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Introduction

The goal of this talk is to review the exciting developments in perturbative

gauge theory that were triggered by the introduction of twistor string theory

(Witten 12/2003).

Surprises: Previously thought impossible calculations are now simple

exercises!

Motivations I (String Theory)

• Twistor string theory (Witten 12/2003): a string theory (topological

B-model) with target twistor space (Penrose 1967).

• Twistor string theory describesN = 4 SYM at weak coupling and

leads to new insights into its perturbation theory. Complementary to the

AdS/CFT correspondence (Maldacena 1997) which describes the strong

coupling regime.



Motivation II (Field Theory)

• Why do we compute perturbative QCD amplitudes? Background in

Hadron colliders like Tevatron and LHC.

• In principle perturbation theory is under control: Feynman diagrams!

But not in practice or conceptually.

In practice: # of FD grows very rapidly with # gluons and # of loops.

Conceptually: After simplifying a huge # of FD the final answer is often

simple and elegant.

In this talk I will present many new techniques that lead directly to the

simple and elegant expressions.

Why does perturbation theory exhibit such an amazing simplicity?



Definition of the Amplitudes

(Reviews: Z.Bern TASI 92, L.Dixon TASI 95, Sterman TASI 04.)

We want to compute scattering amplitudes of n gluons. Each gluon carries

the following information: gi = {pµ
i , εµ

i , ai}.

Color Decomposition

(Berends, Giele, Mangano, Parke, Xu 80’s)

Atree
n ({pµ

i , εµ
i , ai}) = ign−2δ(4)(p1+. . .+pn)×

∑

σ∈Sn/Zn

Tr(T aσ(1) . . . T aσ(n))Atree
n (σ(pµ

1 , εµ
1 ), . . . , σ(pµ

n, εµ
n))

Color Ordered Partial Amplitudes. (At one-loop the same decomposition can be

done but it also includes double trace terms.)



Spinor-Helicity Formalism

{pµ
i , εµ

i } =⇒ Large number of redunbant Lorentz invariant combinations.

In four dimensions: Complexify the Lorentz group.

SO(3, 1, C) ∼= SL(2, C)× SL(2, C).

Spinors of± chirality: λ in (1/2, 0) and λ̃ in (0, 1/2).

Vector: (1/2, 1/2). Bispinor:

Paȧ = σµ
aȧPµ = λaλ̃ȧ + λ′aλ̃′ȧ

Null vector:
paȧ = λaλ̃ȧ

Lorentz invariant inner products:

〈λ, λ′〉 = εabλ
aλ′b [λ̃, λ̃′] = εȧḃλ̃

ȧλ̃′ḃ 2p · q = 〈p, q〉[p, q]

Example:

2p1 · p2 = 〈1, 2〉[1, 2] = 〈1 2〉[1 2]

.



The main simplification comes from:

(−)− helicity : ε
(i)
aȧ =

λ
(i)
a µ̃ȧ

[λ̃(i), µ̃]

(+)− helicity : ε
(i)
aȧ =

µa λ̃
(i)
ȧ

〈µ, λ(i)〉
Example:

Atree
5 (1−, 2+, 3−, 4+, 5+) =

〈1 3〉4
〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 1〉

• Berends, Kleiss, De Causmaecker, Gastmans, Wu (1981)

• De Causmaecker, Gastmans, Troost, Wu (1982)

• Kleiss, Stirling (1985)

• Xu, Zhang, Chang (1987)

• Gunion, Kunszt (1985)
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What was known before 2004:

Parke-Taylor Amplitudes:(Parke, Taylor 1986; Berends, Giele 1989)

A(1+, 2+, 3+, . . . , n+) = 0, A(1−, 2+, 3+, . . . , n+) = 0

Maximal helicity violating or MHV amplitudes:

A(1+, 2+, . . . , r−, . . . , s−, . . . , n+) =
〈r s〉4

〈1 2〉〈2 3〉 . . . 〈n− 1 n〉〈n 1〉

Some Next-to-MHV amplitudes:

A(1−, 2−, 3−, 4+, 5+, 6+) =
〈2 3〉2[5 6]2(〈1 2〉[2 4] + 〈1 3〉[3 4])2

(p2 + p3 + p4)2(p2 + p3)2s34s56s61
+ . . .

All other six-gluon helicity configurations: (Berends, Giele 1987; Mangano,

Parke, Xu 1988).

All seven-gluon NMHV amplitudes (Berends, Giele, Kuijf 1990)

Infinite series of NMHV: A(1−, 2−, 3−, 4+, . . . , n+) (Kosower 1990).



Twistor String Theory: (Witten 12/2003)

Twistor space (Penrose 1967): (Z1, Z2, Z3, Z4) = (λ1, λ2, µ1̇, µ2̇), with

µȧ = −i∂/∂λ̃ȧ.

Twistor string theory: Topological B-model on CP3|4 in the presence of N

D5-branes and D-instantons. (Alternative open string formulation: Berkovits

02/2004).
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Connected Instantons: (Roiban, Spradlin, Volovich 02/,03/2004)

ZI = P I(u, v), ψA = χA(u, v) where (u, v): Coordinates of a CP 1.

An =
∫

dMd=m−1

n∏

i=1

∫

C

〈ui, dui〉∏
k〈uk, uk+1〉φi(λi(ui), µi(ui), ψi)

Obs: Not really an integral⇒ Solving polynomial equations!

Disconnected Instantons: (F.C., Svrček, Witten 03/2004)

An =
∑

D

d=m−1∏

k=1

AMHV
k

∏

{ij}∈Links

1
P 2

ij

Obs: This is simple and systematic!

Surprise: Both formulas reproduce the full amplitude!

Localization Argument: The integral over the moduli space localizes to

singular configurations. (Gukov, Motl, Neitzke 04/2004)



MHV Diagrams: (F.C., Svrček, Witten 03/2004)

Claim: All tree-level amplitudes can be computed by sewing MHV amplitudes

(continued off-shell) with Feynman propagators.

An(1−, 2−, 3−, 4+, . . . , n+) =

i i − −−
−

ii+1
+

n
+

1
2 3

4
+

+

+++

+

− −
−

−

1 2
3n

4
+

+

+

+

+
ii+1

+

+

+

+

n−1∑
i=3

(
〈1, Pi〉3

〈Pi, i + 1〉〈i + 1, i + 2〉 . . . 〈n, 1〉

)
1

P 2
i

(
〈2, 3〉3

〈P, 2〉〈3, 4〉 . . . 〈i, P 〉

)

+

n∑
i=4

(
〈1, 2〉3

〈2, Pi〉〈Pi, i + 1〉 . . . 〈n, 1〉

)
1

P 2
i

(
〈Pi, 3〉3

〈3, 4〉 . . . 〈i− 1, i〉〈i, Pi〉

)

where 〈k, Pi〉 = εabλ
a
kP bḃ

i ηḃ and η is a fixed reference spinor.



Can this simple construction be equivalent to the sum of a huge number of

Feynman diagrams? Yes, it is!

Proof: MHV diagrams possess the following properties: (F.C., Svrček, Witten

03/2004)

• All correct collinear ((p1 + p2)2 → 0) and multi-particle

((p1 + p2 + . . . + pi)2 → 0) factorization limits.

• η independent. Lorentz invariant. Unphysical poles 1/〈i P 〉 are

spurious.

Therefore, A
(1)
n computed from MHV diagrams has the same poles and

residues as A
(2)
n computed from Feynman diagrams. At tree level this is

enough to conclude that A
(1)
n = A

(2)
n .

Q: Is there a systematic way of constructing an amplitude from its

singularities?



Partial List of Extensions and Applications:

• Amplitudes of gluons with fermions and scalars. (Georgiou, Khoze 04/,

Wu, Zhu 06/2004)

• Amplitudes with quarks, etc. (Georgiou, Glover, Khoze 07/; Su, Wu

07/2004).

• Application to Higgs plus partons (Dixon, Glover, Khoze 11/; Badger,

Glover, Khoze 12/2004) .

• Multicollinear limits in QCD: Calculation of universal split functions.

(Birthwright, Glover, Khoze, Marquard 03; 05/2005)

• Electroweak vector boson currents (Bern, Forde, Kosower, Mastrolia

12/2004)

One-loop applications: Wait until part III of the talk!



BCFW Construction
(Britto, F.C., Feng, Witten 01/2005)

Q: Is there a systematic way of constructing an amplitude from its

singularities?

Consider any amplitude of gluons: A(p1, . . . , pn)

Define the following function of a complex variable z:

A(z) = A(p1, . . . , pk−1, pk(z), pk+1, . . . , pn−1, pn(z))

where
λ̃k → λ̃k − zλ̃n, λn → λn + zλk.

In other words,

pk(z) = pk − zλkλ̃n, pn(z) = pn + zλkλ̃n.

Note: A(z) is a physical amplitude for all z:

p2
i = 0 ∀i and

n∑

j=1

pj = 0

All we need is good control of the analytic structure of A(z) which comes

from physical singularities.



Application: BCF Recursion Relations

Consider the BCFW construction at tree-level: Atree(z).

Claims:

• A(z) is a rational function. Therefore, its only singularities are poles.

• A(z) only has simple poles. (Propagators that depend on z)

• A(z) vanishes as z →∞. (Easy to prove from Feynman diagrams)

A(z) =
∑

i,j

∑

h=±
Ah

L(zij)
1

Pij(z)2
A−h

R (zij)

AL and AR are physical on-shell amplitudes!

Set z = 0 and get recursion relations for physical amplitudes of gluons.

BCF recursion relations: originally conjectured for k = n− 1 (Britto, F.C.,

Feng 12/2004):



Some Applications

Alternating 8-gluon amplitude: (Britto, F.C., Feng 12/2004).

A(1−, 2+, 3−, 4+, 5−, 6+, 7−, 8+) = [T ] + [U ] + [V ].

T =
[1 3]4[5 7]4〈4 8〉4

[1 2][2 3][5 6][6 7]t123t567〈4|2 + 3|1]〈4|5 + 6|7]〈8|1 + 2|3]〈8|6 + 7|5]

Split Helicity Amplitudes: (Britto, Feng, Roiban, Spradlin, Volovich 03/2005)

A(1−, . . . , q−, (q+1)+, . . . , n+) =
min(q−3,n−q−2)∑

k=0

∑

Ak,Bk+1

N1N2N3

D1D2D3

where Ak ⊂ {2, . . . q − 2}, Bk+1 ⊂ {q + 1, . . . , n− 1},

N1 = 〈b1 + 1, b1〉〈b2 + 1, b2〉 . . . 〈bk+1, bk+1〉,
D1 = (p2 + . . . + pb1)

2(pb1+1 + . . . + pa1)
2 . . . (pbk+1+1 + . . . + pq−1)

2,

etc.

Impossible⇒ Possible!



Scientific discoveries do not usually follow the most natural order!

A striking example:

• IR behavior of one-loop amplitudes inN = 4 SYM is well understood.

It depends on the tree-level amplitude. (Catani 1998)

• This leads to new formulas for tree amplitudes of gluons. (Bern, Dixon,

Kosower 2004)

• One-LoopN = 4 amplitudes can be computed from tree-level

amplitudes of gluons, scalars and fermions. (Britto, F.C., Feng 12/2004)

• New formulas for tree amplitudes of gluons as products of amplitudes of

gluons, fermions and scalars! Trees from loops! (Roiban, Spradlin,

Volovich 12/2004)

• BCF recursion relations: Amplitudes of gluons as products of

amplitudes of gluons!

• BCFW construction restores the natural order!



More Extensions and Applications: A Partial List

• RR for amplitudes of gluons and fermions. (Luo, Wen 01,02/2005)

• RR for amplitudes of gravitons. (Bedford, Brandhuber, Spence, Travaglini

02/, F.C., Svrcek 02/2005)

• Relation of RR to twistor diagrams. (Hodges 03/2005)

• RR for gauge theory amplitudes with massive particles. (Badger, Glover,

Khoze, Svrcek 04/2005)

• RR for one-loop amplitudes: Finite QCD (Bern, Dixon, Kosower

01/,05/2005)

• More on one-loop applications later!
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What was known before 2004

One-loop amplitudes of gluons: AQCD = AN=4 − 4AN=1
chiral + Ascalar
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(Taken from: Dixon, TASI 95)



One-Loop Amplitudes inN = 4 SYM

• Supersymmetric amplitudes of gluons are four-dimensional

cut-constructible. This means that the amplitude is completely

determined by its finite branch cuts and discontinuities. (Bern, Dixon,

Dunbar, Kosower 1994)

• All tensor integrals in a Feynman graph calculation of the amplitudes

can be reduced to a set of scalar box integrals. (Passarino-Veltman

reduction. In Dim. Reg: Bern, Dixon, Kosower 1993)

2K

K3

K1

K412 n
n−1

a

c

d

b



Scalar Box Integrals
K2

K1 K4

K3

l

=
∫

d4`
1

`2(`−K1)2(`−K1 −K2)2(` + K4)2

Any n-gluon one-loop amplitude can be written as: (Bern, Dixon, Kosower

1993 & with Dunbar 1994) c

a

b

dA1−loop
n =

∑

1<a<b<c<d<n

Babcd ×

Observation: The problem of computingN = 4 one-loop amplitudes is

reduced to that of computing the coefficients Babcd, which are rational

functions of 〈i j〉 and [i j].



MHV Diagrams: One-Loop

MHV amplitudes: (Brandhuber, Spence, Travaglini 2004)

−
−
−−

p−PL
++

+

+ +

+

+
+

+

+

L R

p

A1−loop
MHV =

∑

D,h

∫
d4−2εpAL(λp, λp−PL

)
1

p2(p− PL)2
AR(λp, λp−PL

)

where λa
p = paȧηȧ and λa

p−PL
= (p− PL)aȧηȧ.

Answer: (Bern, Dixon, Dunbar, Kosower 1994) Babcd = {Atree MHV
n or 0}

Open problem: What about next-to-MHV?



Twistor Space Localization

There are differential operators: F and K that determine collinearity and

coplanarity in twistor space. (Witten 12/2003)

At one-loop, amplitudes failed to be annihilated by the operators. The

reason is a holomorphic anomaly. (F.C., Svrček, Witten 2004)

The failure to give zero resulted in a rational function. This led to a purely

algebraic approach for the computation of Babcd. (F.C. 10/2004)

Application: The first new result at one-loop!

A7(1−, 2−, 3−, 4+, 5+, 6+, 7+) 35 coefficients (Britto, F.C., Feng 10/2004)

−
〈1 2〉3〈2 3〉3[5 6]3

〈7 1〉〈3 4〉〈2|3 + 4|5]〈2|7 + 1|6](〈7 1〉〈2|3 + 4|1] − t234〈7 2〉)(s71〈2 4〉 − 〈3 4〉〈2|7 + 1|3])

with t234 = (p2 + p3 + p4)
2 and s71 = (p7 + p1)

2.

This result, along with all other helicity configurations, was reproduced using a

purely field theoretic method, the unitarity-based method. (Bern, Del Duca, Dixon,

Kosower 10/2004)



Unitarity Cuts

Recall that SUSY amplitudes are four-dimensional cut constructible. Then it

is natural to use unitarity cuts to compute them. This goes under the name

of the unitarity-based method. (Bern, Dixon, Dunbar, Kosower 1994)

Observation: Methods based on unitarity cuts have the disadvantage that

always several unknown coefficients show up at once in a given cut.

B

p , q

i,p,j+1,q

j+1

i−1
i

j

j+2

i+1 q

q−1

p−1

i i−1

p

j j+1

Reduction techniques or the algebraic approach have to be used in order to

disentangle the information about the different coefficients.

Blobs denote complete tree-level amplitudes! (The idea of combining FD that

share the same cut can be found e.g. in “The Analytic S-Matrix” by Eden et al 1966)



Quadruple Cuts
(Britto, F.C., Feng, 12/2004)

Just as unitarity cuts compute the discontinuity across a branch cut, higher cuts

compute discontinuity across other singularities.

It turns out that each scalar box integral has a unique singularity! The discontinuity

across it is computed by a quadruple cut!

Bi,p,j+1,q

q

q−1

p−1

i i−1

p

j j+1

i

p−1

p

j j+1

q−1

q

i−1

∫
dµAtree

1 Atree
2 Atree

3 Atree
4 = B

∫
d4`δ(+)(`21)δ

(+)(`22)δ
(+)(`23)δ

(+)(`24)



But the use of multiple cuts in gauge theory is not a new idea! (Feynman

1963). Modern applications: (Bern, Dixon, Kosower 1997,2000,2004)

A Major Problem and a Simple Solution

Problem: The unique singularity does not exist for real momenta in

Minkowski space. A related problem: Atree
3 (p1, p2, p3) = 0.

Observation: In the twistor string theory construction it is natural to consider

(+ +−−) signature: Atree
3 (p1, p2, p3) 6= 0.

Solution: Use (+ +−−) signature with real momenta.

Final Formula:

Babcd =
1
2

∑

S

∑

h

Atree
1 Atree

2 Atree
3 Atree

4

S = { ` | `2 = 0, (`−K1)2 = 0, (`−K1−K2)2 = 0, (`+K4)2 = 0}



An Example: A(1−, 2−, 3−, 4+, 5+, 6+, 7+)

l1

l2
l4

l3

3

4

1

76

5

2
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+

+ +

−
−
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(a)

1

76

5

4

3
2

−−

−

−

−

−

+

+

+

+

+

+

+

+

−

(b)

B3572 =
1

2

[`1 `4]
3

[`1 2][2 `4]

[4 `2]
3

[`2 `1][`1 3][3 4]

[5 6]3

[6 `3][`3 `2][`2 5]

[`3 7]3

[7 1][1 `4][`4 `3]

= −
〈1 2〉3〈2 3〉3[5 6]3

〈7 1〉〈3 4〉〈2|3 + 4|5]〈2|7 + 1|6](〈7 1〉〈2|3 + 4|1] − t
[3]
2
〈7 2〉)(s71〈2 4〉 − 〈3 4〉〈2|7 + 1|3])



Conclusion: AllN = 4 one-loop amplitudes of gluons are under control!
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One-LoopN = 1 SYM: Chiral Φ

Recall: AQCD = AN=4 − 4AN=1
chiral + Ascalar

Chiral multiplet: Φ = {f, s}.

AN=1
chiral = +A C+ + D E + Boxes

MHV Diagrams:

AllN = 1 MHV amplitudes have been reproduced. (Quigley, Rozali; Bedford,

Brandhuber, Spence, Travaglini 10/2004)

Open problem: What about NMHV?

Twistor Space Localization:

New Amplitude: A(1−, 2−, 3−, 4+, 5+, 6+) (Bidder, Bjerrum-Bohr,Dixon,

Dunbar 10/2004)



Generalized Cuts and Cut Integration

A(1−, 2−, 3−, 4+, ..., n+): Quadruple cuts for boxes and triple cuts for

1m and 2m triangles. (Bidder, Bjerrum-Bohr, Dunbar, Perkins 02/2005)

New Basis: (Britto, Buchbinder, F.C., Feng 03/2005)

AN=1
chiral = A + E + Finite Boxes

Cut Integration: Use a measure for unitarity cuts given as a contour integral over

R+ × CP 1 × CP 1 with contour the diagonal CP 1. This is again coming from

the twistor string theory description of MHV diagrams (F.C., Svrcek, Witten 03/2004)

New Amplitudes: A(1−, 2−, 3+, 4−, 5+, 6+) and

A(1−, 2+, 3−, 4+, 5−, 6+). This completes the six-gluon one-loop

N = 1 amplitudes!



Conclusion: New Efficient Techniques forN = 1 One-Loop Amplitudes of

Gluons
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One-Loop Scalar: Last piece of AQCD!

AQCD = AN=4 − 4AN=1
chiral + Ascalar .

Cut Constructible and Non-cut Constructible Pieces

Ascalar = C + R where C is some function that reproduces the unitarity

cuts of Ascalar while R is a rational function. This splitting is not unique.

Purely R Amplitudes:

AQCD(±, +, . . . , +) = Ascalar(±, . . . , +) = R.

Use the BCFW construction: Consider A(z) and study its singularities. (New

ingredient: double poles!) Recursion relations lead to very compact formulas! (Bern,

Dixon, Kosower 01/,05/2005)

C piece of scalar “MHV” Amplitudes:

A(1−, 2−, 3+, . . . , n+) (Bern, Dixon, Dunbar, Kosower 1994.)

A(1−, 2+, . . . , i−, . . . , n+) First new result of MHV diagrams at

one-loop! (Bedford, Brandhuber, Spence, Travaglini 12/2004)



Very Recently: A Week Ago! (Bern, Dixon, Kosower)

• Use the BCFW construction for MHV scalar amplitudes.

• New ingredient: Branch cuts.

• In cases when A(z) → 0 for z →∞ one has

0 =
∮

C

dz

z
A(z) = A(0) +

∑
Poles +

∑∫
DiscA(z)

• This leads to a clean separation of C and R.

• It allows to get recursion relations for R.

• New results: Ascalar
6 (1−, 2−, 3+, 4+, 5+, 6+)

Clear path towards Ascalar
7 .

Striking example of: Impossible−→ Possible (Simple).



Summary: One-Loop

AQCD = AN=4 − 4AN=1
chiral + Ascalar
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Conclusion:

Perturbative gauge theory has some hidden beauty

that is not apparent from Feynman diagrams!



Future Directions

• Twistor string theory (TST) also contains conformal supergravity (CSG)

in the spectrum. At one-loop CSG mixes with theN = 4 SYM

contribution. (Berkovits, Witten 2004) Q: Is there a TST that only

containsN = 4 SYM?

• There is some evidence that MHV diagrams work well at one-loop. Q:

Could MHV diagrams provide a completely new full perturbative

expansion ofN = 4 SYM or even QCD?

• The BCFW construction only uses complex analysis in a single complex

variable z and the physical singularities of the amplitudes. Q: Could this

be done systematically to all-loop orders?



• Higher loops inN = 4 SYM. ABDK conjecture (Anastasiou, Bern, Dixon,

Kosower 1998)

M (2)
n (ε) =

1

2

(
M (1)

n (ε)
)2

+ f(ε)M (1)
n (2ε)− 5

4
ζ4 +O(ε0)

Two weeks ago: Three-loop formula for MHV amplitudes (Bern, Dixon,

Smirnov).

New conjecture: General all loop formula for MHV amplitudes:
∑∞

L=0
λLF

(L)
n = B(λ)Exp

(
γ(λ)F

(1)
n

)

Q: Could any of the techniques presented here be used to provide a proof

of the conjecture?

Q: What is the relation to the AdS/CFT correspondence?

Q: What is the relation to integrability?


