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Linkage analysis with pedigree data

M1
GIVEN: M2
e A set of pedigrees, and some trait of interest.
e A set of DNA markers, with known genetic model o M3
(genetic map, and allele frequencies).
e Data on trait(s) and at markers, ® M4
for some subset of the individuals. Trt?
QUESTION:
e Does any DNA on the chromosome of the M5
markers affect the trait? Hg : No. M6
e If so, what is the likely location of this DNA,
relative to markers. M7



Linkage detection and linkage estimation

e [woO broad questions:

Tests for detection of linkage (many possible statistics)
Estimating locations using log-likelihood ratios (lod scores)
The lod score can be used both for estimation and testing, sub-

ject to assumption of a trait model.

e [ests have well-known unresolved issues:

Assessing statistical significance of a lod score.

Correcting for testing multiple linked locations (max lod score).
Particularly when applied to extended pedigrees.

e (Goal is to address both these, and also
Assessing the uncertainty in this inference

that derives from uncertainty in inheritance of DNA
(not from map/model misspecification etc.)



Simulated Ped3x52 data used as example

e 3 copies of pedigree:

each 52 individuals
e On each copy, 32 (shaded) in-
dividuals observed for 12 mark-
ers, and several quantitative
traits.
e Markers spaced evenly at
10cM (= 10’bp). Each has 4
alleles, fregqs 0.4, 0.3, 0.2, 0O.1.
e Locus for Trt2 is midway be-
tween M10 and M11.



Quantitative Trt2 simulation model
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Lod Scores under a given trait model

e [ he statistic normally used for both testing and M1
estimation when a trait model for trait data Z is M2
assumed is the lod score.
e / = trait data, Y = marker data (all markers). M3
e All parameters of model for Z and Y assumed
known, apart from trait locus position ~. ¢ M4
e Definition: at hypothesized trait locus position . Trt?>'
lod(y) = 10910(P~(Z,Y)/Po(Z,Y)) M5
= log10(P+(Z | Y)/P(2)) M6

where subscript O denotes
Hg: independence of Z and Y.

M7



The latent variables of genome inheritance

esMENDEL's FIRST LAW (1866): At meiosis, at each loca-
tion in the genome, each parent individual segregates a randomly
chosen one of its two copies independently to each offspring.

e Specify inheritance by S;;, = 0 or 1, i=1,...m; j=1,..,1
as in meiosis ¢ at position 5 the maternal or paternal DNA
(respectively) of the parent is transmitted to the offspring.

e Mendel's First Law: P(S;;=0) = P(S;;,=1) = 1/2
Meioses 7 are independent: i.e. SZ-,, = {S@j;j =1,..,1}.

e At location 3, y=1,...,1, S,’j = {SZ’],Z =1,... ,m},
determine the founder origin of the DNA present in each
individual, at that location.

e Dependence in S; ; over j, determined by spacing of locations
along the chromosome: close locations = high correlation.
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The inheritance of genome:

at a locus and over loci

At a locus j:
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of deriving from

At loci j,j/, P(Si)j = Si,j’) de-
creases as d(4,j') increases.
Tests for linkage look for associ-
ation in inheritance at specified
locations and inheritance of trait
phenotypes.



The complete-data case: “‘observed” S

e Suppose marker data Y determine S at marker locations.
(In reality, never happens.)

e At hypothesized trait locus position ~, the lod score becomes:

lod(y) = log10(P,(Z | S)/P(2))
e First, this can be computed, for any ~.

e Second, at marker location 5, this lod score depends only on
S. j. let t(S, ;) be the lod score at marker j location.
(Condition on Z, so suppress Z in notation.)

e Third, we can use t(S, ;) as a test statistic to test for linkage
to marker location j.



CDF of null lod
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Omnibus test using maximum lod score:

Use t*(S) = max;(t(S. ;)).
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e \We can determine a P-value:
o If we observe t(S, ;) = typs:

p:

7"'(tobs)
Po(t(S.;) > tobs),

where S, ; ~ Pg.
e Simulation of S under Pg is

trivial.
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Back to reality: S are latent variables

e \We observe marker data

Y = {Y,;,j=1,..,1}.
e T he marker data at locus 5 depends only
on the inheritance pattern S,,j at locus j.
e Conditional on S, Z is independent of Y.
e Assuming no genetic interference, the in-
heritance patterns S,,j are Markov over j.
e This hidden Markov (HMM) structure
permits some exact computations, and/or
Monte Carlo (MCMC) approaches, for im-
puting S conditional on'Y

S.,lty:,l
S..2 Y o
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Back to reality: the lod score

e \We observe only marker genotypes Y of some individuals.

e [ he lod score is

lod(y) = log10(P~(Z | Y)/P(Z))

e For multiple markers, on extended pedigrees, P,(Z | Y) cannot
even be computed.

e However, conditional on S, Z is independent of Y. So
Pv(Z 1Y) = Y Py(Z|SP(SI|Y)
S

— E(P,(Z]9) | Y)
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Monte Carlo Estimation of the |lod score

eOn small pedigrees:
We can compute P(S,,j | 'Y) or
we can i.i.d. sample S from P(S | Y).

e On large pedigrees, we cannot compute exactly, but
we can MCMC sample S = {S5; ;} from P(S | Y).

e Consider set of n realizations S(Y) from P(S | Y):
Pv(Z | Y)=E(P~(Z|S) | Y), can be estimated by
n_lz?=1 Py(Z | S(g))-

e Hence the full lod score curve (over v) can be estimated from
one set of (MCMCQC) realizations from P(S | Y).
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Lod score for location ~ of Trt2

—— Trt2 Lod Score

lod score
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This reaches the value 3!l What does this mean??
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Assessing significance: the classical approach

e What is the significance of a lod score of 37
What is the uncertainty, due to uncertainty in S7
How do we adjust for multiple testing;

that is, for using the maximum lod score?

e Given some statistic W(Y) (here the lod score),
only some form of simulation will provide the
p-value for a test based on the values of W(Y).

(Again, condition on Z: omit Z from W ().)

e T hat is, repeat the entire process for datasets Y (F)
resimulated under the null hypothesis of no trait linkage.

oIf k=1,....N, N large,
p = (N+1) 1A+ 2N 1w (Y®) > w(Y))).
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Disadvantages of the standard approach

e Computationally very intensive: N large (~ 5007).
—MCMC for each resimulated Y (%),

e Parameters (allele fregs) for resimulation of marker data Y (k)77
Even harder if resimulate trait data Z — trait model? ascertain-
ment??

e MCMC gives an estimate the distribution of ¢(S) given Y:
here t(S) is the complete-data lod score (at v or max).

What a waste of information to use the MCMC only to sum over
S to estimate W(Y) (the lod score, or max lod score).

e We know (almost) nothing about the distribution of W (Y),
but (almost) everything about the distribution of ¢t(S) given Y.

e Information that Y provides about ¢(S) is confounded
with the evidence t(S) provides about Hj.
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A Fuzzy P-Value

e Definition (Geyer & Meeden, 2005): A r.v. with the distrib.
of (Q|Y), where @ is U(0,1) (unconditionally) under Hy.
Then E(P(Q < a|Y)) = a where E() is over Y under Hp.
i.e. under Hp, the fuzzy p-value has a U(0,1) distribution.

o Let n(S) = P(t(Sg) > t(S)|S) ~U(0,1) under Hpy.
So E(P(w(S) < a)| Y) = a where E() is over Y under Hy.
A r.v. with the distribution of #(S) given Y is a fuzzy p-value.

o Now 7(S) = P(#(Sp) > t(S)[|S) = P(t(Sg) > t(S)S,Y).

So let 8§ h=1,..,m ~Pg, and SO, t=1,...n, ~ P(|Y):
Then n(S¥, Y) = P(t(Sp) > t(S)SO, Y), (=1,..,n

estimated by m~—1 > I(t(S(()h)) > t(SD)Y),
gives n realizations from the fuzzy p-value dsn.

e Discreteness can be dealt with exactly (C. J. Geyer).
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Fuzzy p-values for lod scores

e Use the lod score were S observable

ty(S) = logig(P~(Z | S)/P(Z))

for each location ~, and compute the fuzzy p-value both point-
wise and adjusted for multiple testing (max over markers).

e We already have the (MCMCQC) realizations from P(S | Y).
We already compute t~(S) (or Py(Z | S))
in computing the MCMC estimate of the lod score!!

e [ he fuzzy p-value CDF measures both strength of evidence,
and uncertainty, putting the uncertainty onto the p-value scale.
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Linkage detection from lod scores at markers
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Strong evidence for linkage at marker 10: P(«(S) < 0.05|Y) = 0.98.

Q

Less strong when adjusted: P(#*(S) <0.05|Y) 0.85.
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Advantages of the fuzzy p-value

e Can be easily estimated from two Monte Carlo samples (one
unconditional, and one conditional on Y).

e Does not require resimulation of data Y (or Z), which is both
a computational and a statistical (robustness) advantage.

e Provides a valid p-value, including any correction desired for
testing at multiple linked markers.

e Separates the uncertainty about ¢(S) from the evidence in ¢(S).
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Pointwise lod-based fuzzy p-values for Trt2
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This is not a 98% fuzzy confidence set.
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Fuzzy confidence intervals, after inferring linkage

e [0 construct a confidence interval for v we need a test of
H~ : trait location is v, for each ~.
(Note, under H~, Z and S at markers are not independent.)

e Given S at markers, reject Hy if
ty(S) = —10g(P~(Z|S)/sup,« P,«(Z|S)) too large.

e Now, as before, we realize S both conditional only on Z (easy)
and also given the marker data Y and Z, under H,.

e T he latter can be done using MCMC to sample conditionally
on Y and importance sampling reweighting to condition on Z.

e In principle, this works — the program runs.
Details of performance remain to be worked out.
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CONCLUSION

e It is latent inheritance patterns S that provides evidence for
genetic hypotheses such as linkage, but marker data Y are a
very imperfect reflection of S.

e Basing linkage tests and estimates on lod scores computed
from data Y is very computationally intensive, requires detailed
marker model, and raises unsolved multiple testing issues.

e Evidence in S is confounded with uncertainty about S.

e Fuzzy p-values address these issues, putting uncertainty in S
directly on evidence scale.

e Fuzzy p-values can be applied to any test statistic. However,
using the lod score has the advantage that, in principle, estima-
tion (i.e. confidence intervals) can also be addressed.
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