Latent variables, Uncertainty and Evidence

Elizabeth Thompson University of Washington

For Fields Institute, Toronto Lecture 1, April 3, 2006

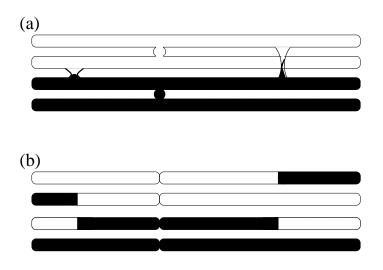
The general ideas: work with Charles Geyer, U.Mn. Examples of this talk: work with student Yanming Di.

In many areas of genetics/genomics (and other sciences), we do not observe the variables that would make it easy to test hypotheses of interest:

Genetic	Model or	Latent	
Data observation	Hypothesis	variables	
Offspring gametes	genetic interference	4 meiotic products	
Data on pedigrees	genetic linkage	recombinant/non-rec	
Variation in popns	coancestry/structure	gene inheritance	
Variation btw species	mutation/selection	phylogeny	

 \bullet How should our uncertainty about latent variables ${\bf X}$ be expressed in our inference?

Chromosomes and meiosis



Chromosomes duplicate align and exchange material. Offspring chromosome consists of segments of two parental chromosomes (length $\approx 10^8 bp$). There is dependence in DNA inherited at nearby locations: dependence is stronger for closer locations.

Difficulties: statistical and computational

 \bullet Often these models have complicated patterns of dependence among observed data components V, resulting from the latent structure ${\bf X}.$

• Even computing a likelihood P(V) or relevant test statistics can be hard, requiring summation over the hidden variables:

 $P(V) = \sum_{X} P(V \mid X)P(X).$ Often, Monte Carlo is needed to compute the statistic or likelihood.

 \bullet Assessing significance can therefore be even harder. Even assuming can simulate V under a model (or even under the null hypothesis), analysis of each resimulated data set is needed: computationally very intensive. Monte Carlo within Monte Carlo.

• Objective:

(1) A new way to assess significance in such problems
(2) A way to express the uncertainty about this significance where uncertainty derived from uncertainty about latent variables (not model mis-specification, etc.)

• First we introduce a simple example, without latent variables. Testing association in a 2×2 table

• Suppose we have pairs of n binary (0/1) independent identically distributed observations (X_i, Y_i) . (For now, X_i is not latent: later it will be.) • The model. Under H_0 : P(X = Y = 1) = P(X = 1)P(Y = 1)

• The data: independent pairs (X_i, Y_i) , i = 1, ..., n.

	Y=1	Y=0	
X=1	$\sum_i X_i Y_i$	$\sum_i X_i(1-Y_i)$	$\sum_i X_i$
X=0	$\sum_i (1 - X_i) Y_i$	$\sum_i (1 - X_i)(1 - Y_i)$	$\sum_i (1 - X_i)$
	$\sum_i Y_i$	$\sum_i (1 - Y_i)$	

(1) Condition on $\sum X_i$, and $\sum Y_i$; hypergeometric: one-fish, two-fish; tag-fish, new-fish. Robust to the marginal models for P(X = 1) and P(Y = 1).

(2) If we have a model for Y_i ; condition on $\mathbf{X} = (X_i)$. Robust to marginal model for \mathbf{X} .

(3) If we have a model for X_i ; condition on $\mathbf{Y} = (Y_i)$. Robust to marginal model for \mathbf{Y} .

(4) Full model: unconditional: uses model for both ${\bf X}$ and ${\bf Y}$ Least robust, but most powerful.

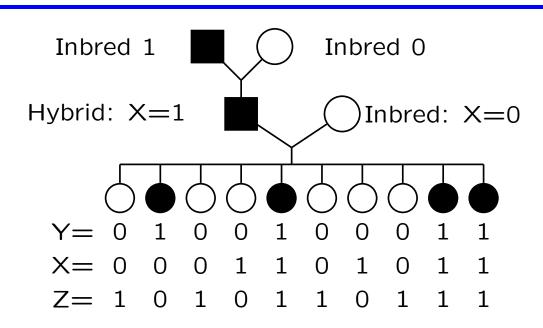
- Suppose we know $P(X_i = 0) = P(X_i = 1) = 1/2$.
- Let $Z_i = 1$ if $X_i = Y_i$. (Agreement of X_i and Y_i .)

	Y=1	Y=0	
X = 1	Z=1	Z=0	1/2
X = 0	Z=0	Z=1	1/2
	p_1	p_{O}	1

Under the null hypothesis, $P(Z_i = 1) = 1/2$, regardless of the distribution of Y_i (regardless of p_1 and p_0).

• Thus in this case, a good test statistic is $T = \sum_i Z_i$ where $Z_i = (X_i Y_i + (1 - X_i)(1 - Y_i)).$

The backcross linkage design



 Y_i denotes some trait value. X_i denotes DNA marker type.

- Mendelian genetics says $P(X_i = 1) = 1/2$.
- $Z_i = (X_i Y_i + (1 X_i)(1 Y_i))$. $Z_i = 1$ is $X_i = Y_i$.

Example data

		Y=1	Y=0	
In our example data	X = 1	3	2	5
$T = \sum_i Z_i = 7$	X = 0	1	4	5
		4	6	10

• $H_0: P(Z_i = 1) = 1/2$ vs. $P(Z_i = 1) = \theta > 1/2$

• Observe *n* outcomes:
$$T = \sum_{i=1}^{n} Z_i$$
.

• P-value:
$$P = P_0(T \ge t_{obs})$$

- In our example, n = 10, and T = 7. P = 0.172
- Another example: n = 30, $P_0(T \ge 20) = 0.049 \approx 0.05$
- For a test size 0.05 (Type 1 error): reject H_0 if T > 19.
- Due to discreteness of binomial, usually need a randomized test, (and our examples do), but this is not point of talk.

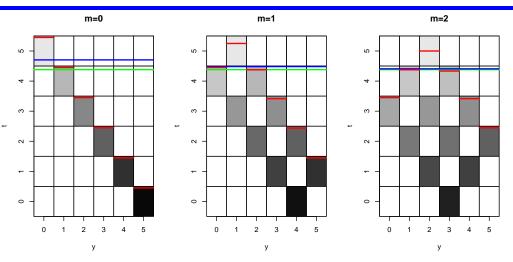
• 1. Condition on $\sum_i X_i = 5$ and $\sum_i Y_i = 4$. In binary case, this is just hypergeometric distribution. In general, it is a permutation test: permute X against Y. It is robust to the marginal distributions of X_i and Y_i .

• 2. Condition on X, resimulate Y under H_0 . Requires knowledge of the marginal distribution of Y.

• 3. Condition on Y, resimulate X under H_0 . Under H_0 : $P(Z_i = 1 | Y_i = 1) = P(X_i = 1) = 1/2$ $P(Z_i = 1 | Y_i = 0) = P(X_i = 0) = 1/2$.

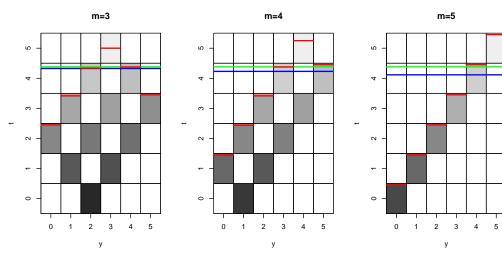
• 4. Resimulate both Y_i and X_i : the traditional binomial test. In this case, the test is equivalent to (3), but note in general it is not robust to the marginal distribution of Y_i .

Comparison of rejection regions: case n=5



m=5

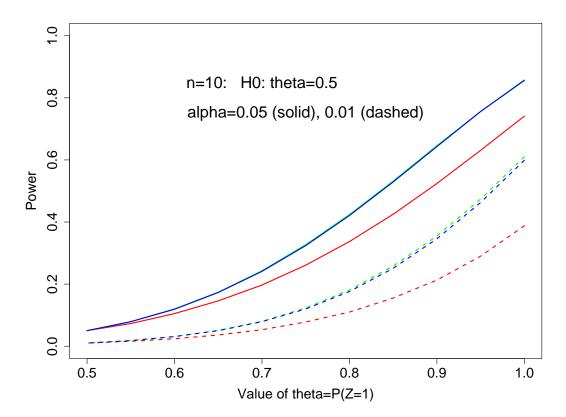
у



13

- Six grids: $m = \sum_i X_i = 0,1,2, 3,4,5$ Each grid, $y = \sum_i Y_i = 0,1,2...,5$, on horizontal axis Each grid, t (agreements of X_i and Y_i) on vertical axis.
- White squares are impossible
 Shading denotes the LR reject light squares first
 Note each grid square also has a probability (not shown)
- Green: unconditional, depends only on t
 Blue: conditional on m reject the right portion of each grid
 Red: conditional on m and y: permutation test.
 - reject the right portion of every column.

• The more we condition, the more robust the test is. The more we condition, the less powerful the test is.



Latent variables: Uncertainty in X_i or Z_i

- In the binary 2 × 2 table case, conditional on Y_i or unconditionally: $H_0: P(Z_i = 1) = 1/2$ vs. $P(Z_i = 1) > 1/2$
- Suppose we do not observe Z_i but only V_i where $P(V_i = 0 | Z_i = 1) = q_1$, $P(V_i = 1 | Z_i = 0) = q_0$, where q_0 and q_1 are known.
- Under H_0 : $P(V_i = 1) = (q_0 + (1 q_1))/2 = q^*$ $P(V_i = 0) = (q_1 + (1 - q_0))/2 = (1 - q^*).$
- The Z_i (or X_i) are now latent variables.

One standard approach

- Standard approach: compute a statistic $W(V,Y) = E_0(T(X,Y) | V,Y) = E_0(T(Z) | V,Y),$ in complex cases, by simulating Z given V and Y.
- That is, if $T = \sum_i Z_i$, $W = \sum_i W_i$ where

$$W_i = P(Z_i = 1 | V_i) = \frac{V_i(1 - q_1)}{2q^*} + \frac{(1 - V_i)q_1}{2(1 - q^*)}$$

- Now for a P-value, we need a distribution for W(Y)? On complex data structures, the permutation test is often not an option. Also, will lose power, relative to using model for X.
- Note that, under H_0 , $E(W_i) = E(E(Z_i|V_i)) = E(Z_i) = 1/2$, However, $var(W_i) = var(E(Z_i|V_i)) < var(Z_i)$.

Example: Z observed with error/uncertainty

 $P(V = 0 | Z = 1) = q_1 = 0.3$. $P(V = 1 | Z = 0) = q_0 = 0.2$; assume we know q_1 and q_0 .

	Z = 0	Z = 1	P(V)	Under $\theta = 1/2$
V = 0	0.8(1- heta)	0.30	$0.8(1-\theta) + 0.3\theta$	1.1/2
V = 1	0.2(1- heta)	0.7 heta	$0.2(1-\theta) + 0.7\theta$	0.9/2
	1- heta	θ	1	1

Under H_0 : P(Z = 1 | V = 1) = .7/.9, P(Z = 1 | V = 0) = 0.3/1.1E(Z | V) = (7/9)V + (3/11)(1 - V) = (3/11) + (50/99)V.

Standard test is based on

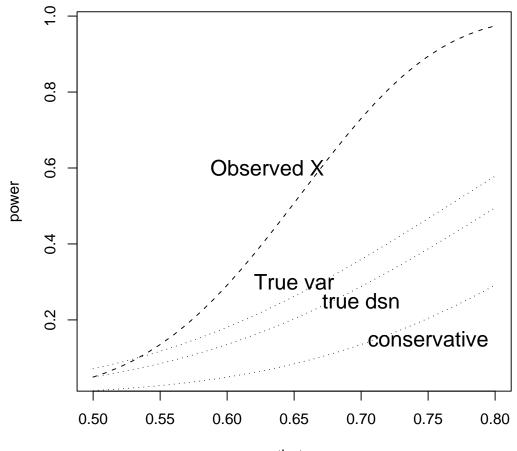
 $W = E(T|V_1, ..., V_n) = (3n/11) + (50/99)V$ where $V = \sum_i V_i$ and $T = \sum_i Z_i$. Under H_0 : E(W) = n * ((3/11) + (50/99) * (0.45)) = n/2 = E(T)var $(W) = n * (50/99)^2 * 0.45 * 0.55 \approx var(T)/4$

Three possible tests (example is n = 30): (1) If we can compute it use the correct distribution of W; Critical value is V = 18: corresponds to W = E(T|V) = 17.27Reject H_0 with prob 0.43 if W=17.27 ($\sum_i V_i = 18$), and if $W \ge 17.78$ ($\sum_i V_i \ge 19$)

(2) Or use a normal approximation with the correct H_0 variance (if we can compute it). Anti-conservative.

(3) Or we can use a normal approximation with the larger variance, which under H_0 we do know; var(T). Conservative.

The powers of tests based on W and T: (n = 30)



theta

20

Problems with this standard approach

- The distribution of $W(\mathbf{V}, \mathbf{Y})$ may be unknown (not here).
- Can always, in principle, simulate under H_0 to obtain an empirical p-value: computationally intensive.
- May need to simulate Y and/or V under H_0 : want a test robust to marginal models of Y and V.

• If we can simulate $T = \sum_i Z_i$ given (\mathbf{V}, \mathbf{Y}) , we have an empirical distribution of T given (\mathbf{V}, \mathbf{Y}) , not just $W = \mathsf{E}(T|\mathbf{V}, \mathbf{Y})$.

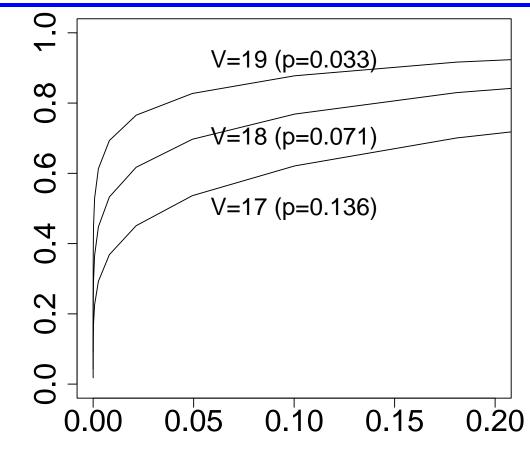
• Uncertainty in what V_i says about Z_i is confounded with evidence Z_i provide about H_0 .

A fuzzy p-value; definition and computation.

- Let $\pi(t)$ be the p-value if we observe T = t.
- The fuzzy p-value is a RANDOM VARIABLE which has the probability distribution of $\pi(T)$ where T has the prob dsn of T given we observe V = v.

• Requires only simulation of T under H_0 , to get $\pi(T)$, and simulation of T given V, to get required fuzzy-p distribution. No simulation of data variables V or Y is required. Everything is conditional on the observed values of (V, Y).

Fuzzy-p dsns for observed V values; V=17, 18, 19



α

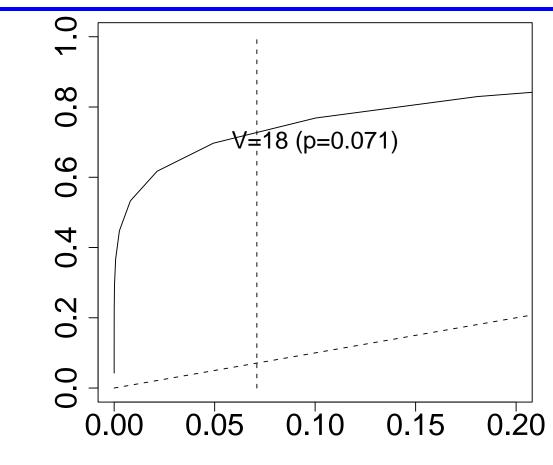
• If V specified T exactly, it would be concentrated at a single value (like a "regular" p-value).

• If V says nothing about T it is spread uniformly on (0, 1), with cdf F(q) = q - see graph.

• The fuzzy p-value expresses both the strength of evidence about H_0 and the uncertainty about the evidence (due to uncertainty about T).

• The uncertainty is put directly onto the p-value scale.

Interpretation of the fuzzy-p distribution



α

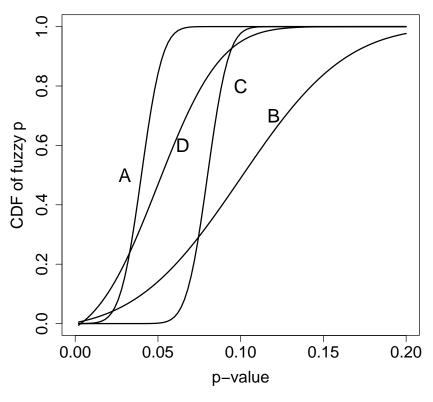
25

Given data V = v, and wanting a test of size 0.05 say, we reject H_0 with the probability that the fuzzy-p random variable is less than 0.05 (about 0.65 for V = 18 in our example).

This test is not very powerful – the power curve is not too different from the "conservative" test in our example. (But Type-I error is correct.)

This is because we have taken into account our uncertainty about T. It is misleading to have a powerful test, that does not reflect this uncertainty.

Reducing uncertainty, with additional data



- Suppose there is some way to reduce the uncertainty in Z_i or X_i , given V_i $(q_0 \approx q_1 \approx 0)$.
- The fuzzy-p dsn can guide collection of such potential additional data.
- A: No need.
- B: No hope.
- C: Not on these structures.
- D: Yes, on these structures!!
- The fuzzy-p dsn puts current uncertainty directly onto p-value (evidence) scale.

CONCLUSION: Conditioning

 \bullet In genetic examples, we may have confidence in a model for DNA inheritance X, but not for trait data Y.

 \bullet We want tests that are robust to the model for Y.

• In case of bivariate binary data (X_i, Y_i) a permutation test is robust to marginal distributions of both X_i and Y_i , but on more complex data structures, permutation is not an option. Also, permutation test loses information, unnecessarily.

• An alternative is to re-simulate simulate X, under H_0 , to obtain an empirical p-value for a test, conditional on Y.

CONCLUSION: Expressing Uncertainty

- \mathbf{X} may be latent: it is often the latent variables that would provide the evidence for scientific hypotheses.
- The data (V_i, Y_i) may be a very imperfect reflection of $Z_i(X_i, Y_i)$.
- \bullet Basing p-values on statistics constructed from data $({\bf V},{\bf Y})$ is very computationally intensive, and may not be robust.
- Evidence in $\{Z_i\}$ is confounded with uncertainty about $\{Z_i\}$.
- Fuzzy p-values address these issues, putting uncertainty in $\{Z_i\}$, (i.e. X) directly on evidence scale, and can thus guide collection of additional data.