Uncertainty in Inheritance and the Detection of Genetic Linkage

Elizabeth Thompson University of Washington

For Fields Institute, Toronto Lecture 2, April 4, 2006

Linkage analysis with pedigree data

GIVEN:

- A set of pedigrees, and some trait of interest.
- A set of DNA markers, with known genetic model (genetic map, and allele frequencies).
- Data on trait(s) and at markers,
 for some subset of the individuals.

QUESTION:

- Does any DNA on the chromosome of the markers affect the trait? H_0 : No.
- If so, what is the likely location of this DNA, relative to markers.

M2M3M4Trt?M5M6M7

M1

Linkage detection and linkage estimation

• Two broad questions:

Tests for detection of linkage (many possible statistics)

Estimating locations using log-likelihood ratios (lod scores)

The lod score can be used both for estimation and testing, subject to assumption of a trait model.

- Tests have well-known unresolved issues:
 Assessing statistical significance of a lod score.
 Correcting for testing multiple linked locations (max lod score).
 Particularly when applied to extended pedigrees.
- Goal is to address both these, and also
 Assessing the uncertainty in this inference
 that derives from uncertainty in inheritance of DNA
 (not from map/model misspecification etc.)

Simulated Ped3x52 data used as example

- 3 copies of pedigree:
 each 52 individuals
- On each copy, 32 (shaded) individuals observed for 12 markers, and several quantitative traits.
- Markers spaced evenly at $10\text{cM}~(\approx 10^7\text{bp})$. Each has 4 alleles, freqs 0.4, 0.3, 0.2, 0.1.
- Locus for Trt2 is midway between M10 and M11.

Quantitative Trt2 simulation model

Probability model for Trait 2

Lod Scores under a given trait model

- ullet The statistic normally used for both testing and estimation when a trait model for trait data Z is assumed is the lod score.
- Z = trait data, Y = marker data (all markers).
- ullet All parameters of model for Z and Y assumed known, apart from trait locus position γ .
- ullet Definition: at hypothesized trait locus position γ .

$$lod(\gamma) = log_{10}(P_{\gamma}(Z, \mathbf{Y})/P_{0}(Z, \mathbf{Y}))$$
$$= log_{10}(P_{\gamma}(Z \mid \mathbf{Y})/P(Z))$$

where subscript 0 denotes

 H_0 : independence of Z and Y.

The latent variables of genome inheritance

- •MENDEL's FIRST LAW (1866): At meiosis, at each location in the genome, each parent individual segregates a randomly chosen one of its two copies independently to each offspring.
- Specify inheritance by $S_{i,j}=0$ or 1, i=1,...,m; j=1,...,l as in meiosis i at position j the maternal or paternal DNA (respectively) of the parent is transmitted to the offspring.
- Mendel's First Law: $P(S_{i,j} = 0) = P(S_{i,j} = 1) = 1/2$ Meioses *i* are independent: i.e. $S_{i,\bullet} = \{S_{i,j}; j = 1, ..., l\}$.
- At location j, $j=1,\ldots,l$, $S_{\bullet,j}=\{S_{i,j}; i=1,\ldots,m\}$, determine the founder origin of the DNA present in each individual, at that location.
- Dependence in $S_{i,j}$ over j, determined by spacing of locations along the chromosome: close locations \Rightarrow high correlation.

The inheritance of genome: at a locus and over loci

At a locus j:

 $S_{\bullet,j}$ specifies inheritance at j

At loci j, j', $P(S_{i,j} = S_{i,j'})$ decreases as d(j, j') increases.

Tests for linkage look for association in inheritance at specified locations and inheritance of trait phenotypes.

The complete-data case: "observed" S

- ullet Suppose marker data Y determine S at marker locations. (In reality, never happens.)
- ullet At hypothesized trait locus position γ , the lod score becomes:

$$lod(\gamma) = log_{10}(P_{\gamma}(Z \mid S)/P(Z))$$

- \bullet First, this can be computed, for any γ .
- Second, at marker location j, this lod score depends only on $S_{\bullet,j}$: let $t(S_{\bullet,j})$ be the lod score at marker j location. (Condition on Z, so suppress Z in notation.)
- \bullet Third, we can use $t(S_{\bullet,j})$ as a test statistic to test for linkage to marker location j.

Case of observed $S_{\bullet,j}$ at locations j=1,...,12

- We can determine a P-value:
- If we observe $t(S_{\bullet,j}) = t_{obs}$:

$$p = \pi(t_{obs})$$
$$= P_0(t(S_{\bullet,j}) \ge t_{obs}),$$

where $S_{\bullet,j} \sim P_0$.

ullet Simulation of ${f S}$ under ${f P}_0$ is trivial.

• Omnibus test using maximum lod score:

Use
$$t^*(S) = \max_j (t(S_{\bullet,j}))$$
.

Back to reality: S are latent variables

We observe marker data

$$\mathbf{Y} = \{Y_{\bullet,j}, j = 1, ..., l\}.$$

- The marker data at locus j depends only on the inheritance pattern $S_{\bullet,j}$ at locus j.
- ullet Conditional on S, Z is independent of Y.
- Assuming no genetic interference, the inheritance patterns $S_{\bullet,j}$ are Markov over j.
- This hidden Markov (HMM) structure permits some exact computations, and/or Monte Carlo (MCMC) approaches, for imputing S conditional on Y

Back to reality: the lod score

- ullet We observe only marker genotypes ${f Y}$ of some individuals.
- The lod score is

$$lod(\gamma) = log_{10}(P_{\gamma}(Z \mid Y)/P(Z))$$

- ullet For multiple markers, on extended pedigrees, $P_{\gamma}(Z \mid \mathbf{Y})$ cannot even be computed.
- ullet However, conditional on S, Z is independent of Y. So

$$P_{\gamma}(Z \mid \mathbf{Y}) = \sum_{\mathbf{S}} P_{\gamma}(Z \mid \mathbf{S}) P(\mathbf{S} \mid \mathbf{Y})$$
$$= E(P_{\gamma}(Z \mid \mathbf{S}) \mid \mathbf{Y})$$

Monte Carlo Estimation of the lod score

•On small pedigrees:

```
We can compute P(S_{\bullet,j} \mid \mathbf{Y}) or we can i.i.d. sample \mathbf{S} from P(\mathbf{S} \mid \mathbf{Y}).
```

- On large pedigrees, we cannot compute exactly, but we can MCMC sample $S = \{S_{i,j}\}$ from $P(S \mid Y)$.
- Consider set of n realizations $\mathbf{S}^{(\ell)}$ from $P(\mathbf{S} \mid \mathbf{Y})$: $P_{\gamma}(Z \mid \mathbf{Y}) = E(P_{\gamma}(\mathbf{Z} \mid \mathbf{S}) \mid \mathbf{Y})$, can be estimated by $n^{-1} \sum_{\ell=1}^{n} P_{\gamma}(Z \mid \mathbf{S}^{(\ell)})$.
- Hence the full lod score curve (over γ) can be estimated from one set of (MCMC) realizations from P(S | Y).

Lod score for location γ of Trt2

This reaches the value 3!! What does this mean??

Assessing significance: the classical approach

- What is the significance of a lod score of 3?
 What is the uncertainty, due to uncertainty in S?
 How do we adjust for multiple testing;
 that is, for using the maximum lod score?
- Given some statistic $W(\mathbf{Y})$ (here the lod score), only some form of simulation will provide the p-value for a test based on the values of $W(\mathbf{Y})$. (Again, condition on Z: omit Z from W().)
- ullet That is, repeat the entire process for datasets $\mathbf{Y}^{(k)}$ resimulated under the null hypothesis of no trait linkage.
- If k = 1, ..., N, N large, $p = (N+1)^{-1}(1 + \sum_{k=1}^{N} I(W(\mathbf{Y}^{(k)}) \ge W(\mathbf{Y}))).$

Disadvantages of the standard approach

- Computationally very intensive: N large (\sim 500?). —MCMC for each resimulated $\mathbf{Y}^{(k)}$.
- Parameters (allele freqs) for resimulation of marker data $\mathbf{Y}^{(k)}$?? Even harder if resimulate trait data Z trait model? ascertainment??
- MCMC gives an estimate the distribution of t(S) given Y: here t(S) is the complete-data lod score (at γ or max). What a waste of information to use the MCMC only to sum over S to estimate W(Y) (the lod score, or max lod score).
- We know (almost) nothing about the distribution of W(Y), but (almost) everything about the distribution of t(S) given Y.
- Information that Y provides about t(S) is confounded with the evidence t(S) provides about H_0 .

A Fuzzy P-Value

- Definition (Geyer & Meeden, 2005): A r.v. with the distrib. of $(Q|\mathbf{Y})$, where Q is U(0,1) (unconditionally) under H_0 . Then $\mathsf{E}(\mathsf{P}(Q \le \alpha | \mathbf{Y})) = \alpha$ where $\mathsf{E}()$ is over \mathbf{Y} under H_0 . i.e. under H_0 , the fuzzy p-value has a U(0,1) distribution.
- Let $\pi(S) = P(t(S_0) > t(S)|S) \sim U(0,1)$ under H_0 . So $E(P(\pi(S) \le \alpha)|Y) = \alpha$ where E() is over Y under H_0 . A r.v. with the distribution of $\pi(S)$ given Y is a fuzzy p-value.
- Now $\pi(\mathbf{S}) = \mathsf{P}(t(\mathbf{S}_0) > t(\mathbf{S})|\mathbf{S}) = \mathsf{P}(t(\mathbf{S}_0) > t(\mathbf{S})|\mathbf{S},\mathbf{Y}).$ So let $\mathbf{S}_0^{(h)}, h = 1, ..., m \sim \mathsf{P}_0$, and $\mathbf{S}^{(\ell)}, \ell = 1, ..., n, \sim \mathsf{P}(\cdot \mid \mathbf{Y}):$ Then $\eta(\mathbf{S}^{(\ell)}, \mathbf{Y}) = \mathsf{P}(t(\mathbf{S}_0) > t(\mathbf{S}^{(\ell)})|\mathbf{S}^{(\ell)}, \mathbf{Y}), \qquad \ell = 1, ..., n$ estimated by $m^{-1} \sum_{h=1}^m I(t(\mathbf{S}_0^{(h)}) > t(\mathbf{S}^{(\ell)})),$ gives n realizations from the fuzzy p-value dsn.
- Discreteness can be dealt with exactly (C. J. Geyer).

Fuzzy p-values for lod scores

• Use the lod score were S observable

$$t_{\gamma}(S) = \log_{10} (P_{\gamma}(Z \mid S)/P(Z))$$

for each location γ , and compute the fuzzy p-value both pointwise and adjusted for multiple testing (max over markers).

- We already have the (MCMC) realizations from $P(S \mid Y)$. We already compute $t_{\gamma}(S)$ (or $P_{\gamma}(Z \mid S)$) in computing the MCMC estimate of the lod score!!
- The fuzzy p-value CDF measures both strength of evidence, and uncertainty, putting the uncertainty onto the p-value scale.

Linkage detection from lod scores at markers

Strong evidence for linkage at marker 10: $P(\pi(S) \le 0.05 \mid Y) = 0.98$. Less strong when adjusted: $P(\pi^*(S) \le 0.05 \mid Y) \approx 0.85$.

Advantages of the fuzzy p-value

- ullet Can be easily estimated from two Monte Carlo samples (one unconditional, and one conditional on Y).
- ullet Does not require resimulation of data \mathbf{Y} (or Z), which is both a computational and a statistical (robustness) advantage.
- Provides a valid p-value, including any correction desired for testing at multiple linked markers.
- Separates the uncertainty about t(S) from the evidence in t(S).

Pointwise Iod-based fuzzy p-values for Trt2

This is not a 98% fuzzy confidence set.

Fuzzy confidence intervals, after inferring linkage

- To construct a confidence interval for γ we need a test of H_{γ} : trait location is γ , for each γ . (Note, under H_{γ} , Z and S at markers are not independent.)
- Given S at markers, reject H_{γ} if $t_{\gamma}(S) = -\log(P_{\gamma}(Z|S)/\sup_{\gamma^*} P_{\gamma^*}(Z|S))$ too large.
- ullet Now, as before, we realize ${f S}$ both conditional only on Z (easy) and also given the marker data ${f Y}$ and Z, under H_{γ} .
- ullet The latter can be done using MCMC to sample conditionally on Y and importance sampling reweighting to condition on Z.
- In principle, this works the program runs.

 Details of performance remain to be worked out.

CONCLUSION

- ullet It is latent inheritance patterns S that provides evidence for genetic hypotheses such as linkage, but marker data Y are a very imperfect reflection of S.
- ullet Basing linkage tests and estimates on lod scores computed from data Y is very computationally intensive, requires detailed marker model, and raises unsolved multiple testing issues.
- Evidence in S is confounded with uncertainty about S.
- Fuzzy p-values address these issues, putting uncertainty in S directly on evidence scale.
- Fuzzy p-values can be applied to any test statistic. However, using the lod score has the advantage that, in principle, estimation (i.e. confidence intervals) can also be addressed.