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Wilson-Fisher fixed points
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Renormalization in relation to non-locality
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Statement of problem

� � �

theory

� �
�

�
�� ��� � 	 
 ��

� 
� �
� � � �

�
�

��� �� � � 	 
 �
� 

� 	� ��� � �

�

Since

� �

theory is not finite, require renormalization constants
� � and

� � which relate

bare and renormalized objects;

� � � � ��� �

and �� � � � �

�

Renormalization constants are encoded in the renormalization group functions � � � � � ,

� � � � , . . .

�

These lead to understanding of the structure of the quantum theory such as asymptotic

freedom in QCD from running of the coupling constant or determination of critical

exponents at fixed points, defined as zeroes of the

�

-function

�

As theory is not finite one needs a mathematical way of handling the infinities

�

Moreover this procedure must be consistent with the symmetries of the theory
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�

For gauge theories and theories with supersymmetry the consequences for the

renormalization of the field theories can be determined by methods such as algebraic

renormalization [Sorella et al]

�

For example alegbraic renormalization determines the form of the renormalization

constants which are consistent with the Slavnov-Taylor identities

�

Infinities require mathematical procedure or regularization to quantify them

�

Dimensional regularization: set space-time dimension to be

�

where

� � � � ��� , � � �

and �� � ��� �� 	��

with � an arbitrary mass scale

�

Lattice regularization: discretize space-time which introduces a scale 	 which is the size

of the lattice spacing

�

Physics independent of the arbitrary scale � or 	 which leads to the renormalization group

�

For a Green’s function


 ���  � � � � �� � �
�

one requires

�

�
��


 ���  � � � � � � � �
� � �

�

Will primarily concentrate on ultraviolet infinities here; infrared infinities are regularized

when one has a non-zero mass
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Dimensional regularization

�

Renormalization constants depend on � and involve simple poles in �

�

To have a finite theory need to remove these poles systematically and consistently

�

Requires specification of method of removal or subtraction - various standard schemes to

achieve this

�

Minimal Subtraction (MS) - remove only the poles in � (and common factor of

��� � � �

)

corresponds to a mass independent renormalization scheme

�

Mass dependent renormalization schemes - subtraction removes a finite part in addition to

the poles where the particular finite part derives from say putting external particles on

their mass shell; MOM or on-shell schemes

�

RI

�

(modified regularization invariant) scheme which is used in lattice computations and

is a cross between MS and MOM but is a mass dependent scheme

�

Whatever regularization and scheme one uses they must be compatible with the

symmetries of the underlying quantum field theory such as gauge symmetry and

supersymmetry

�

Ultimately physical quantities are scheme independent
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Calculational methods

�

Need methods to extract regularized divergences from Feynman integrals at one loop and

higher

�

One loop standard tool is to use Feynman parameters based on

�
	 � �

�
�

� �

� 	 � 
 � � � � � � � 	
where 	 � � 	 � � 	� and

� � � � � � � 	 � � 		

�

Not practical at higher loops as presence of one or more mass scales complicates

integration

�

Develop different approach primarily tailored to the problem on interest
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Massive integrals

�

Can renormalize massive field theories and extract divergences by expanding in vacuum

bubbles (ie no external momenta)

�

�

� � 	 � � 	 � � � � � � � 	 � � 	 � �

�

�

� � 	 � � 	 � 	 �

�

� 	

� � 	 � � 	 � �



�

� �

� 	 � 	

� � 	 � � 	 � �


 � � �

�

Truncation from renormalizability criterion

�

For bosonic

�

-point function

� � � � 	 � 	� terms will be finite in renormalizable theories

�

In four dimensions three loop single mass scale vacuum bubbles known to their finite

part; two loop three mass scale vacuum bubbles known to the finite part

�

More recently new technique for two loop four-point boxes has been developed by

Smirnov et al based on representing the propagator by a Mellin-Barnes integral and using

contour integration to evaluate the Feynman integral

�

No infrared problems
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Massless integrals

�

Extend vacuum bubble expansion technique to massless case, [Chetyrkin et al], by

introducing fictitous mass

�� which acts as an infrared regulator

�

Based on the iteration of the identity

�

� � � � � 	
�

�

� � 	 � �� 	 � 

� � � � � � 	 � �� 	 �

� � � � � 	 � � 	 � �� 	 �

�

In a particular Feynman graph truncate expansion by applying Weinberg’s criterion for

finiteness of an integral

�

Another technique is integration by parts based on the identity

� �

� � �

� �� � �

�
� � �

� � � � � � � � �� � � � � �

where

�

is the integrand derived from the propagators and vertices

�

For massless theories the rule produces powers of

� 	

which cancel denominator

propagators and reduces Feynman diagrams to a simpler integration topology

�

MINCER algorithm constructed on this principle [Chetyrkin et al]
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MINCER

�

Package for evaluating massless

�

-point functions in dimensional regularization to their

finite parts [Chetyrkin et al]

�

Encoded in symbolic manipulation language FORM and freely available

�

At three loops there are

� �

basic independent integration topologies each with their own

integration by parts routine

�

Can be used for higher point functions but only in cases where external momenta are

nullified to reduce to a

�

-point function and where this does not introduce spurious

infrared singularities

�

�
� � 	 � 	

�

Nullification can be systematically dealt with by using infrared rearrangement

[Vladimirov et al]

�

MINCER widely used for renormalization of four dimensional gauge theories including

QCD

Practicalities of renormalizing quantum field theories – p.9/41



Automatic calculations

�

Higher loop calculations involve huge number of Feynman diagrams

�

For example, three loop QCD fixed in the maximal abelian gauge involves
� � � � �

Feynman diagrams to extract all wave function anomalous dimensions and the

�

-function; four loop QCD

�

-function in linear covariant gauge requires

� �� � � � � �

diagrams [Vermaseren et al]

�

Such calculations require computer tools involving MINCER or new packages for four

loops

�

Diagrams automatically generated by QGRAF package and converted to MINCER input

form

�

Extraction of renormalization constants is the final stage

�

Traditional approach is by method of subtractions where the absolute divergence of a

diagram is determined by subtracting all subgraph divergences

�

Alternative is to calculate completely as a function of bare parameters

�

Counterterms introduced naturally (and equivalently to subtraction method) by rescaling

with the renormalization constants �� � ��� � etc

�

Amenable to automatic computer algebra programmes
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Qgraf

�

Example of QGRAF diagram - three loop gluon

�

-point function of the benz topology

*--#[ dthree276:

*

1/2

*vx(AA(-1),AA(1),AA(2))

*vx(AA(-3),AA(3),AA(4))

*vx(AA(1),AA(3),AA(5))

*vx(AA(2),AA(5),AA(6))

*vx(AA(4),AA(7),AA(8))

*vx(AA(6),AA(7),AA(8));

#define CHOICE "7"

#define TOPOLOGY "be"

*

*--#] dthree276:
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Massless integrals - continued

�

Recently a new strategy has been developed for �-point functions at two loop for cases

where the external momenta are non-zero

�

Differential equation method of Remiddi el al

�

Basic idea to derive the complete set of differential equations from the loop integrals at a

particular loop order and solve them using master integrals as boundary conditions

�

Another approach is that of conformal integration in

�

-dimensions called uniqueness

�

When sum of the powers of the propagators round a momentum loop equals the spacetime

dimension

�

then the loop integration can be performed to give the answer as the product

of




-functions whose arguments depend on the exponents of the massless propagators

�

More appropriate for large

�� methods when one computes in the neighbourhood of a

fixed point of the

�

-function and where there is a scaling symmetry
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Checks

�

Usual internal consistency checks from the renormalization group structure of

renormalization constants

� � � � � � � � � � � 
 � � 	 
 � � � 
 � � � 
 � � � � �

� � � � � � 	 � 
 � � 	 
�� � � 
 � � � � �
where

� � � � � � �� � �
�

and

� 	 � � �� �� � �
�

are independent of
�

� � � � �

� �

� � � � �



� � 	

� � � � � 	 �

�

� � � � � �
	

� 	






�

� �

� � � � � �




� � �

� � � � � � 	 �

�

� � � � � �
�

� � 
 � � � � �

��� � � 
 	 �

� � � � �



� � 	 	 � 	 � �

� � � � � � 	



�
� � � � � �

	
� 	




 � � 	 � 	 � � 	 	 � 
 	 � �

� � � � � � �



� � 	 � � � 	 � � � � � �

� � � � � � 	 �

�
� � � � � �

�
� �


 � � � � �
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�

This check is important for automatic calculations

�

Renormalization group functions in mass independent (MS) renormalization scheme

depend only on 	� � - the residue of the simple poles in �

�

This leaves 	� � unchecked

�

Other checks potentially available from symmetries of underlying field theory -

supersymmetry and/or gauge symmetry

�

For example quantities of a physical nature have gauge independent renormalization

group functions in mass independent schemes

�

Partial checks available from large

�

critical point method [Vasil’ev et al]
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� � � �� �

�

MS

�

-function in

�

-dimensions defines non-trivial

�

-dimensional Wilson-Fisher fixed

point ��� given by

� � � � � � �

where

� � � � � � � � � � �
�


 � � 
 � � � 	
� � � � � 
 � � � � �
�


 � � � � 	 
 	 � � � 
 � 	 � � 
 	 � �� � 
 � � �
 � � � � � �
� � �


 � � � � �

�

In

� � � � �� the critical coupling � � depends on � and

�

�

Expanding in powers of

� � �

as

�� �

��� �
��

�


 � � � �� 
 � � �� 	
� 	 	� � 
 � �� � � � �
� 	


 �

� �
� �

	

�

Critical exponent

� � � �� �

is scheme independent object

� � � �� � � � � 



� �� 	
� � �� �

�
�

� �
� 
 � �� � �

� �
�


 �

� �
� 	
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�

If one can compute

� � � ��� �

in

�

-dimensions via

� � �

expansion methods then coefficients

of the polynomial in

�

in original

�

-function can be read off directly

�

Vasil’ev et al provided technique of large

� �

-dimensional critical point analysis

�

Exploits

�

-dimensional Wilson-Fisher fixed point equivalence of
� � � � � �

in

� � � � ��� and

� � � �

non-linear � model in

� � � 
 �

�

First three terms in

� � �

series for exponents �, � and � known

�

Allows one to predict higher order coefficients
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�

For wave function renormalization set ( � � � �

)

� � � � � � ���� � �� � � 	 
 � � � 
 � �� � � � 	 � � � �

�

Hence with

�	��
 	 � � �
� � � �

� � �  �� �

� �  �

�� � � � � � � � � � � � � 
 � � � � � � � � � � � 	 � � � �
 � 	 � 
 � � � � � � � �� � �
 � � �


 � � � � � � � � � �
 � � �
 � � � 
 � � � 	 � � 	 � � 
 � � � � � � � � � 	 � � � �
 � � �
 � � �

� � � � � � � � � � �
 � � � 
 � � 	� � � 	 � �
 	 � � � � � � � � �� � � 	 �
 �� �
 � � �


 � �� � � � � 	 � �
 �� �
 � � � � 	 �� � � �� � �
 �� � � 	 � � 	 � � �
 � � �
 	 � � �


 � � � � � � � �� �
 � � �
 � � � 
 � � � � � � � � � �
 � � � � � � � � � � �� �
 � � � �

� � � � � 	 	 � � � �
 	 � � � 
 � 	 � � � � 	 � �
 � � �

� � 	 � � � � � � �� 	 � � � � �� � � � � � � � 	� � � 	 � 	 � � �� �

� ���
 	 is knot number associated with

� � � � �

torus knot
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Large

��� QCD

�

Similar method but exponents are known to fewer orders in

� � ���

�

� at

� � � � �� �

and quark wave function and mass anomalous dimensions at
� � � � � 	
�

�

in

d-dimensions

� �� is number of quark flavours;

�� is number of colours

�

At analogous

�

-dimensional Wilson fixed point QCD is equivalent to non-abelian

Thirring model (NATM)

� �� � �� ,

� � � � ��� ,

� � 	 � ���

� � � �	� 
 � � � � 
 � 

� 	

�


�	� 
 � � ��� � � � 
� � 	

�

Or

� � � ��� 
 � � � � 
 � 
 � �
�

��� 
 � � ��� � � � 
� �
� � 	

�
� �

�QCD � �
�

�
� �

�� � � �� �
�

���
� � � � �

�
� 	 � �� � � � �

�
� � 
 � � � 
 � �� � 
 �

�

Quark loops in NATM reproduce the triple and quartic gluon interactions at criticality

[Hasenfratz and Hasenfratz]
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QCD

�

-function in large

� �

�

Compute related critical exponent � � � � � � �� �

at

�

-dimensional Wilson-Fisher fixed

point

�

Insert (gauge invariant) operator

� � � �
�� � � ��

in gluon

�

-point function using NATM

Lagrangian

�

Anomalous dimension of this operator relates to critical renormalization group function

of the associated coupling of the operator

�

Massless propagators in critical region are

� � � � �

� ��
� � 	 � � � � � �

�� � � � �

�

� � 	 � � � �



�
�� �

�
�

��
� 	

�

where � � � 

�

� �,

� � � � � � � and

� � � �

�

Canonical dimensions derived from
�

-dimensional Lagrangian

Practicalities of renormalizing quantum field theories – p.19/41



�

Relevant Feynman diagrams at each order in large

�� perturbation theory derived by

noting that quark loop is

� � �� �

,

� � � � � �

and

� � � � � � �� �

�

Regularization is introduced by shifting the quark-gluon anomalous dimension

�  � � �

�

Poles in

�

are subtracted in a minimal way into a renormalization constant which

determines the critical exponent

�

Requires the computation of massless critical Feynman diagrams using uniqueness

� � � � � � � � � � � � � � � � � � � � � 	 �� �

�
� � � � � � � � � 
 � � � 	 � � � � 
 � � � � 	 � � �

� � � � � � � � � � � �

� �o�
� �� � ��

where �o � � � � � � � � � � � � 
 � � � � � � � 
 	 � � � 
 � � 
 � � 
 � � � � � �

�

New coefficients

	 � � � � � � � � � 
 � � � � � � � � � �

	 � � � � � � �
 � � � 
 � � � � � � 
 � � � �
 � � � � � � 	 � � � � � � � � � �
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Large

��� NATM

�

Repeat exercise for NATM with analogous operator

�
� � �

�

� � �

�

Insert operator into gluon

�

-point function

�

Gauge variant operator but compute in Landau gauge

� � � � �

� � �o�

� � � � � � � � ��


 �

�
� 	
�

�

Interesting structure

� � � � ��� � � � � � ��� � 
 �� � �� �

in all dimensions at

� � � � �� �

�

In four dimensions � � � � � � � � � � � � 
 �� � � � to all orders in perturbation theory in

Landau gauge

�

Shown first explicitly at three loops in MS computation
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�

Properties of

�
� � �

�

� � �

subject of intense study for potential relation to an effective

gluon mass in various gauges

�

In maximal abelian gauge (MAG) there is a similar renormalization structure for

analogous dimension two operator involving off-diagonal fields

� �
�

� � � � �
�

� � 
 � 

�

� 


where

� � 
 � � � � � �

,

� 
 � �

centre

�

� �
�

� � �
�

� � � 
 � �� �� �

�

Comparable all orders result is

�� � � � � � � � � � � � �� � � � �
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MAG

�

Nonlinear gauge fixing where gauge field is split into diagonal (centre) and off-diagonal

components

� �
�

� � � � �
�

� � 
 � 

�

� 


with

� � 	 � � �� (off-diagonal),
� �� � � �
�

(centre)

�

Gauge fixing is via a modification of covariant gauge fixing procedure

�Landau
gf

� � ��

� �
� � �

�

� � � 

�

� � �� � � � �

�MAG
gf

� � ��

� �
� � �

�

� � � 

�

� � �� �� � � 
 � �
�� 
 � � � 


�
�

�

Algebraic renormalization defines structure of renormalization constants

� � �

o

� � � � � � �

� � 
 �

o

� � � � � � 
 �

� �

o

� � �� � �
� �� �

o

� � �� �� �

� 


o

� � �� � � 

� �� 


o

�

�� 

� �� � � �

o � �
�

� �

�o � � � � � � � � o � � � �
�

� � � � �� o � � � �
� � � � � ��
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Gauge fixed Lagrangian

�

gf

� �
�

���
�� � � �

�
� 	

�
�

� ��
�� � � 


�
� 	 
 �� � � � �

�
� � 
 �� 
 � � �

�
� 



 �
� � � � � � �

�

�� � � �� �
� � � � � � �

�

�� � � �� �

�
�

�
� � � � � � � �

�

� �
� � � � � � � � � � � � �
�

� �
�� �

�
�

�
� � � � � � � �

�

�� �� � � � � � � � � �
�

�� � � � �� �
� � � � � � � � �

�

�� �� � �


 � 	



� � � � �

�

� �
�

� � � �� � � �

�
�

���
� � � ��
�

� �
�

� � � � �
� � � �


 � � � � �

�

� �
�

� � � �� � � �

�
�

�
� � � � �

�

� �
�

� � � �� � � � 
 � � � � �
�

� �
�

� � � �� � � �


 � � � � �

�

� �
�

� � � �� � � �
� � � � � 


�

� 

�

� � � �� � � �

�
�

�
� � � � �

�

�� � �� �� � � �

�
�

� � � � � �

� �� � �� �� � � � 
 � � � � � � �

� �� � �� �� � � �

�
�

�
� � � � �
� �� � �� �� � � �


 �
�

� � � � �
� �� � �� �� � � �
�

�
�

� � � � �
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�

Renormalize

�

-point functions to deduce wave function anomalous dimensions, except

for� 


� �

-function emerges from

� 
 �

-point renormalization; similar to background field gauge

renormalization

�

Deduce

�� � from renormalization of

� �
�

�� 
� �

vertex

�

Deduce � � � 	 � from these anomalous dimensions and Slavnov-Taylor identity

�

Extensive use of computer algebra using MINCER algorithm

�

Feynman rules generated automatically from the gauge fixing term

�

The off-diagonal sector of the MAG corresponds to QCD fixed in the (nonlinear)

Curci-Ferrari gauge

�

Group theory based on

� 
 � � � � � � 
 � � � � � � 
 � � � � � � � � � � � � �
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Diagram count

Green’s function One loop Two loop Three loop Total

� �
�

� �
� � � � � �� 	 � � � � �

� 

�

� �
� � � � � � � � � � � �

� � �� � � � � � � � � � � 	 �

� ��� � � � 	 � 	 � � � �

� �
�

�� 
� � � � � � � � � � � � � 	 � �

Total

� 	 � � � � � � � � � � � � �

Number of Feynman diagrams for each Green’s function for the MAG renormalization.

Green’s function One loop Two loop Three loop Total

� �
�

� �
� � � 	 � � � � � �

� �
�� � � 	 � � � � � �

� � � � � � 	 � �

� �
�

��� � � � � � 	 � � � �

Total

� � � � � � � � � � �

Number of Feynman diagrams for each Green’s function for the CF gauge renormalization.
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MS results
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�

Structure of renormalization constants not inconsistent with renormalization group

�

Repeated Landau gauge results with split algebra code prior to renormalizing MAG

�

Correct MS

�

-function emerges at three loops from � � � � 	 � - independent of � ,

� �
� and

� ��

�

Curci-Ferrari anomalous dimensions correctly emerge for the off-diagonal sector in the

limit

� �
� � � ��  �

; difficult to see in

� � � �� �

�

Correct abelian limit emerges

� � �
� and

� ��

�

MAG anomalous dimensions cannot be deduced from Landau or CF gauge results
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Gribov problem and QCD

�

In non-abelian gauge theory there is a problem fixing the gauge globally [Gribov]

� � � � � �� � � �
�

�� � � � � � � � �
�

� � � �

�

Gribov introduced a dimensional parameter � such that � � is effectively the volume of

the region defined by the first zero of the Faddeev-Popov operator

� � is not independent and satisfies the (Gribov) mass gap equation

�

Zwanziger localized Gribov’s non-local formulation of the problem into a renormalizable

Lagrangian

� � � �QCD 
 � � � � � � � � �� �
�

� � �
� � � � � � � � � �� �

�
� � �

� � � � � � � � � � �� � �� � � � �� � �

�
� 	

� �
 � � � � � � � � � �

�


 � � � � � � � � � � �
�

�
�

� �� � �

� � 	

�

Involves new ghost fields:

� � �
� � �

and

� � � � � �
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Gribov-Zwanziger renormalization

�

The renormalization properties of the Zwanziger’s extra (ghost) fields,

�

and �, have

been constructed and have interesting properties

� �� � ��� � �� in the Landau gauge

�

Moreover

� � � ��� � �� in arbitrary linear covariant gauge by explicit calculation at

two loops

� � � 	 � � � � � � � �� � � �� 
 �� � � � � 	
� �


 � � 	 � � � � � �� 
 � � � � � � � �� � � � � 	 � �� � � 	 	
� 	 � 
 � � 	 � �

� � � � 	 � in the Landau gauge is not independent since

� � � 	 � �
�

�
� � � � 	 � 
 �� � 	 � �

�

Similar to the renormalization of the dimension two operator

�
� � � � � �

�

� � � � 	 � � � � � 	 � 
 �� � 	 �
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Gribov mass gap

�

As Zwanziger’s Lagrangian is local and renormalizable, it can be used to study problems

involving a non-zero �

�

For example, the correction to Gribov’s one loop mass gap can be computed

�

Zwanziger demonstrated that the Gribov horizon condition leading to the mass gap

equation was equivalent to

� � � � � � � � � � � � � �
�

� � � � �
� ��� � 	

� � � 	

�

With non-zero � gluon and ghost propagtors are modified

� �
�� � � � � �
�� � �
�

�� � � 	 �

� � �
�
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�
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�

The presence of the non-zero � leads to a gluon propagator which is suppressed in the

infrared

�

Evaluating Zwanziger’s condition at two loops leads to the (finite) gap equation where

� 	 � � � � � � 	 �

Cl 	 � �� � � �
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�

�

	 	 
 � � 	 � �

�

One loop gap equation also ensures Faddeev-Popov ghost propagator is enhanced in the

infrared [Gribov]
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�

Full ghost propagator is of the form

� � � � 	 � �

� � �

� 	 � � 
 �
� � 	 � �

�

Kugo-Ojima confinement condition requires ghost enhancement in the infrared which

corresponds to

� � � � 	 � 	 behaviour as � 	  �

which is equivalent to �
� � � � � �

�

Can compute the ghost propagator in the Gribov-Zwanziger Lagrangian and expand to

� � � 	 � at two loops

�

The Kugo-Ojima condition is satisfied at two loops provided the Gribov mass gap

condition is used

�

Hence ghost enhancement at two loops in the Gribov-Zwanziger Lagrangian

�

Gap equation and ghost propagator calculations required use of multi-scale two loop

vacuum bubble integrals such as

� � � 	� � � 		 � � 	 � � �

� �

�

� � 	 � � 	� � �� 	 � � 		 � � � � � � � 	 � � 	 � �

�

The quantities � 	 and

 � � � ��

arise in the finite parts of

� �� � � � � 	 ��

� � � � 	 ��

� � � � 	 � and

� �� � � � � 	 ��

� � � � 	 � �� � � � � 	 � respectively
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Non-local dimension two operator

�

Problem with study of dimension two operator

�
� � �

�

� � �

is lack of gauge invariance

�

First term of two gauge invariant but non-local operators

� � 	
�

� min� � �  � �
�

� 	

and

� �
��

�
� 	

� � ��

�

Concentrate on latter and repeat Zwanziger localization of operator

�

Rewrite

� � �gf �
� 	

�

� �
��

�
� 	

� � ��

as

� � �gf 

� �

�
� � �

�� � � � �
��

� � � �� 

�

�
� � �

��
� � � � � � �� � � �

�
�

��� �
��

� � � � � � �� � �

where

� � �
�� �

� � �
��

�

and
� � �

�� �
��� �

��
�

are localizing ghosts;

� �
�� are anti-commuting

�

Lagrangian is renormalizable but not multiplicatively

�

Analysing symmetry and stability conditions using algebraic renormalization, new

interactions generated
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�

New quartic interaction

� � � � � � � � �
�� � � �� � ��� �
�� � � �� � � � � �
� �

� � � � � ��� �
� �

� � � ��

�

Mass operator mixes into dimension two operators

� � � �
�� � � �� � �� �
�� � � �� �

and

� � � �
�� � � �
��

� 	

�

Renormalize massless theory at one loop using MINCER algorithm

�

Renormalization group functions of

� �

,�
�

and

�

and

�

-function are unchanged

� � � 	 � � � �
� 	 � � �� � � � � � 	 
 � � 	 	 �

�

Compute anomalous dimension of non-local operator

� �
��

�
� � � � ��

by substituting

gauge invariant equivalent operator

� �
�� � � ��

into

�

-gluon two-point function

�

Compute in theory with massless fields which means there is no mixing; similar to how

one computes the quark mass anomalous dimension

� � �
� 	 � � �

� � �
�

� � �
�

�
� � ��

	
	 	 
 � � 	 � �

�

Same one loop anomalous dimension emerges for each of the operators in the set

� �
�� � � ��

,
�

�

� �� �
� � � � � �

,

�
�

�� � �
� �

� � � � � � � �

and

�
�

�� � � � �
� �

� � � � � � � � � �
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Scheme issues

�

Lattice regularization of gauge theories allows one to study non-perturbative structure -

hadron masses, confinement mechanism, instantons etc

�

Requires large numerical calculations using supercomputers

�

Hence it is necessary to have an optimal computational strategy, one of which is the

choice of renormalization scheme

�

One illustrative problem is the extraction of structure function moments underlying deep

inelastic scattering and in particular the coupling of the twist-

�

non-singlet gauge

invariant operators

��� � � �� � � � � � � � � � � � � �
� � � �


 � � � � � �
�

for low moment, �

�

Dealing with space-time derivatives on the lattice is computationally complex and adds

significantly to the calculation time

�

Define new renormalization scheme, RI

�

, regularization invariant

�

Compute quantities on the lattice in RI

�

and then match same quantity computed in

continuum in dimensional regularization
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RI

�
�

Quark propagator is renormalized as in a mass dependent scheme

� � �

� � �


�RI

�
�

�
�

� � �
� ��
��
��
�	� � � �
� � ��

where

�
�

� � � is the bare (massless) quark two-point function

�

In MS right hand side would be non-unit

�

Gluon and ghost wave function renormalization constants defined in similar way

�

Coupling constant renormalized as in MS

�

Need to relate variables of the theory as defined in RI

�

to those in the standard reference

scheme MS

�

Clearly

� � �
� ��

� �
� � 	 � �

� ��
� �
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�

Leading to following relationship between the variables (known to three loops)

	 � � 	 
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 � � � � ��

� 	
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�

The anomalous dimensions have a different form
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� 	 � � � � � 	 
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� � �

moment

�

Renormalize operator

��� � � � � � � �

( � � �

) in both MS and RI

�

�� � � � � � �
� 	 � �

�
�

� � 	 

� � �

� �

� � � � � � � � � � � � � � � ��
� 	 	 
 � � 	 � �

� �� � � � � � �
� 	 � �

�
�

� � 	 

� �

� �
� � � �� 	 
 � ��� 
 � � � � � � �

� � � � � � � � � � � � ��
� 	 	 
 � � 	 � �

�

Scheme dependence of renormalization group function appears at two loops

�

In mass independent renormalization scheme the anomalous dimensions are independent

of the gauge parameter

�

Lattice matching of finite parts of the Green’s functions such as

� ��
� � � � � � � � �

� � � � � � � � � �� �� � � � � � � � � � � � ��� � � � � �

carried out in the Landau gauge (� � �

)
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Conclusions

�

Have given an overview of technical problems with renormalizing quantum field theories

�

These include exploiting the properties of the renormalization group equation and critical

point theory to probe the higher order structure of the renormalization group functions

�

Practical computations require algorithms which can be implemented in symbolic

manipulation programmes

�

Possibility of studying problems where there is non-locality in non-abelian theories

�

Also scheme issues for interfacing with the lattice computations lead to improved

extraction of physical quantities
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