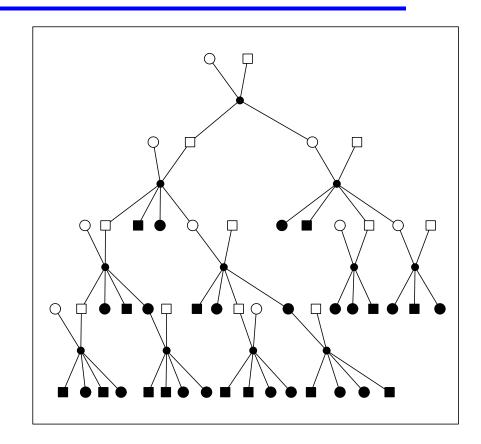
# Uncertainty in Inheritance and the Detection of Genetic Linkage

Elizabeth Thompson University of Washington

For Fields Institute, Toronto Lecture 2, April 4, 2006



#### Linkage analysis with pedigree data

#### **GIVEN:**

- A set of pedigrees, and some trait of interest.
- A set of DNA markers, with known genetic model (genetic map, and allele frequencies).
- Data on trait(s) and at markers,
   for some subset of the individuals.

#### QUESTION:

- Does any DNA on the chromosome of the markers affect the trait?  $H_0$ : No.
- If so, what is the likely location of this DNA, relative to markers.

M2M3M4Trt?M5M6M7

M1

#### Linkage detection and linkage estimation

• Two broad questions:

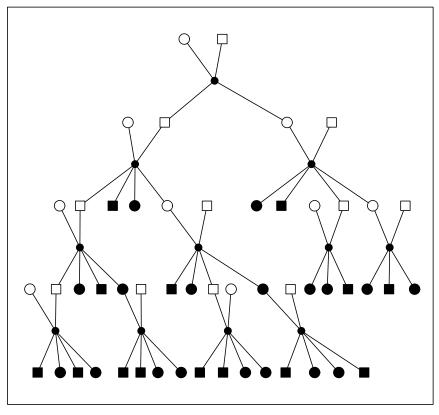
Tests for detection of linkage (many possible statistics)

Estimating locations using log-likelihood ratios (lod scores)

The lod score can be used both for estimation and testing, subject to assumption of a trait model.

- Tests have well-known unresolved issues:
   Assessing statistical significance of a lod score.
   Correcting for testing multiple linked locations (max lod score).
   Particularly when applied to extended pedigrees.
- Goal is to address both these, and also
   Assessing the uncertainty in this inference
   that derives from uncertainty in inheritance of DNA
   (not from map/model misspecification etc.)

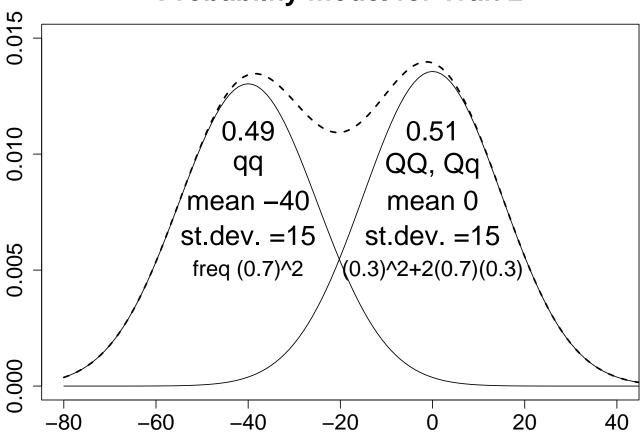
#### Simulated Ped3x52 data used as example



- 3 copies of pedigree:
   each 52 individuals
- On each copy, 32 (shaded) individuals observed for 12 markers, and several quantitative traits.
- Markers spaced evenly at  $10\text{cM}~(\approx 10^7\text{bp})$ . Each has 4 alleles, freqs 0.4, 0.3, 0.2, 0.1.
- Locus for Trt2 is midway between M10 and M11.

#### Quantitative Trt2 simulation model

### **Probability model for Trait 2**



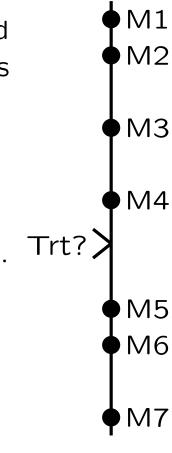
### Lod Scores under a given trait model

- ullet The statistic normally used for both testing and estimation when a trait model for trait data Z is assumed is the lod score.
- Z = trait data, Y = marker data (all markers).
- ullet All parameters of model for Z and Y assumed known, apart from trait locus position  $\gamma$ .
- ullet Definition: at hypothesized trait locus position  $\gamma$ .

$$lod(\gamma) = log_{10}(P_{\gamma}(Z, \mathbf{Y})/P_{0}(Z, \mathbf{Y}))$$
$$= log_{10}(P_{\gamma}(Z \mid \mathbf{Y})/P(Z))$$

where subscript 0 denotes

 $H_0$ : independence of Z and Y.

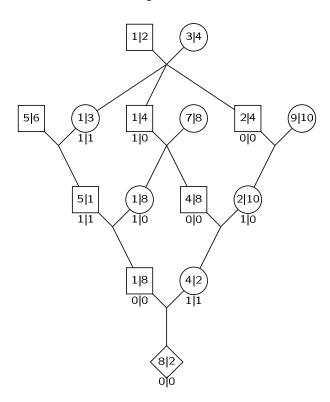


#### The latent variables of genome inheritance

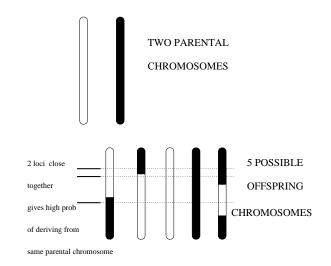
- •MENDEL's FIRST LAW (1866): At meiosis, at each location in the genome, each parent individual segregates a randomly chosen one of its two copies independently to each offspring.
- Specify inheritance by  $S_{i,j}=0$  or 1, i=1,...,m; j=1,...,l as in meiosis i at position j the maternal or paternal DNA (respectively) of the parent is transmitted to the offspring.
- Mendel's First Law:  $P(S_{i,j} = 0) = P(S_{i,j} = 1) = 1/2$ Meioses *i* are independent: i.e.  $S_{i,\bullet} = \{S_{i,j}; j = 1, ..., l\}$ .
- At location j,  $j=1,\ldots,l$ ,  $S_{\bullet,j}=\{S_{i,j}; i=1,\ldots,m\}$ , determine the founder origin of the DNA present in each individual, at that location.
- Dependence in  $S_{i,j}$  over j, determined by spacing of locations along the chromosome: close locations  $\Rightarrow$  high correlation.

## The inheritance of genome: at a locus and over loci

#### At a locus j:



 $S_{\bullet,j}$  specifies inheritance at j



At loci j, j',  $P(S_{i,j} = S_{i,j'})$  decreases as d(j, j') increases.

Tests for linkage look for association in inheritance at specified locations and inheritance of trait phenotypes.

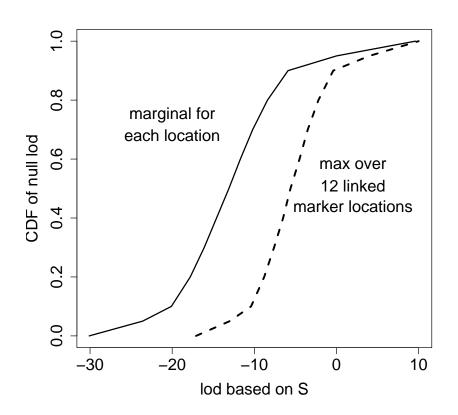
#### The complete-data case: "observed" S

- ullet Suppose marker data Y determine S at marker locations. (In reality, never happens.)
- ullet At hypothesized trait locus position  $\gamma$ , the lod score becomes:

$$lod(\gamma) = log_{10}(P_{\gamma}(Z \mid S)/P(Z))$$

- $\bullet$  First, this can be computed, for any  $\gamma$ .
- Second, at marker location j, this lod score depends only on  $S_{\bullet,j}$ : let  $t(S_{\bullet,j})$  be the lod score at marker j location. (Condition on Z, so suppress Z in notation.)
- $\bullet$  Third, we can use  $t(S_{\bullet,j})$  as a test statistic to test for linkage to marker location j.

## Case of observed $S_{\bullet,j}$ at locations j=1,...,12



- We can determine a P-value:
- If we observe  $t(S_{\bullet,j}) = t_{obs}$ :

$$p = \pi(t_{obs})$$
$$= P_0(t(S_{\bullet,j}) \ge t_{obs}),$$

where  $S_{\bullet,j} \sim P_0$ .

ullet Simulation of  ${f S}$  under  ${f P}_0$  is trivial.

• Omnibus test using maximum lod score:

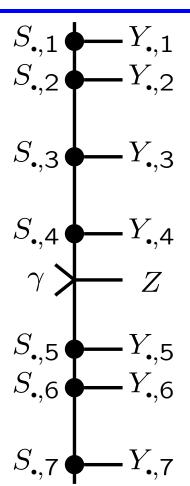
Use 
$$t^*(S) = \max_j (t(S_{\bullet,j}))$$
.

#### Back to reality: S are latent variables

We observe marker data

$$\mathbf{Y} = \{Y_{\bullet,j}, j = 1, ..., l\}.$$

- The marker data at locus j depends only on the inheritance pattern  $S_{\bullet,j}$  at locus j.
- ullet Conditional on S, Z is independent of Y.
- Assuming no genetic interference, the inheritance patterns  $S_{\bullet,j}$  are Markov over j.
- This hidden Markov (HMM) structure permits some exact computations, and/or Monte Carlo (MCMC) approaches, for imputing S conditional on Y



#### Back to reality: the lod score

- ullet We observe only marker genotypes  ${f Y}$  of some individuals.
- The lod score is

$$lod(\gamma) = log_{10}(P_{\gamma}(Z \mid Y)/P(Z))$$

- ullet For multiple markers, on extended pedigrees,  $P_{\gamma}(Z \mid \mathbf{Y})$  cannot even be computed.
- ullet However, conditional on S, Z is independent of Y. So

$$P_{\gamma}(Z \mid \mathbf{Y}) = \sum_{\mathbf{S}} P_{\gamma}(Z \mid \mathbf{S}) P(\mathbf{S} \mid \mathbf{Y})$$
$$= E(P_{\gamma}(Z \mid \mathbf{S}) \mid \mathbf{Y})$$

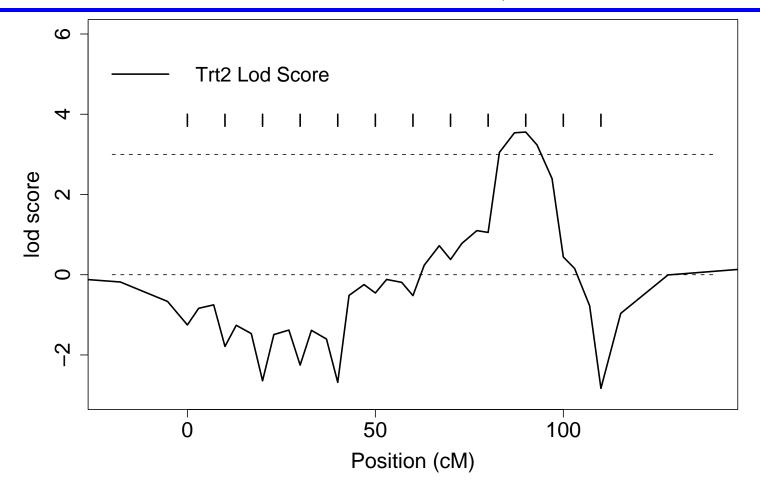
#### Monte Carlo Estimation of the lod score

•On small pedigrees:

```
We can compute P(S_{\bullet,j} \mid \mathbf{Y}) or we can i.i.d. sample \mathbf{S} from P(\mathbf{S} \mid \mathbf{Y}).
```

- On large pedigrees, we cannot compute exactly, but we can MCMC sample  $S = \{S_{i,j}\}$  from  $P(S \mid Y)$ .
- Consider set of n realizations  $\mathbf{S}^{(\ell)}$  from  $P(\mathbf{S} \mid \mathbf{Y})$ :  $P_{\gamma}(Z \mid \mathbf{Y}) = E(P_{\gamma}(\mathbf{Z} \mid \mathbf{S}) \mid \mathbf{Y})$ , can be estimated by  $n^{-1} \sum_{\ell=1}^{n} P_{\gamma}(Z \mid \mathbf{S}^{(\ell)})$ .
- Hence the full lod score curve (over  $\gamma$ ) can be estimated from one set of (MCMC) realizations from P(S | Y).

## Lod score for location $\gamma$ of Trt2



This reaches the value 3!! What does this mean??

#### Assessing significance: the classical approach

- What is the significance of a lod score of 3?
   What is the uncertainty, due to uncertainty in S?
   How do we adjust for multiple testing;
   that is, for using the maximum lod score?
- Given some statistic  $W(\mathbf{Y})$  (here the lod score), only some form of simulation will provide the p-value for a test based on the values of  $W(\mathbf{Y})$ . (Again, condition on Z: omit Z from W().)
- ullet That is, repeat the entire process for datasets  $\mathbf{Y}^{(k)}$  resimulated under the null hypothesis of no trait linkage.
- If k = 1, ..., N, N large,  $p = (N+1)^{-1}(1 + \sum_{k=1}^{N} I(W(\mathbf{Y}^{(k)}) \ge W(\mathbf{Y}))).$

#### Disadvantages of the standard approach

- Computationally very intensive: N large ( $\sim$  500?). —MCMC for each resimulated  $\mathbf{Y}^{(k)}$ .
- Parameters (allele freqs) for resimulation of marker data  $\mathbf{Y}^{(k)}$ ?? Even harder if resimulate trait data Z trait model? ascertainment??
- MCMC gives an estimate the distribution of t(S) given Y: here t(S) is the complete-data lod score (at  $\gamma$  or max). What a waste of information to use the MCMC only to sum over S to estimate W(Y) (the lod score, or max lod score).
- We know (almost) nothing about the distribution of W(Y), but (almost) everything about the distribution of t(S) given Y.
- Information that Y provides about t(S) is confounded with the evidence t(S) provides about  $H_0$ .

#### A Fuzzy P-Value

- Definition (Geyer & Meeden, 2005): A r.v. with the distrib. of  $(Q|\mathbf{Y})$ , where Q is U(0,1) (unconditionally) under  $H_0$ . Then  $\mathsf{E}(\mathsf{P}(Q \le \alpha | \mathbf{Y})) = \alpha$  where  $\mathsf{E}()$  is over  $\mathbf{Y}$  under  $H_0$ . i.e. under  $H_0$ , the fuzzy p-value has a U(0,1) distribution.
- Let  $\pi(S) = P(t(S_0) > t(S)|S) \sim U(0,1)$  under  $H_0$ . So  $E(P(\pi(S) \le \alpha)|Y) = \alpha$  where E() is over Y under  $H_0$ . A r.v. with the distribution of  $\pi(S)$  given Y is a fuzzy p-value.
- Now  $\pi(\mathbf{S}) = \mathsf{P}(t(\mathbf{S}_0) > t(\mathbf{S})|\mathbf{S}) = \mathsf{P}(t(\mathbf{S}_0) > t(\mathbf{S})|\mathbf{S},\mathbf{Y}).$  So let  $\mathbf{S}_0^{(h)}, h = 1, ..., m \sim \mathsf{P}_0$ , and  $\mathbf{S}^{(\ell)}, \ell = 1, ..., n, \sim \mathsf{P}(\cdot \mid \mathbf{Y}):$  Then  $\eta(\mathbf{S}^{(\ell)}, \mathbf{Y}) = \mathsf{P}(t(\mathbf{S}_0) > t(\mathbf{S}^{(\ell)})|\mathbf{S}^{(\ell)}, \mathbf{Y}), \qquad \ell = 1, ..., n$  estimated by  $m^{-1} \sum_{h=1}^m I(t(\mathbf{S}_0^{(h)}) > t(\mathbf{S}^{(\ell)})),$  gives n realizations from the fuzzy p-value dsn.
- Discreteness can be dealt with exactly (C. J. Geyer).

#### Fuzzy p-values for lod scores

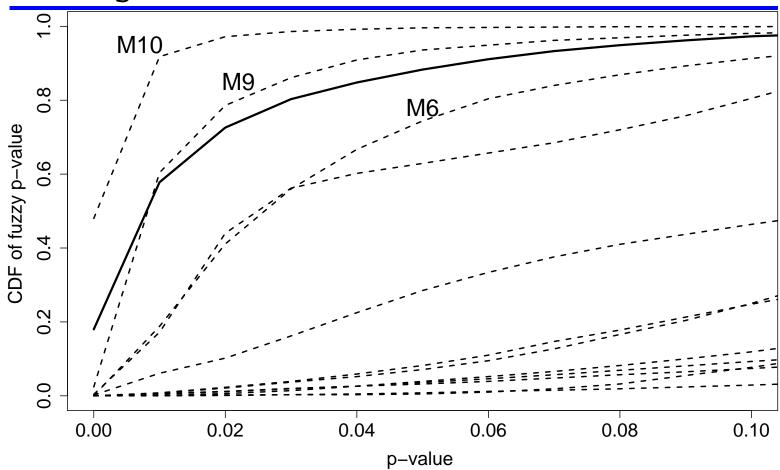
• Use the lod score were S observable

$$t_{\gamma}(S) = \log_{10} (P_{\gamma}(Z \mid S)/P(Z))$$

for each location  $\gamma$ , and compute the fuzzy p-value both pointwise and adjusted for multiple testing (max over markers).

- We already have the (MCMC) realizations from  $P(S \mid Y)$ . We already compute  $t_{\gamma}(S)$  (or  $P_{\gamma}(Z \mid S)$ ) in computing the MCMC estimate of the lod score!!
- The fuzzy p-value CDF measures both strength of evidence, and uncertainty, putting the uncertainty onto the p-value scale.

### Linkage detection from lod scores at markers

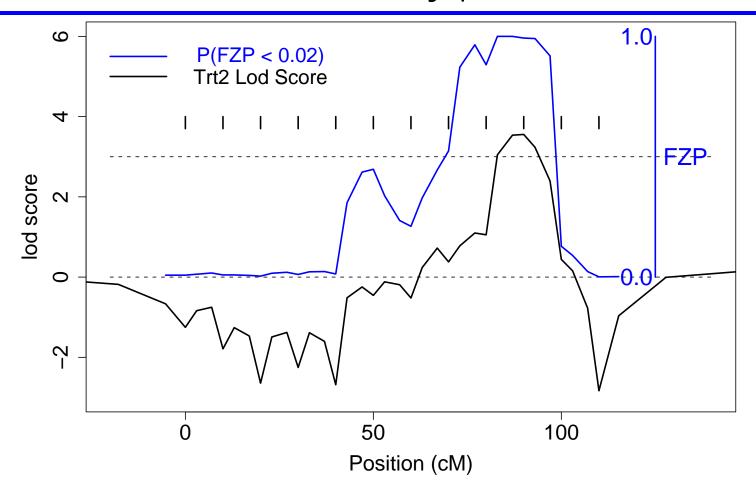


Strong evidence for linkage at marker 10:  $P(\pi(S) \le 0.05 \mid Y) = 0.98$ . Less strong when adjusted:  $P(\pi^*(S) \le 0.05 \mid Y) \approx 0.85$ .

#### Advantages of the fuzzy p-value

- ullet Can be easily estimated from two Monte Carlo samples (one unconditional, and one conditional on Y).
- ullet Does not require resimulation of data  $\mathbf{Y}$  (or Z), which is both a computational and a statistical (robustness) advantage.
- Provides a valid p-value, including any correction desired for testing at multiple linked markers.
- Separates the uncertainty about t(S) from the evidence in t(S).

## Pointwise Iod-based fuzzy p-values for Trt2



This is not a 98% fuzzy confidence set.

## Fuzzy confidence intervals, after inferring linkage

- To construct a confidence interval for  $\gamma$  we need a test of  $H_{\gamma}$ : trait location is  $\gamma$ , for each  $\gamma$ . (Note, under  $H_{\gamma}$ , Z and S at markers are not independent.)
- Given S at markers, reject  $H_{\gamma}$  if  $t_{\gamma}(S) = -\log(P_{\gamma}(Z|S)/\sup_{\gamma^*} P_{\gamma^*}(Z|S))$  too large.
- ullet Now, as before, we realize  ${f S}$  both conditional only on Z (easy) and also given the marker data  ${f Y}$  and Z, under  $H_{\gamma}$ .
- ullet The latter can be done using MCMC to sample conditionally on Y and importance sampling reweighting to condition on Z.
- In principle, this works the program runs.

  Details of performance remain to be worked out.

#### CONCLUSION

- ullet It is latent inheritance patterns S that provides evidence for genetic hypotheses such as linkage, but marker data Y are a very imperfect reflection of S.
- ullet Basing linkage tests and estimates on lod scores computed from data Y is very computationally intensive, requires detailed marker model, and raises unsolved multiple testing issues.
- Evidence in S is confounded with uncertainty about S.
- Fuzzy p-values address these issues, putting uncertainty in S directly on evidence scale.
- Fuzzy p-values can be applied to any test statistic. However, using the lod score has the advantage that, in principle, estimation (i.e. confidence intervals) can also be addressed.