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Latent variables

In many areas of genetics/genomics (and other sciences), we

do not observe the variables that would make it easy to test

hypotheses of interest:

Genetic Model or Latent
Data observation Hypothesis variables

Offspring gametes genetic interference 4 meiotic products
Data on pedigrees genetic linkage recombinant/non-rec
Variation in popns coancestry/structure gene inheritance
Variation btw species mutation/selection phylogeny

• How should our uncertainty about latent variables X be ex-

pressed in our inference?
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Chromosomes and meiosis
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(a)
Chromosomes duplicate align

and exchange material.

Offspring chromosome consists

of segments of two parental

chromosomes (length ≈ 108bp).

There is dependence in DNA in-

herited at nearby locations: de-

pendence is stronger for closer

locations.
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Difficulties: statistical and computational

• Often these models have complicated patterns of dependence

among observed data components V, resulting from the latent

structure X.

• Even computing a likelihood P(V) or relevant test statistics

can be hard, requiring summation over the hidden variables:

P(V) =
∑

XP(V | X)P(X).

Often, Monte Carlo is needed to compute the statistic or likeli-

hood.

• Assessing significance can therefore be even harder. Even as-

suming can simulate V under a model (or even under the null hy-

pothesis), analysis of each resimulated data set is needed: com-

putationally very intensive. Monte Carlo within Monte Carlo.
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An approach to solving these difficulties

• Objective:

(1) A new way to assess significance in such problems

(2) A way to express the uncertainty about this significance

where uncertainty derived from uncertainty about latent vari-

ables (not model mis-specification, etc.)

• First we introduce a simple example, without latent variables.

Testing association in a 2×2 table

• Suppose we have pairs of n binary (0/1) independent identically

distributed observations (Xi, Yi).

(For now, Xi is not latent: later it will be.)
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Testing association in a 2×2 table

• The model. Under H0: P(X = Y = 1) = P(X = 1)P(Y = 1)

Y=1 Y=0

X = 1 P(X = Y = 1) P(X = 1)
X = 0 P(X = 0)

P(Y = 1) P(Y = 0) 1

• The data: independent pairs (Xi, Yi), i = 1, ..., n.

Y=1 Y=0

X=1
∑

i XiYi
∑

i Xi(1− Yi)
∑

i Xi
X=0

∑
i(1− Xi)Yi

∑
i(1− Xi)(1− Yi)

∑
i(1− Xi)∑

i Yi
∑

i(1− Yi)
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Four possible ways to test

(1) Condition on
∑

Xi, and
∑

Yi;

hypergeometric: one-fish, two-fish; tag-fish, new-fish.

Robust to the marginal models for P(X = 1) and P(Y = 1).

(2) If we have a model for Yi; condition on X = (Xi).

Robust to marginal model for X.

(3) If we have a model for Xi; condition on Y = (Yi).

Robust to marginal model for Y.

(4) Full model: unconditional: uses model for both X and Y

Least robust, but most powerful.
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A particular case of interest

• Suppose we know P(Xi = 0) = P(Xi = 1) = 1/2.

• Let Zi = 1 if Xi = Yi. (Agreement of Xi and Yi.)

Y=1 Y=0

X = 1 Z=1 Z=0 1/2
X = 0 Z=0 Z=1 1/2

p1 p0 1

Under the null hypothesis,

P(Zi = 1) = 1/2, regard-

less of the distribution of Yi

(regardless of p1 and p0).

• Thus in this case, a good test statistic is

T =
∑

i Zi where Zi = (XiYi + (1− Xi)(1− Yi)).
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The backcross linkage design

Inbred 1 Inbred 0

Hybrid: X=1 Inbred: X=0

Y=

X=

Z=

0 1 0 0 1 0 0 0 1 1

0 0 0 1 1 0 1 0 1 1

1 0 1 0 1 1 0 1 1 1

Yi denotes some trait value. Xi denotes DNA marker type.

• Mendelian genetics says P (Xi = 1) = 1/2.

• Zi = (XiYi + (1− Xi)(1− Yi)). Zi = 1 is Xi = Yi.
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Example data

In our example data

T =
∑

i Zi = 7

Y=1 Y=0

X = 1 3 2 5
X = 0 1 4 5

4 6 10
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The traditional binomial test

• H0 : P (Zi = 1) = 1/2 vs. P (Zi = 1) = θ > 1/2

• Observe n outcomes: T =
∑n

i=1 Zi.

• P-value: P = P0(T ≥ tobs)

• In our example, n = 10, and T = 7. P = 0.172

• Another example: n = 30, P0(T ≥ 20) = 0.049 ≈ 0.05

• For a test size 0.05 (Type 1 error): reject H0 if T > 19.

• Due to discreteness of binomial, usually need a randomized

test, (and our examples do), but this is not point of talk.
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Four ways to condition

• 1. Condition on
∑

i Xi = 5 and
∑

i Yi = 4.

In binary case, this is just hypergeometric distribution.

In general, it is a permutation test: permute X against Y.

It is robust to the marginal distributions of Xi and Yi.

• 2. Condition on X, resimulate Y under H0.

Requires knowledge of the marginal distribution of Y.

• 3. Condition on Y, resimulate X under H0.

Under H0: P (Zi = 1 | Yi = 1) = P (Xi = 1) = 1/2

P (Zi = 1 | Yi = 0) = P (Xi = 0) = 1/2.

• 4. Resimulate both Yi and Xi: the traditional binomial test.

In this case, the test is equivalent to (3), but note in general it

is not robust to the marginal distribution of Yi.
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Comparison of rejection regions: case n=5
m=0
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Explanation of figure of previous page

• Six grids: m =
∑

i Xi = 0,1,2, 3,4,5

Each grid, y =
∑

i Yi = 0,1,2...,5, on horizontal axis

Each grid, t (agreements of Xi and Yi) on vertical axis.

• White squares are impossible

Shading denotes the LR – reject light squares first

Note each grid square also has a probability (not shown)

• Green: unconditional, depends only on t

Blue: conditional on m – reject the right portion of each grid

Red: conditional on m and y: permutation test.

– reject the right portion of every column.
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Power of the tests

• The more we condition, the more robust the test is.
The more we condition, the less powerful the test is.
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15



Latent variables: Uncertainty in Xi or Zi

• In the binary 2× 2 table case,

conditional on Yi or unconditionally:

H0 : P (Zi = 1) = 1/2 vs. P (Zi = 1) > 1/2

• Suppose we do not observe Zi but only Vi where

P (Vi = 0|Zi = 1) = q1, P (Vi = 1|Zi = 0) = q0,

where q0 and q1 are known.

• Under H0: P (Vi = 1) = (q0 + (1− q1))/2 = q∗

P (Vi = 0) = (q1 + (1− q0))/2 = (1− q∗).

• The Zi (or Xi) are now latent variables.
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One standard approach

• Standard approach: compute a statistic
W (V,Y) = E0(T(X,Y) | V,Y) = E0(T(Z) | V,Y),

in complex cases, by simulating Z given V and Y.

• That is, if T =
∑

i Zi, W =
∑

i Wi where

Wi = P(Zi = 1|Vi) =
Vi(1− q1)

2q∗
+
(1− Vi)q1
2(1− q∗)

• Now for a P-value, we need a distribution for W (Y)??
On complex data structures, the permutation test is often not
an option. Also, will lose power, relative to using model for X.

• Note that, under H0,
E(Wi) = E(E(Zi|Vi)) = E(Zi) = 1/2,
However, var(Wi) = var(E(Zi|Vi)) < var(Zi).
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Example: Z observed with error/uncertainty

P (V = 0 | Z = 1) = q1 = 0.3. P (V = 1 | Z = 0) = q0 = 0.2;
assume we know q1 and q0.

Z = 0 Z = 1 P (V ) Under θ = 1/2
V = 0 0.8(1− θ) 0.3θ 0.8(1− θ) + 0.3θ 1.1/2
V = 1 0.2(1− θ) 0.7θ 0.2(1− θ) + 0.7θ 0.9/2

1− θ θ 1 1

Under H0: P (Z = 1|V = 1) = .7/.9, P (Z = 1|V = 0) = 0.3/1.1

E(Z | V ) = (7/9)V + (3/11)(1− V ) = (3/11) + (50/99)V .

Standard test is based on

W = E(T |V1, . . . , Vn) = (3n/11)+(50/99)V where V =
∑

i Vi

and T =
∑

i Zi.
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Testing based on W = E(T |{Vi})

Under H0: E(W ) = n∗ ((3/11)+(50/99)∗ (0.45)) = n/2 = E(T )

var(W ) = n ∗ (50/99)2 ∗ 0.45 ∗ 0.55 ≈ var(T )/4

Three possible tests (example is n = 30):

(1) If we can compute it use the correct distribution of W ;

Critical value is V = 18: corresponds to W = E(T |V ) = 17.27

Reject H0 with prob 0.43 if W=17.27 (
∑

i Vi = 18),

and if W ≥ 17.78 (
∑

i Vi ≥ 19)

(2) Or use a normal approximation with the correct H0 variance

(if we can compute it). Anti-conservative.

(3) Or we can use a normal approximation with the larger vari-

ance, which under H0we do know; var(T ). Conservative .
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The powers of tests based on W and T: (n = 30)
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Problems with this standard approach

• The distribution of W (V,Y) may be unknown (not here).

• Can always, in principle, simulate under H0 to obtain an em-

pirical p-value: computationally intensive.

• May need to simulate Y and/or V under H0: want a test robust

to marginal models of Y and V.

• If we can simulate T =
∑

i Zi given (V,Y), we have an empirical

distribution of T given (V,Y), not just W = E(T |V,Y).

• Uncertainty in what Vi says about Zi is confounded with evi-

dence Zi provide about H0.
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A fuzzy p-value; definition and computation.

• Let π(t) be the p-value if we observe T = t.

• The fuzzy p-value is a RANDOM VARIABLE which has the

probability distribution of π(T ) where T has the prob dsn of T

given we observe V = v.

• Requires only simulation of T under H0, to get π(T ),

and simulation of T given V , to get required fuzzy-p distribution.

No simulation of data variables V or Y is required.

Everything is conditional on the observed values of (V, Y ).
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Fuzzy-p dsns for observed V values; V=17, 18, 19
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A fuzzy p-value; interpretation

• If V specified T exactly, it would be concentrated at a single

value (like a “regular” p-value).

• If V says nothing about T it is spread uniformly on (0,1), with

cdf F (q) = q – see graph.

• The fuzzy p-value expresses both the strength of evidence

about H0 and the uncertainty about the evidence (due to uncer-

tainty about T ).

• The uncertainty is put directly onto the p-value scale.
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Interpretation of the fuzzy-p distribution
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Test based on the fuzzy p-value

Given data V = v, and wanting a test of size 0.05 say, we reject

H0 with the probability that the fuzzy-p random variable is less

than 0.05 (about 0.65 for V = 18 in our example).

This test is not very powerful – the power curve is not too

different from the “conservative” test in our example. (But

Type-I error is correct.)

This is because we have taken into account our uncertainty about

T . It is misleading to have a powerful test, that does not reflect

this uncertainty.
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Reducing uncertainty, with additional data
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• Suppose there is some way to

reduce the uncertainty in Zi or

Xi, given Vi (q0 ≈ q1 ≈ 0).

• The fuzzy-p dsn can guide col-

lection of such potential addi-

tional data.

• A: No need.

• B: No hope.

• C: Not on these structures.

• D: Yes, on these structures!!

• The fuzzy-p dsn puts current

uncertainty directly onto p-value

(evidence) scale.
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CONCLUSION: Conditioning

• In genetic examples, we may have confidence in a model for

DNA inheritance X, but not for trait data Y.

• We want tests that are robust to the model for Y.

• In case of bivariate binary data (Xi, Yi) a permutation test is

robust to marginal distributions of both Xi and Yi, but on more

complex data structures, permutation is not an option. Also,

permutation test loses information, unnecessarily.

• An alternative is to re-simulate simulate X, under H0, to obtain

an empirical p-value for a test, conditional on Y.
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CONCLUSION: Expressing Uncertainty

• X may be latent: it is often the latent variables that would

provide the evidence for scientific hypotheses.

• The data (Vi, Yi) may be a very imperfect reflection of Zi(Xi, Yi).

• Basing p-values on statistics constructed from data (V,Y) is

very computationally intensive, and may not be robust.

• Evidence in {Zi} is confounded with uncertainty about {Zi}.

• Fuzzy p-values address these issues, putting uncertainty in {Zi},

(i.e. X) directly on evidence scale, and can thus guide collection

of additional data.
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