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Motivation

Not everything that can be counted counts,
and not everything that counts can be counted.
— Albert Einstein
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The good news

Observation: universe is startlingly finely tuned: e.g.
—120 p g4
N~ 107"M,

Based on what we now know of string theory, it appears rather
unlikely that this value would be attainable if the total number of
vacua was, say, 100.

In fact, [Bousso-Polchinski] pointed out that even for fixed
compactification topology, A can be finely but discretely scanned

by fluxes:
K

A==+ > 8apN*N’
a,f=1

~ “discretuum” .

For K sufficiently large, |A| < 10712°M2 attainable in this
simplified model.
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The good news

Given discretuum, can it be scanned physically?

Some pictures have been proposed: variants of eternal inflation
[Linde,Brown-Teitelboim,Bousso-Polchinski,. . . ], quantum cosmology
[Hartle-Hawking, Vilenkin, Tye,Ooguri-Vafa-Verlinde,. . . ].

Selection mechanism? Logical possibilities for partial selection:
» Environmental [Weinberg, Agrawal-Barr-Donoghue-Seckel,
Arkani-Hamed - Dimopoulos]
» (Quantum) cosmological, e.g. P(A) ~ e'/N = A = Apin.
Significant conceptual problems remain to be resolved.

In any case, important to know e.g. how small A can actually get,
or more generally, what a priori number distribution of vacua over
parameter space is.

If sufficiently finely scanned, landscape picture offers at least
possibility for a consistent explanation for a number of absurd
finetunings of parameters in our universe!
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The bad news

oo = a lot of vacual!

But, imposing observational constraints (spectra, parameter values,
symmetries), as well as further theoretical consistency constraints
on existing proposals (e.g. metastability), number may reduce:

00 — 10°000 _, 10500 _, 10190 _, 10 — 1?7 or 07

Type of problem: given parameter range, find discrete quanta (e.g.
fluxes) such that vacuum ends up in this range. ~~ Hard!

How hard? ~~ quantified in computational complexity theory.

Even in simple Bousso-Polchinski toy model, the problem to find
the flux vectors N such that 0 < A(N) < e is NP-hard.
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time

NP
complete
@ NP

» P = problems solvable in polynomial time (e.g. multiplication)

» NP = problems for which a candidate solution can be verified in
polynomial time (e.g. prime factorization)

» NP-hard = loosely: problem at least as hard as any NP problem, i.e. any
NP problem can be reduced to it in polynomial time (e.g. closest lattice
vector problem)

» NP-complete = NP N NP-hard (e.g. subset-sum)
Presumably: NP # P, but no proof to date (Clay prize problem).

= if you find a polynomial time algorithm to identify string vacua
from parameter data, you're rich...



What can we do?



What can we do?

» Try to get an as complete as possible picture of which realistic
vacua are possible in string theory — constructions.



What can we do?

» Try to get an as complete as possible picture of which realistic
vacua are possible in string theory — constructions.

» Careful study may reduce number of possibilities.



What can we do?

» Try to get an as complete as possible picture of which realistic
vacua are possible in string theory — constructions.

» Careful study may reduce number of possibilities.

» Try to deal with remaining set statistically — distributions.



What can we do?

» Try to get an as complete as possible picture of which realistic
vacua are possible in string theory — constructions.

» Careful study may reduce number of possibilities.

» Try to deal with remaining set statistically — distributions.

» Estimates of numbers of solutions to NP-hard problems are
often easily obtained using statistical mechanics techniques



What can we do?

» Try to get an as complete as possible picture of which realistic
vacua are possible in string theory — constructions.

» Careful study may reduce number of possibilities.

» Try to deal with remaining set statistically — distributions.
» Estimates of numbers of solutions to NP-hard problems are
often easily obtained using statistical mechanics techniques
» = computation of reduction in numbers from constraints
(even down to ~ 0) can be done without finding needles in
haystacks.



What can we do?

» Try to get an as complete as possible picture of which realistic
vacua are possible in string theory — constructions.

» Careful study may reduce number of possibilities.

» Try to deal with remaining set statistically — distributions.

» Estimates of numbers of solutions to NP-hard problems are
often easily obtained using statistical mechanics techniques

» = computation of reduction in numbers from constraints
(even down to ~ 0) can be done without finding needles in
haystacks.

» Distributions also more robust than individual solutions under
corrections.



What can we do?

» Try to get an as complete as possible picture of which realistic
vacua are possible in string theory — constructions.

» Careful study may reduce number of possibilities.

» Try to deal with remaining set statistically — distributions.

» Estimates of numbers of solutions to NP-hard problems are
often easily obtained using statistical mechanics techniques

» = computation of reduction in numbers from constraints
(even down to ~ 0) can be done without finding needles in
haystacks.

» Distributions also more robust than individual solutions under
corrections.

» Try to compute dynamical probabilities on parameter space



What can we do?

» Try to get an as complete as possible picture of which realistic
vacua are possible in string theory — constructions.

» Careful study may reduce number of possibilities.

» Try to deal with remaining set statistically — distributions.

» Estimates of numbers of solutions to NP-hard problems are
often easily obtained using statistical mechanics techniques

» = computation of reduction in numbers from constraints
(even down to ~ 0) can be done without finding needles in
haystacks.

» Distributions also more robust than individual solutions under
corrections.

» Try to compute dynamical probabilities on parameter space
— not in this talk.



Construction of vacua

Any intelligent fool can make things bigger and more complex...
It takes a touch of genius, and a lot of courage, to move in the opposite direction.
— Albert Einstein
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» Intersecting brane models, including Kahler potentials,
Yukawa couplings, susy breaking soft terms [Aldazabal,
Angelantonj, Antoniadis, Blumenhagen, Camara, Cremades, Cvetic,
Dudas, Franco, Gorlich, Grafia, Grimm, |bafiez, Jockers, Kors, Langacker,
Liu, Louis, List, Mayr, Marchesano, Rabadan, Reffert, Richter, Sagnotti,
Shiu, Stieberger, Taylor, Uranga, Wang]

» Heterotic constructions [Braun, Donagi, He, Ovrut, Pantev,
Reinbacher]

» Gepner models [Aldazabal, Andres, Blumenhagen, Brunner, Dijkstra,
Hori, Hosomichi, Huiszoon, Juknevich, Leston, Nufiez, Schellekens,
Walcher, Weigand]

But in this talk: focus on moduli fixing.
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I1B KKLT vacua

Problem: find 4d string compactification with large volume, no
massless moduli, A/ = 1 unbroken susy and Rxx < Rags.

KKLT [Kachru-Kallosh-Linde-Trivedi]: [IB on CY3 orientifold Y /Zy +
RR flux F3 + NS flux H3

< M/F-theory on elliptically fibered CY,4 Z + flux Gy.
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Y/Z,

Z:

Flux + nonperturbative effects induce superpotential:
W = Whux(complex) + W,,p(kahler)

~> can fix all moduli in principle.
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I1B KKLT vacua

It took some time to find explicit examples, mainly because of
technical complications to prove sufficient number of contributions
to W from D3-instantons and gaugino condensates (or from
Mb5-instantons in M-theory dual).

By now, several examples known:

> [Denef-Douglas-Florea]: various constructions of models with a
sufficient number of D3 instanton divisors with exactly 2
fermion zeromodes (h%/(M5) = 0 [Witten]).

» [Denef-Douglas-Florea-Grassi-Kachru]: completely explicit, simple
model: TG/Zg X Zy; all moduli (open, closed, untwisted and
twisted) fixed.

> [Aspinwall-Kallosh]: Stabilize M-theory on K3 x K3, making use
of previous work of [Saulina, Kallosh - Kashani-Poor - Tomasiello]
that had shown that the topological conditions on divisors to
contribute to W are substantially relaxed in the presence of
flux.
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In [Balasubramanian-Berglund, Balasubramanian-Berglund-Conlon-Quevedo,
Conlon-Quevedo-Suruliz] it was shown that, when taking into account
o/ corrections to the Kahler potential, a new branch of vacua can
appear as nonsusy AdS minima of the potential.

Rough idea: keep some divisor volumes p; ~ O(1) while sending
overall vol to infinity, and balance nonperturbative e™”i off against
perturbative o’ corrections.

= Volume stabilized at exponentially large value:
Vol ~ W, e</&

where Wy and gs are fixed by the fluxes.

Unlike KKLT, apparently also in well-controlled regime for O(1)
values of W.
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[Antoniadis-Kumar-Maillard] considered 1I1B on T°/Z; orientifold with
closed string fluxes and magnetized D9/D7-branes.

~> Gauge flux + B-field F = F — B gives D-terms, constraining
Kahler moduli
Im[e—e*+] = 0
( = mirror to slag cond.), and F-terms, constraining complex
structure and open string moduli:
FO2 =9
[Brunner-Douglas-Fiol-Rémelsberger, Marifio-Minasian-Moore-Strominger,

Jockers-Louis, Gomis-Marchesano-Mateos].

[AKM] study only closed string moduli stabilization, which they
argue can be done in controlled regime (assuming frozen open
string moduli).

Open string moduli should be easily fixable as well in this way.

[Gomis-Marchesano-Mateos, del Moral]
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[Acharya] realized that replacing W — W + ¢, Imc # 0, does
produce susy vacua, and proposed such a ¢ can be produced by
holomorphic Chern-Simons contribution living on singularity fibered
over certain 3-manifold.

Rather different compactification is obtained when taking G4 along
4d spacetime ~~ Freund-Rubin; X = weak G, (Einstein), e.g.

X = AdS, x S7. Often moduli-free, and can support chiral
fermions [Acharya-Denef-Hofman-Lambert], but typically Rxx ~ Rads.
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M-theory on Gz hol. manifold X: turning on Gs-flux in X gives
1
W:/G4/\(2C3+¢3)

but leads to runaway potential and no susy vacua [Beasley-Witten].

[Acharya] realized that replacing W — W + ¢, Imc # 0, does
produce susy vacua, and proposed such a ¢ can be produced by
holomorphic Chern-Simons contribution living on singularity fibered
over certain 3-manifold.

Rather different compactification is obtained when taking G4 along
4d spacetime ~~ Freund-Rubin; X = weak G, (Einstein), e.g.

X = AdS, x S7. Often moduli-free, and can support chiral
fermions [Acharya-Denef-Hofman-Lambert], but typically Rxx ~ Rads.

More general M-theory compactifications on weak G, + fluxes
have been discussed e.g. by [Lambert].
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Studied in [Derendinger-Kounnas-Petropoulos-Zwirner] for T6/Z2 X 2o
with RR, NS-NS, and metric fluxes (torsion), by relating it to 4d
gauged sugra. Find all untwisted geometrical moduli can be
stabilized.

[DeWolfe-Giryavets-Kachru-Taylor] analyzed general case with RR +
NS-NS fluxes in detail and argue stabilization of all geometric
moduli; show this explicitly for T°/Z2 orientifold (including twisted
moduli). Find infinite series of vacua running off to infinite volume
and zero coupling.

Analysis of toroidal case with metric fluxes refined and generalized
in [Camara-Ibafiez-Font], including tadpole cancellation conditons
involving metric fluxes, and inclusion of intersecting brane models.
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de Sitter vacua

Much harder to establish, because of control issues and many more
possible decay channels.

No fully established concrete examples known, although there is at
this point no fundamental reason to doubt their existence, and
there are various plausible proposals for construction, including:

> [KKLT]: anti-D3 at bottom of near-conifold warped throat:
gives small uplift term which at least at level of 4d effective
field theory gives plausibly dS. + variations on uplift theme
[Burgess-Kallosh-Quevedo, Saltman-Silverstein, Denef-Douglas,

Saueressig-Theis-Vandoren|]

> [Saltman-Silverstein]: Susy broken at KK scale (flux
compactifications on product of Riemann surfaces).

» [Maloney-Silverstein-Strominger, Silverstein]: Susy broken at string
scale (noncritical string theories).



Summing up



Summing up

» Conclusion perhaps not so surprising: throw enough
ingredients together to get sufficiently complicated potential,
and this will fix moduli, at least at effective field theory level.



Summing up

» Conclusion perhaps not so surprising: throw enough
ingredients together to get sufficiently complicated potential,
and this will fix moduli, at least at effective field theory level.

Progress has been to get this in reasonably controlled regime.



Summing up

» Conclusion perhaps not so surprising: throw enough
ingredients together to get sufficiently complicated potential,
and this will fix moduli, at least at effective field theory level.

Progress has been to get this in reasonably controlled regime.

» Constructions are "ugly”. But pretty equations are known to
have "ugly” solutions in most cases in real life. E.g. quantum
electrodynamics can produce solutions like this:



Summing up

Conclusion perhaps not so surprising: throw enough
ingredients together to get sufficiently complicated potential,
and this will fix moduli, at least at effective field theory level.

Progress has been to get this in reasonably controlled regime.

Constructions are "ugly”. But pretty equations are known to
have "ugly” solutions in most cases in real life. E.g. quantum
electrodynamics can produce solutions like this:




Summing up

Conclusion perhaps not so surprising: throw enough
ingredients together to get sufficiently complicated potential,
and this will fix moduli, at least at effective field theory level.

Progress has been to get this in reasonably controlled regime.

Constructions are "ugly”. But pretty equations are known to
have "ugly” solutions in most cases in real life. E.g. quantum
electrodynamics can produce solutions like this:

Now that we know zoo of possible constructions, more effort
should start going in opposite direction:



Summing up

» Conclusion perhaps not so surprising: throw enough
ingredients together to get sufficiently complicated potential,
and this will fix moduli, at least at effective field theory level.

Progress has been to get this in reasonably controlled regime.

» Constructions are "ugly”. But pretty equations are known to
have "ugly” solutions in most cases in real life. E.g. quantum
electrodynamics can produce solutions like this:

» Now that we know zoo of possible constructions, more effort
should start going in opposite direction: try to eliminate
candidate solutions. For example metastability of dS vacua?



Statistics of vacua

We can't solve problems by using the same kind of thinking
we used when we created them
— Albert Einstein
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Statistics: general idea

[Douglas, Ashok-Douglas, Denef-Douglas, Douglas-Shiffman-Zelditch]

Vacuum characterized by discrete (compactification) data N and
critical point of effective potential Viy(z):

(N,z): Vi(z) =0, Vii(z)>0

We want to count the number of metastable vacua in a given
ensemble in a certain region of parameter space:

Nuac(z€8) = > [ d"z5"(Vy(2)) | det Vj(2),
N/S N N

- /5 d"z p(2)

p(z) =Y 8"(Viy(2)) | det Viy(2)|
N

with

~~ not very practical; need some more structure + approx.
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Statistics: general idea

If Viy = ef(|DWy|? — 3| Wp|?)
= V(2) and V[j(z) can be expressed in terms of W = Wy(z),
Fa = DaWn(z), Mag = DaDgWp(z), Yapc = DaDgDc Wi (2).

At any fixed z, varying N will define a large discrete set in
(W, F, M, Y)-space. The distribution of these points is given by
some measure dug[W, F, M, Y], — continuous approximation

= p(z) = [dpe[W,F,M, Y], f(W,F,M,Y), — finite dim. int!
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Distributions of susy IIB flux vacua

» Number of flux vacua in region S of moduli space

2rL) 1
Ns(L< L) ~ (7T)/ — det(R + wl)
b3! S m
where L, = x(X4)/24.

Example [Giryavets-Kachru-Tripathy-Trivedi]: X3 = CY
hypersurface in WP[1,1,1,1,4], Xa = CY hypersurface in
WP[1,1,1,1,8,12]. Has x/24 = 972, bs = 300, so

Nvac ~ 10500
» C.c. A= —3|W|? uniformly distributed for |A| < Mj:
dN[A] ~ dA

= smallest c.c. ~ M2 /Nyac.

» String coupling gs: again uniformly distributed.
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» Vacua cluster near conifold degenerations:
d|z|
N afiog 217

— Relation to dual YM coupling: |z| ~ e~2/&w = uniform:

dN ~ dgiy

Behavior near other singularities?

» Large volumes strongly suppressed:
dNV] ~ e~V d(v2/3)

In contrast to [Balasubramanian et al] = if LHC happens to find
evidence of large extra dimensions, this can distinguish
between different scenarios.

All of above tested by Monte Carlo experiments

[Giryavets-Kachru-Trivedi, Conlon-Quevedo].
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Nonsusy I1B

F-breaking vacua, F =: M2 _ < I\/Ig, for A~ 0or A>0:

susy
dN[F,N ~ F°dF d\

— low breaking scale disfavored
(but much less than naive guess dF?")
Above worked out in detail in [Denef-Douglas 2], but there is more
intuitive argument in 1-field model [Dine-O’Neil-Sun]:

W=Wy+Fz+Mz2+YZ

Solving V’(0) = 0 requires M = 2W,, c.c. near zero requires
|F|? =~ 3|Wp|? and stability in this case requires |Y| < |F].

= in addition to tuning c.c. three complex parameters need to be
tuned small, of order |F|. In generic ensmemble: independent
= dN ~ dA\d|F|°.
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M-theory on G,

[Acharya-Denef-Valandro]

» Number of susy flux vacua in region & of moduli space
Ng ~ c§3/detg
S

» Large volumes strongly suppressed:
dNV] ~ (kep)2dV=35/T = V < (kep)™/3

» Small cc’s strongly suppressed because

AN~1/V3
» Small F-breaking susy breaking scales strongly suppressed
because
Mszusy ~ 1/\/3/2

Reason large hierarchies are suppressed (as opposed to IIB): only
as many fluxes as moduli = all scales set by V/, no further discrete
tuning possible once moduli are fixed.
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Vacua with enhanced (R-)symmetries

[DeWolfe-Giryavets-Kachru-Taylor, DeWolfe, Dine-Sun]: study explicit
constructions and statistics of 1IB flux vacua with discrete
symmetries (mostly R-symmetries).

Imposing symmetries typically puts constraints directly on fluxes.
= Counting suppression L=,

May seem serious suppression, but sometimes symmetry is most
economical way to ensure, say, smallness of a set of n couplings A:

If we require |X| < €, choosing purely random fluxes will have
probability ~ ¢” to end up in |\| < e.

So: if €" < L=k, most vacua in this coupling region will have the
symmetry.

~~ possibility of environmental selection of symmetries. ..
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Gepner and intersecting brane models

Some open string sector statistics:

> [Blumenhagen-Gmeiner-Honecker-Liist-Weigand] have initiated
statistics of intersecting brane models (counting number of
solutions to tadpole condition), numerically and using saddle
point estimates.

» [Brunner-Hori-Hosomichi-Walcher] exactly count possible brane
configurations at Gepner points, and consider various
distributions.

> [Dijkstra-Huiszoon-Schellekens] did very impressive systematic
search for vacua with Standard Model chiral spectrum, among
all simple current orientifolds of all Gepner models. They find
almost 180,000 distinct solutions (not counting hidden sector
degrees of freedom), and thoroughly analyze various
distributions.
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Open string flux vacua and the OSV conjecture

(inspired by [Gomis-Marchesano-Mateos])
Consider D4 wrapping b; = 0 divisor P with flux F and N
DO0-branes bound to it.

Susy condition: F20 =0 [Marifio-Minasian-Moore-Strominger]
— generically freezes divisor deformation moduli.

(Skipping some details) ~ for small ¢°:

Zosv _ ZQ(p’ q) efwd)oqoquﬁAqA (1)
q
~ D py(V) N ) 2
N,F
X / 627 627 (F20) | det V; F202 (3)
M

where M = divisor deformation moduli space.
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Using N = 1 special geometry structure of [Lerche-Mayr-Warner], in
small ¢ approximation, and using techniques developed in
[Ashok-Douglas, Denef-Douglas], this can be computed to be
- ¢° T, 1, 4 1
ZOSV%X(M)T exp @<_6(P +C2P)+§P'q)¢)

where )

X = —detR

X(M) /M —nde

computed with metric gz = fw?’o A @?’2.
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Open string flux vacua and the OSV conjecture

Using N = 1 special geometry structure of [Lerche-Mayr-Warner], in
small ¢ approximation, and using techniques developed in
[Ashok-Douglas, Denef-Douglas], this can be computed to be

0 1
Zosy = X(M) % exp (ﬂ(_

g 6(P3+CQ-P)+;P-<D-¢)>

where

x(M)E/ 1 detr
M

™

computed with metric gz = fw?’o A @?’2.

Note: formally Euler characteristic M, but subtle (as in closed
string case): metric may have singularities.

Essentially in full agreement with conjecture of [Ooguri - Strominger -
Vafa] at perturbative level!

Note: small ¢° = large 8top- Also, instanton corrections suppressed
in ¢° — 0 limit, so don't expect to see them-in this approximation.
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Conclusion

If string theory is the answer, what is the question?

If we knew what it was we were doing,
it would not be called research, would it?

— Albert Einstein
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