What happened to our earlier argument for smoothness?

W = 0 can be a symmetry point – unbroken R symmetry.
If so, a special point in the moduli space.∫

d2Wof(Wo)

f singular at the origin, no Taylor expansion. It is the
singular behavior of the distribution function which dis-
tinguishes this branch of the moduli space.
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The scale of supersymmetry breaking on the

W = 0 branch

Now expect both Wo and Msusy generated dynamically.
Repeating our earlier counting,

F1(Λo) ∝ Λo

∫
d2m3/2

m4
3/2

Very low energy breaking significantly favored (gauge
mediation).

Note: in past phenomenological approaches to gauge
mediation, no particular scale for susy breaking favored
by theoretical (naturalness) considerations. Now, low-
est scale consistent with other constraints (cosmological
constant, weak scale) favored.

Example of an added input to model building

LHC
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Counting States with W = 0 and Discrete R
Symmetries Sun,MD;DeWolfe

Suppose that at some point in moduli space, in the
absence of fluxes, there is an (discrete) R symmetry.
Under the symmetry, W transforms by a phase α. Sup-
pose that there are some number of fields, Zi, which
also transform by α, and some number, φi, which are
neutral. Then the superpotential has the form:

W =
∑

i

Zifi(φj); i = 1, n; j = 1, m. (7)

W = 0 is Zi = 0; dW
dZi

= 0 if fi(φj) = 0. Then provided

m > n, and that fi is a reasonably generic function, there
will be supersymmetric solutions with W = 0. There will
not be supersymmetric solutions if m < n. In the former
case, not all moduli are fixed.
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What do we expect? In the Calabi-Yau case, there is a
pairing of complex structure moduli and fluxes. The
pairing is such that if the flux is neutral, the corre-

sponding modulus transforms like the superpotential.
Can only turn on neutral fluxes if the low energy la-
grangian is to preserve the symmetry. In order to have
a large number of states, and a small number of vanish-
ing fluxes, we must have a large number of fields which
transform under the symmetry. So we are in the limit
n > m, above. So if there is not a big suppression of the
number of states, the low energy lagrangian will leading
to breaking of supersymmetry and/or R symmetry.
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The Price of Discrete Symmetries

These ideas are illustrated by IIB orientifold on the CY
defined by:

WCP 4
1,1,1,6,9[18]

P = z18
1 + z18

2 + z18
3 + z3

4 + z2
5 = 0. (8)

h2,1 = 272 independent deformations of the polynomial.
Rich set of discrete symmetries:

Z3
18 × Z3 × Z2 × S3. (9)

Under z1 → e
2πi

18 z1, Ω (holomorphic three form) trans-
forms as:

Ω → e
2πi

18 Ω, (10)

and similarly for the other coordinates. Orientifold pro-

jector includes, e.g., z5 → −z5, under which Ω → −Ω All

of the polynomial deformations are invariant under the

Z2. Any polynomial linear in z5 can be absorbed into a

redefinition of z5 So all of the fluxes are odd and survive

the projection.
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Now we want to ask: what fraction of the fluxes preserve
a discrete symmetry of the orientifold theory. Consider,
for example, z4 → e

2πi

3 z4. Invariant fluxes are paired with
polynomial deformations linear in z4. There are 55 such
polynomials. I.e. only about 1/3 of the fluxes are in-
variant under the symmetry.

In this example, the dimensionality of the flux space is
reduced by more than half. This is typical of models
in weighted projective spaces. While this is a dramatic
reduction, there may be other selection effects which
favor such states.

A similar analysis: Z2 R-parities (which do not rotate the
superpotential, and which might be important to under-
standing the stability of the proton), are very common
in the landscape.
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Broken SUSY Branch

Here one has distinctly less control than on the SUSY
branches.

At the Level of the lowest order supergravity analysis,
the number of non-susy stationary points of the effective
action is infinite( Douglas and Denef (DD)). It is likely
that only a finite subset of these states in fact exist and
are metastable. DD argue that one needs to impose a
cutoff on the supersymmetry breaking scale. The need
for such a cutoff complicates the relative counting of
susy and nonsusy states.
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Douglas and Denef and the Number of States

with Cutoff F ∗

With a cutoff, DD have done a counting of states.

Want to evaluate:

N =
∑

~N

∫
d2mzδ(V ′) det(V ′′) (11)

Treating the fluxes as continuous, imposing the tadpole
constraints, allows conversion of this expression to a
manageable form.

Nns =
(2πL∗)2m

(2m)!

∫
M

d2mz det gρ(z) (12)

where

ρ(z) = π−2m

∫
d2Xd2Zd2mZFe−|x|2+|F |2−|Z|2f(X, F, Z)(13)

Note the sign of |F | in the exponent. In this form, it
is again clear that a cutoff is necessary. Douglas and
Denef performed careful analysis of the object f . The
final result: with cutoff F ∗,

N (Λ < Λo, |F | < F ∗) = NsusyF
∗6. (14)
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We can obtain this result by thinking about features of
the low energy effective lagrangian (O’Neil,Sun,MD). If
scale of susy breaking is small, and cosmological con-
stant is small, there must be a light chiral multiplet in
the effective lagrangian. Surely it is more probably to
have only one chiral multiplet, z, than several. We can
take the superpotential to have the form:

W = Wo + αz + βz2 + γz3 + . . . (15)

and the Kahler potential:

K = a + bz + b∗z∗ + cz2 + c∗z∗2 + dz∗z + . . . (16)

In perturbation theory, a, ...d ∼ 1, and we will assume
that this is general.
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Now we want to impose the following conditions:

1. F is small at the minimum, i.e.

α + bWo = F |F | < F ∗. (17)

2. The potential is zero at the minimum. Since F is
small, this means that Wo ∼ F .

3. The potential has its minimum at z = 0. DD:

∂zV = eK(DzDzWD̄z̄W̄ − 2DzWW̄ ). (18)

4. The minimum is metastable.

∂2
z V = eK(DzDzDzWD̄z̄W̄ − DzDzWW̄ ) (19)

If we assume that the Kahler potential is bounded, b
cannot become arbitrarily large. So from the first two
conditions we learn that α ∼ F . Then the third condition
gives that β ∼ F . Finally, if γ is large, examining the
second derivative terms, we see that the masses cannot
be positive; so once more, γ ∼ F .
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To obtain the number of states with |F | < F ∗, we need
to know the distribution of the parameters α, β, etc.
But again, provided there are states, we can obtain these
distributions by Taylor series expansion about the origin.
The origin is not a special point, so there is no reason
these should be singular. So we have:∫

d2αd2βd2γd2Woθ(Λo − V )θ(F ∗ − |α|)θ(F ∗ − |β|) (20)

θ(F ∗ − |γ|) ∼ ΛoF
∗6.

This illustrates that the result of Douglas and Denef is
robust, and does not depend on details of the micro-
scopic theory. Follows from general expectations of low
energy field theory, and very mild assumptions about the
distributions.

Pile up of states at the high scale means that most
states cannot be studied in any approximation scheme;
statistics hard.
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Features of these phenomenologies:

1) Low scale breaking: gauge mediation, with multi-TeV
scale (but serious cosmological moduli problem)[Gorbatov,Thomas,MD]

2) Intermediate scale breaking: e.g. if take KKLT
scheme literally, assume matter on D7 branes, gauginos
much lighter than squarks, sleptons. Dark matter likely
to be wino. This might select for a relatively large value
of the gravitino mass; perhaps could explain why susy
higgs not yet seen (i.e. fine tuning of susy). Possible so-
lution of the usual cosmological moduli problem. Signif-
icantly ameliorates flavor problems. Spectrum of “split
supersymmetry” with 100 TeV scale for scalars.[MD]

3) High scale breaking – perhaps provides additional
motivation for exploring the phenomenology of tech-
nicolor/RS.[Douglas et al] Challenging to relate to any
microphysical understanding.
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Split Supersymmetry and Related Ideas

So far, discussion has been: can one use statistics (esp.
correlations) to make predictions for low energy physics
from the landscape.

Is there an alternative, “bottom up” approach? Esp. a
rationale for tunings in model building?

Split susy: motivation is observation that squarks, slep-
tons are irrelevant to unification.

Argue: fermions naturally light due to R symmetries,
scalars, heavy.

But:

• Large susy breaking, small Λ ⇒ W very large, R
symmetry badly broken. Detailed models required
to suppress the masses of gauginos; not clear that
generic.

• We have seen, R symmetries plus landscape ⇒ un-
broken susy.

But, who knows?
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Lessons

• Statistics of classes of vacua follow from simple
considerations:

1. Assumption of dense set of states

2. smoothness of distribution functions

3. Wilsonian effective lagrangian reasoning.

• Within different branches, can make phenomeno-
logical statements. Much more detailed microscopic
understanding required to choose among different
branches (Douglas). At present, can only hypoth-
esize nature lies on one or another branch, but we
gave some tentative evidence that the low energy
branch might be suppressed.
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Conclusions: What to do now?

• Statistics of gauge symmetries. E.g. is dynamical
susy breaking at low energies common?

• More on statistics of ranks, etc. might give insight
into more detailed phenomenology. Blumhagen et
al; Kumar, Wells

• Question of unification in the landscape.

• Hard questions: cosmology, stability, etc. E.g. per-
haps non-susy vacua disfavored by stability consid-
erations?

• We have just over two years!
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