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We review here the methods, based on renormalized (])4 QFT and RG,
which have led to precise determination of critical exponents of the N-
vector model, and more recently of the equation of state of the 3D Ising
model.

The starting point 1s the perturbative expansion for RG functions or the
effective potential to the order presently available.

Perturbation theory i1s known to be divergent and its divergence has been
related to instanton contributions.

This has allowed characterizing the large order behaviour of perturbation
series, an information that can be used to efficiently ~“sum" them.
Practical summation methods based on Borel transformation and
conformal mapping have been developed.

They have led to the most accurate results available probing field theory
in a non-perturbative regime.

Compared to exponents, the determination of the the scaling equation of
state 1nvolves a few additional (non-trivial) steps.



A general reference on the topic 1s

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena,
(Oxford Univ. Press 1989, fourth ed. 2002.)

The first precise estimates appeared 1n

J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39 (1977) 95; Phys.
Rev. B21 (1980) 3976

using six-loop series for RG functions reported in

B.G. Nickel, D.I.Meiron, G.B. Baker, Univ. of Guelph Report 1977.
Additional terms were used 1n

R. Guida and J. Zinn-Justin, J. Phys. A31 (1998) 8103.

For the equation of state see

R. Guida and J. Zinn-Justin, Nucl. Phys. B489 [FS] (1997) 626, [hep-
th/9610223];

Many relevant articles about large order behaviour are reprinted in
Large Order Behaviour of Perturbation Theory, Current Physics

vol. 7, J.C. Le Guillou and J. Zinn-Justin eds., (North-Holland,
Amsterdam 1990).



The first steps

Wilson’s renormalization group.
The € =4—d expansion: K.G. Wilson and M.E. Fisher, Phys.
Rev. Lert. 28 (1972) 240.

Callan-Symanzik equations of massive renormalized
perturbation theory: E. Brézin, J.-C. Le Guillou and J. Zinn-
Justin, Phys. Rev. D8, 434-440 (1973).

The use of massive perturbation theory at fixed dimension:
G. Parisi, Cargese Lectures 1973, published in J. Stat. Phys.
23 (1980) 49.

Large order behaviour of perturbative expansions:

E. Brézin, J.-C. Le Guillou and J. Zinn-Justin, Phys. Rev. D15,
1544-1557 (1977).



The N vector model

Number of interesting phase transitions are described by the /N vector
model, a O(/N) symmetric model with an N-component field ¢(x) ¢;, i =
1,...,N. The partition function then reads

Z = / [dé(x)] exp [-H(9)]

where the hamiltonian (or euclidean action) is given by

U

o) = [ {5 0u0@] + 3o+ 5 [#@) e,

The first values of N correspond to the transitions:
N = 1: liquid—vapour, binary mixtures, Ising systems
N = 2: Helium superfluidity

N = 3: ferromagnetic systems

and the limit N = 0 to statistical properties of long polymers.



The massless scheme and the s-expansion

This scheme is based on expanding around the critical (massless) theory.
Therefore, calculations cannot be performed at fixed dimension d < 4 be-
cause perturbation theory is IR divergent. The ¢ = 4 — d-expansion is an
essential part of the scheme. The hamiltonian is then parametrized as

4—d

1) = [ {3 0o + 516w + L [P ] ate,

where dimensional regularization is assumed. Here, ;1 is the renormalized
scale, g a dimensionless coupling constant and t =»r —r. oc 1" —T,.

Renormalized vertex (1PI) functions satisfy RG equations of the form

1, o .
[u— +B(9) 5= — %nn(m — ng(gﬁa] rm — .

The RG functions 3,7, 1> can be derived from the calculation of the UV
divergent part of two-point and four-point vertex functions when the di-

mension d — 4 in the massless theory.



The fixed point equation reduces to

B(g*)=0.
To determine universal properties in the critical domain (near the transition

temperature), one must first determine the zeros ¢* of the J-function, and
then calculate all other physical quantities for ¢ = g*. For ¢ = 4 — d small,

B(g) = —eg + (N + 8)g° /487* + O(g°).
Therefore, near dimension 4 one finds an IR stable fixed point
g* = 48m%c /(N + 8) + O(&?).

Then, all universal quantities can be calculated in the form of an ¢ expan-
s101.

In particular, the values at g = ¢* of the two functions 7(¢) and 72(g)
are related to the two independent critical exponents 77 and v:

<gb(:c)gb(0)>T:T X 1/xd—2+77’

¢ lx|—o0

T T—-T.|7"
() o 1T =TI,

where £ is the correlation length.



Callan—Symanzik equations

Another scheme involves working in the massive field theory (the critical
domain) where the mass m = 1/£. Then, renormalized correlation functions

are defined by the renormalization conditions

L®(p;m, g) = m* +p* + O(p")
I'4(0,0,0,0) = gm*~<.

Vertex functions then satisfy the CS equations

8 8 n n
mo— + B8(9) - — 1(9)| T™ (pism, g) = m*(2 — )T (piym, g).

where I’fbg) correspond to correlation functions with one insertion of the

operator [ d%z ¢?(x).

In dimension 4, and within the ¢ expansion scheme, the r.h.s. is negli-
gible and the scaling relations can be proved (with more work). However,
within this massive scheme, the perturbation expansion exists in any di-

mension.



Practical calculations: the ¢ expansion

One first calculates all renormalized quantities as an expansion in a double
series expansion in powers of ¢ and ¢, in particular the (-function. One
solves the equation ((¢g) = 0 in the form of a ¢ expansion. One inserts
the fixed point value of g in other physical quantities. It then remains to
extract, from a small number of terms of the expansion, information about
the relevant physical dimensions, for example ¢ = 1.

Table 1 shows the successive partial sums for two exponents up to order
£°. It is immediately apparent that the series do not converge.

Table 1

Sum of the successive terms of the e-expansion of v and n fore =1 and N = 1.

k 0 1 2 3 4 5

v 1.000 1.1667 1.2438 1.1948 1.3384 0.8918
i 0.0... 0.0... 0.0185 0.0372 0.0289 0.0545




The fixed dimension scheme

Following Parisi’suggestion, one can also evaluate the [-function directly in
dimension 3 but, then, one has no longer a “small” expansion parameter.
However, it has been noticed by Nickel that Feynman diagrams in dimension
3 can be more easily evaluated than near dimension 4. At present, Nickel
has managed to calculate all diagrams up to seven loops (in the terminology
of Feynman diagrams) contributing to 7,72, but the diagrams contributing
to the [-function, which are more difficult, only up to six loops.
For example, to six loop order, for V = 1, Nickel has obtained

B(g) = —g+ §° — 285’ + 0.35106959783"
— 0.37652682833° + 0.49554751° — 0.7496895" + O (§°),

where g = 3¢g/(167)).
One must first determine numerically the zero of the J-function, which
is a number of order 1. This clearly requires some summation of the series.



Large order behaviour and instanton calculus

Let function F'(g) be a real function, analytic in the plane with a cut on
the whole real negative semi-axis. Moreover, we assume that F'(¢) has an
asymptotic expansion for g — 0. Under simple technical conditions, /'(¢)
has the Cauchy representation

1 (% ImF(¢
F(9>:—/ ,_( >dg’-
T 9 — 49

Expanding F'(¢g) in a power series for g — 0.,
k

one finds
1 (" k-1
F, = — Im F(g)g dg .

ﬂ-—OO

The behaviour of the integral for £ — oo, is governed by the behaviour of
Im F(g) for g — 0_.



In a g¢* field theory, correlation functions are analytic in a cut-plane. For
g — 0_, the field integral is dominated by saddle points solutions of the
euclidean classical field equations. Only those that have a finite action
contribute to the integral. They are called instantons.

For ¢ — 0_, one finds again the trivial solution ¢(xz) = 0, but it
contributes only to the real part. The imaginary part is dominated by

non-trivial solutions of
(A + m*)¢(z) + gm* ¢’ (2)/6 = 0.

The leading contribution comes from solutions of the form
1
H(z) = —m D2 f(mr), r =]z
() Ne (mr) |
The function f for d < 4 satisfies the non-linear differential equation
—fHd=1)f/r+f—-f3/6=0.

The contribution of the saddle point to the field integral then has the form
exp(A/g), A > 0, up to less singular pre-factors. Then,

0
Fy, ~ / eM9g7k"1dg ~ EI(—A)F.

— OO



Thus, the perturbative expansion is divergent. A more precise calculation

leads to, for example, for the J-function in three dimensions:
Br o (—a)kk!
k— o0

with a = 0.147774232 . . ..

To deal with this problem, when the coupling constant ¢ is not small,
it 1s necessary to introduce summation techniques. In three dimensions, the
perturbative expansion is proved to be Borel summable. It is thus natural

to introduce the Borel-Laplace transformation (here, Borel-Leroy):

&
Bo(g) = zk: F(k+]:f+ 1>gk'

Then, formally in the sense of power series

+00
B(g) = /0 t%e "B, (gt)dt.

The function B(g) is analytic in a circle of radius 1/a. The series is said
Borel summable if, in addition, B(g) is analytic in a neighbourhood of the

real positive semi-axis and the integral converges.



The series defines the function in a circle. It is thus necessary to perform
an analytic continuation. In practice, with a small number of terms, the
continuation requires a larger domain of analyticity. Le Guillou and Z.-
J. (1977-1980) have assumed maximal analyticity, i.e., analyticity in a cut-
plane. The continuation has then be obtained by a conformal mapping of
the cut-plane onto a circle.

Table 2

Series summed by the method based on Borel transformation and mapping for the
zero §* of the 3(g) function and the exponents v and v in the ¢3 field theory.

k 2 3 4 S 6 7

g 1.8774 1.5135 1.4149 1.4107 1.4103 1.4105
1% 0.6338 0.6328 0.62966 0.6302 0.6302 0.6302
v 1.2257 1.2370 1.2386 1.2398 1.2398 1.2398

Improved summation techniques and the additional seven-loop contribu-

tions have lead to new estimates of critical exponents (Guida, Z-J. 1998).




Critical exponents from the O(N) symmetric (¢*)3 field theory

N 0 1 2 3
g* 1.4134+£0.006 | 1.411 £0.004 1.403 £ 0.003 1.390 + 0.004
g* 26.63 = 0.11 23.64 £+ 0.07 21.16 £0.05 19.06 = 0.05
v 11.1596 4+ 0.0020 |(1.2396 = 0.0013 |1.3169 4= 0.0020 |1.3895 =+ 0.0050
v |0.5882 £ 0.0011 |0.6304 +0.0013 |0.6703 = 0.0015 |0.7073 4= 0.0035
n 10.0284 £ 0.0025 |0.0335 £+ 0.0025 (0.0354 = 0.0025 |0.0355 &= 0.0025
£ 10.3024 4+ 0.0008 [0.3258 + 0.0014 (0.3470 £+ 0.0016 |0.3662 4+ 0.0025
o | 0.235 = 0.003 0.109 +0.004 |—0.011 +£0.004 |—0.122 £+ 0.010
W 0.812 £ 0.016 0.799 = 0.011 0.789 £0.011 |0.782 4+ 0.0013
wr | 0.478 = 0.010 0.504 £ 0.008 0.529 = 0.009 | 0.553 == 0.012

Reference: R. Guida and J. Zinn-Justin, J. Phys. A 31 (1998) 8103,
cond-mat /9803240, an improvement over the results published in
J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39 (1977) 95;

Phys. Rev. B21 (1980) 3976.



For a comparison



Critical exponents from the O(N) symmetric (¢*)3 field theory

N 0 1 2 3
v 11.1596 4+ 0.0020 |1.2396 4+ 0.0013 |1.3169 4= 0.0020 |1.3895 4 0.0050
v 10.5882 = 0.0011 (0.6304 = 0.0013 |0.6703 4+ 0.0015 [0.7073 £ 0.0035
Q 0.235 4+ 0.003 0.109 +=0.004 |—0.011 £0.004 |—0.122 £+ 0.010
G 10.3024 £ 0.0008 [0.3258 +£0.0014 (0.3470 + 0.0016 |0.3662 4 0.0025
wr | 0.478 £ 0.010 0.504 + 0.008 0.529 = 0.009 0.553 == 0.012
C'ritical exponents from O(N) symmetric lattice models
N 0 1 2 3
~ 1.1575 4+ 0.0006 | 1.2385 £ 0.0025 1.322 £ 0.005 1.400 £ 0.006
% 0.5877 4+ 0.0006 0.631 £+ 0.002 0.674 + 0.003 0.710 £ 0.006
o 0.237 4 0.002 0.103 £ 0.005 —0.022 £0.009 | —0.133 +0.018
I} 0.3028 4+ 0.0012 0.329 £ 0.009 0.350 £ 0.007 0.365 £+ 0.012
Wy 0.56 4+ 0.03 0.53 = 0.04 0.60 4 0.08 0.54 £+ 0.10




A systematic comparison between these field theory and renormaliza-
tion group based calculations and available experimental results, as well as
lattice calculations, shows excellent agreement but progress in the latter,
should encourage us to further improve field theory results. For example,
in the case of superfluid Helium transition, low gravity experiments have
given

v =0.6705+0.0006, v =0.6708 £ 0.0004

o = —0.01285 == 0.00038 ,

a precision that is now a challenge to field theory, which yields:
v =0.6703 = 0.0015, «a = —0.01140.004.

A noticeable improvement can be expected from a seven-loop calculation
of the [(3- function, since the value of ¢* enters in the calculation of all other
universal quantities.

Moreover, it would be useful that another group verifies Nickel’s calcu-
lations to check the precision of the evaluated diagrams.



Table 6

Critical exponents in the (¢°)3 field theory from the s-expansion.

> & T
A

0.828 4+ 0.023
0.486 £ 0.016

0.814 = 0.018
0.512 4+ 0.013

0.802 & 0.018
0.536 £ 0.015

N 0 1 2 3
v (free) |1.1575+0.0060 |1.2355 & 0.0050 |1.3110 =+ 0.0070 |1.3820 & 0.0090
~ (be)” [1.1571 +0.0030 |1.2380 % 0.0050 |1.317 1.392
v (free) |0.5875 = 0.0025 |0.6290 = 0.0025 |0.6680 % 0.0035 [0.7045 &= 0.0055
v (be)  |0.5878 £0.0011 |0.6305 «+ 0.0025 |0.671 0.708
n (free) |0.0300 & 0.0050 [0.0360 £ 0.0050 |{0.0380 % 0.0050 |0.0375 & 0.0045
n (be)  0.0315 % 0.0035 |0.0365 & 0.0050 |0.0370 0.0355
B (free) [0.3025 =+ 0.0025 |0.3257 & 0.0025
8 (be) |0:3032 % 0.0014 |0.3265 + 0.0015 |0-3465+0.0035 10.3655 & 0.0035

0.794 £ 0.018
0.559 £ 0.017




Finally, using the series provided by Nickel, combined with a few new tech-
nical tricks, it has been possible to obtain a precise representation of the
equation of state for models in the N = 1 Ising class (Guida and Z.-J.).
In particular, from the equation of state, a number of universal combina-
tions of amplitudes of the singularities at 7. can be derived (see table 10).
For example, the magnetic susceptibility, diverges at I, with susceptibility
exponents 7, and

X+ ™~ C—I—(T - Tc>_,y7

X ~C_(T.,—-T)",

The ratio C'y /C_ is universal. In the same way, the singular part of the
specific heat behaves like

Cq ~ A—I—(T _ TC>_a7
C~ A (T, —T)°,

and the ratio A, /A is also universal.
Reference: R. Guida and J. Zinn-Justin, Nucl. Phys. B489 |FS| (1997)

626.



Amplitude ratios: models and binary critical fluids.

Table 10

e-expansion |Fixed dim. d = 3 | Lattice models | Experiment
AYJAT | 052740037 | 05370019 |{{260 =000 | 0.56 4 0.02
ct/cm | 4.73+0.16 479+ 0.10 {j{:gg 003 | 43+03
f/f 1.91 2.04 +0.04 1.96 4 0.01 1.94+0.2
R; 0.28 0.270£0.001 | 0.266 +0.001 | 0.25-0.32
R, 0.0569 + 0.0035 | 0.0574 + 0.0020 |0.0581 4 0.0010 |0.050 + 0.015
R{R:Y? 0.73 0.700 = 0.014 0.650 0.60-0.80
R, 1.648 £ 0.036 | 1.669+0.018 1.75 1.75 4 0.30
Q> 1.13 1.21 4 0.04 1.140.3
Qs 0.96 0.896 == 0.005




However, to give an idea of the problem one faces, at seven-loop about
3500 diagrams have to be evaluated, which are integrals of rather singular
functions over 21 variables.

A set of technical tricks, some already used Nickel, and a complete au-
tomatization of the calculation (Guida—Ribeca), which in particular allows
finding many sub-integrations that can be performed analytically, reduces
somewhat the difficulty. It remains to optimize the numerical integration
methods, to secure the required precision.

WORK STILL IN PROGRESS.



Effective vertices up to the triangle
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Cumulative number of diagrams vs. number of residual integrations for loops 5 and 6.



Effective vertices up to the pentagon
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Cumulative number of diagrams vs.

number of residual integrations for loops 5 and 6.




