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Linkage analysis with pedigree data

GIVEN:

• A set of pedigrees, and some trait of interest.

• A set of DNA markers, with known genetic model

(genetic map, and allele frequencies).

• Data on trait(s) and at markers,

for some subset of the individuals.

QUESTION:

• Does any DNA on the chromosome of the

markers affect the trait? H0 : No.

• If so, what is the likely location of this DNA,

relative to markers.
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Linkage detection and linkage estimation

• Two broad questions:

Tests for detection of linkage (many possible statistics)

Estimating locations using log-likelihood ratios (lod scores)

The lod score can be used both for estimation and testing, sub-

ject to assumption of a trait model.

• Tests have well-known unresolved issues:

Assessing statistical significance of a lod score.

Correcting for testing multiple linked locations (max lod score).

Particularly when applied to extended pedigrees.

• Goal is to address both these, and also

Assessing the uncertainty in this inference

that derives from uncertainty in inheritance of DNA

(not from map/model misspecification etc.)
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Simulated Ped3x52 data used as example
 

• 3 copies of pedigree:

each 52 individuals

• On each copy, 32 (shaded) in-

dividuals observed for 12 mark-

ers, and several quantitative

traits.

• Markers spaced evenly at

10cM (≈ 107bp). Each has 4

alleles, freqs 0.4, 0.3, 0.2, 0.1.

• Locus for Trt2 is midway be-

tween M10 and M11.
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Quantitative Trt2 simulation model
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Lod Scores under a given trait model

• The statistic normally used for both testing and

estimation when a trait model for trait data Z is

assumed is the lod score.

• Z = trait data, Y = marker data (all markers).

• All parameters of model for Z and Y assumed

known, apart from trait locus position γ.

• Definition: at hypothesized trait locus position γ.

lod(γ) = log10(Pγ(Z,Y)/P0(Z,Y))

= log10(Pγ(Z | Y)/P(Z))

where subscript 0 denotes

H0: independence of Z and Y.
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The latent variables of genome inheritance

•MENDEL’s FIRST LAW (1866): At meiosis, at each loca-
tion in the genome, each parent individual segregates a randomly
chosen one of its two copies independently to each offspring.

• Specify inheritance by Si,j = 0 or 1, i = 1, ..., m; j = 1, ..., l
as in meiosis i at position j the maternal or paternal DNA
(respectively) of the parent is transmitted to the offspring.

• Mendel’s First Law: P(Si,j = 0) = P(Si,j = 1) = 1/2
Meioses i are independent: i.e. Si,• = {Si,j; j = 1, ..., l}.

• At location j, j = 1, . . . , l, S•,j = {Si,j; i = 1, . . . , m},
determine the founder origin of the DNA present in each
individual, at that location.

• Dependence in Si,j over j, determined by spacing of locations
along the chromosome: close locations ⇒ high correlation.
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The inheritance of genome: at a locus and over loci

At a locus j:
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S•,j specifies inheritance at j

CHROMOSOMES

2 loci  close

together 

gives high prob

of deriving from

same parental chromosome

5 POSSIBLE

OFFSPRING

CHROMOSOMES

TWO PARENTAL

At loci j, j′, P(Si,j = Si,j′) de-

creases as d(j, j′) increases.

Tests for linkage look for associ-

ation in inheritance at specified

locations and inheritance of trait

phenotypes.
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The complete-data case:“observed” S

• Suppose marker data Y determine S at marker locations.

(In reality, never happens.)

• At hypothesized trait locus position γ, the lod score becomes:

lod(γ) = log10(Pγ(Z | S)/P(Z))

• First, this can be computed, for any γ.

• Second, at marker location j, this lod score depends only on

S•,j: let t(S•,j) be the lod score at marker j location.

(Condition on Z, so suppress Z in notation.)

• Third, we can use t(S•,j) as a test statistic to test for linkage

to marker location j.
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Case of observed S•,j at locations j = 1, ...,12
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• We can determine a P-value:

• If we observe t(S•,j) = tobs:

p = π(tobs)

= P0(t(S•,j) ≥ tobs),

where S•,j ∼ P0.

• Simulation of S under P0 is

trivial.

• Omnibus test using maximum lod score:

Use t∗(S) = maxj(t(S•,j)).
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Back to reality: S are latent variables

• We observe marker data

Y = {Y•,j, j = 1, ..., l}.

• The marker data at locus j depends only

on the inheritance pattern S•,j at locus j.

• Conditional on S, Z is independent of Y.

• Assuming no genetic interference, the in-

heritance patterns S•,j are Markov over j.

• This hidden Markov (HMM) structure

permits some exact computations, and/or

Monte Carlo (MCMC) approaches, for im-

puting S conditional on Y

S
•,1

S
•,2

S
•,3

S
•,4

γ

S
•,5

S
•,6

S
•,7

Y
•,1

Y
•,2

Y
•,3

Y
•,4

Z

Y
•,5

Y
•,6

Y
•,7

11



Back to reality: the lod score

• We observe only marker genotypes Y of some individuals.

• The lod score is

lod(γ) = log10(Pγ(Z | Y)/P(Z))

• For multiple markers, on extended pedigrees, Pγ(Z | Y) cannot

even be computed.

• However, conditional on S, Z is independent of Y. So

Pγ(Z | Y) =
∑

S

Pγ(Z | S)P(S | Y)

= E(Pγ(Z | S) | Y)
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Monte Carlo Estimation of the lod score

•On small pedigrees:

We can compute P(S•,j | Y) or

we can i.i.d. sample S from P(S | Y).

• On large pedigrees, we cannot compute exactly, but

we can MCMC sample S = {Si,j} from P(S | Y).

• Consider set of n realizations S(`) from P(S | Y):

Pγ(Z | Y) = E(Pγ(Z | S) | Y), can be estimated by

n−1 ∑n
`=1Pγ(Z | S(`)).

• Hence the full lod score curve (over γ) can be estimated from

one set of (MCMC) realizations from P(S | Y).
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Lod score for location γ of Trt2
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This reaches the value 3!! What does this mean??
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Assessing significance: the classical approach

• What is the significance of a lod score of 3?

What is the uncertainty, due to uncertainty in S?

How do we adjust for multiple testing;

that is, for using the maximum lod score?

• Given some statistic W (Y) (here the lod score),

only some form of simulation will provide the

p-value for a test based on the values of W (Y).

(Again, condition on Z: omit Z from W ().)

• That is, repeat the entire process for datasets Y(k)

resimulated under the null hypothesis of no trait linkage.

• If k = 1, ..., N , N large,

p = (N +1)−1(1 +
∑N

k=1 I(W (Y(k)) ≥ W (Y))).
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Disadvantages of the standard approach

• Computationally very intensive: N large (∼ 500?).
—MCMC for each resimulated Y(k).

• Parameters (allele freqs) for resimulation of marker data Y(k)??
Even harder if resimulate trait data Z – trait model? ascertain-
ment??

• MCMC gives an estimate the distribution of t(S) given Y:
here t(S) is the complete-data lod score (at γ or max).
What a waste of information to use the MCMC only to sum over
S to estimate W (Y) (the lod score, or max lod score).

• We know (almost) nothing about the distribution of W (Y),
but (almost) everything about the distribution of t(S) given Y.

• Information that Y provides about t(S) is confounded
with the evidence t(S) provides about H0.
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A Fuzzy P-Value

• Definition (Geyer & Meeden, 2005): A r.v. with the distrib.

of (Q|Y), where Q is U(0,1) (unconditionally) under H0.

Then E(P(Q ≤ α|Y)) = α where E() is over Y under H0.

i.e. under H0, the fuzzy p-value has a U(0,1) distribution.

• Let π(S) = P(t(S0) > t(S)|S) ∼ U(0,1) under H0.

So E(P(π(S) ≤ α)| Y) = α where E() is over Y under H0.

A r.v. with the distribution of π(S) given Y is a fuzzy p-value.

• Now π(S) = P(t(S0) > t(S)|S) = P(t(S0) > t(S)|S,Y).
So let S

(h)
0 , h = 1, ..., m ∼ P0, and S(`), ` = 1, ..., n, ∼ P(· | Y):

Then η(S(`), Y) = P(t(S0) > t(S(`))|S(`), Y), ` = 1, ..., n

estimated by m−1 ∑m
h=1 I(t(S

(h)
0 ) > t(S(`))),

gives n realizations from the fuzzy p-value dsn.

• Discreteness can be dealt with exactly (C. J. Geyer).
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Fuzzy p-values for lod scores

• Use the lod score were S observable

tγ(S) = log10 (Pγ(Z | S)/P(Z))

for each location γ, and compute the fuzzy p-value both point-

wise and adjusted for multiple testing (max over markers).

• We already have the (MCMC) realizations from P(S | Y).

We already compute tγ(S) (or Pγ(Z | S))

in computing the MCMC estimate of the lod score!!

• The fuzzy p-value CDF measures both strength of evidence,

and uncertainty, putting the uncertainty onto the p-value scale.
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Linkage detection from lod scores at markers
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Strong evidence for linkage at marker 10: P(π(S) ≤ 0.05 | Y) = 0.98.
Less strong when adjusted: P(π∗(S) ≤ 0.05 | Y) ≈ 0.85.
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Advantages of the fuzzy p-value

• Can be easily estimated from two Monte Carlo samples (one

unconditional, and one conditional on Y).

• Does not require resimulation of data Y (or Z), which is both

a computational and a statistical (robustness) advantage.

• Provides a valid p-value, including any correction desired for

testing at multiple linked markers.

• Separates the uncertainty about t(S) from the evidence in t(S).
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Pointwise lod-based fuzzy p-values for Trt2
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This is not a 98% fuzzy confidence set.
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Fuzzy confidence intervals, after inferring linkage

• To construct a confidence interval for γ we need a test of

Hγ : trait location is γ, for each γ.
(Note, under Hγ, Z and S at markers are not independent.)

• Given S at markers, reject Hγ if

tγ(S) = − log(Pγ(Z|S)/ supγ∗Pγ∗(Z|S)) too large.

• Now, as before, we realize S both conditional only on Z (easy)

and also given the marker data Y and Z, under Hγ.

• The latter can be done using MCMC to sample conditionally

on Y and importance sampling reweighting to condition on Z.

• In principle, this works — the program runs.

Details of performance remain to be worked out.
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CONCLUSION

• It is latent inheritance patterns S that provides evidence for

genetic hypotheses such as linkage, but marker data Y are a

very imperfect reflection of S.

• Basing linkage tests and estimates on lod scores computed

from data Y is very computationally intensive, requires detailed

marker model, and raises unsolved multiple testing issues.

• Evidence in S is confounded with uncertainty about S.

• Fuzzy p-values address these issues, putting uncertainty in S

directly on evidence scale.

• Fuzzy p-values can be applied to any test statistic. However,

using the lod score has the advantage that, in principle, estima-

tion (i.e. confidence intervals) can also be addressed.
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