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Background - basic theory ¢#; statement of problem (renormalizable quantum field
theories)

Calculational techniques - integration methods
Automatic computations - use of computer algebra

Checks - internal consistency checks, relation to large IV, critical exponents at
Wilson-Fisher fixed points

Recent results - scheme issues, renormalization of quantum chromodynamics (QCD)

Renormalization in relation to non-locality
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¢4 theory
1 Jdo 1 g
L= _0¢) + 165 » L= Z4(00)° + ;23740

Since ¢* theory is not finite, require renormalization constants Z 4 and Zg which relate
bare and renormalized objects; ¢o = /Zyp and go = Zyg

Renormalization constants are encoded in the renormalization group functions v (g),

B(g) -

These lead to understanding of the structure of the quantum theory such as asymptotic
freedom in QCD from running of the coupling constant or determination of critical
exponents at fixed points, defined as zeroes of the S-function

As theory is not finite one needs a mathematical way of handling the infinities

Moreover this procedure must be consistent with the symmetries of the theory
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For gauge theories and theories with supersymmetry the consequences for the
renormalization of the field theories can be determined by methods such as algebraic
renormalization [Sorella et al]

For example alegbraic renormalization determines the form of the renormalization
constants which are consistent with the Slavnov-Taylor identities

Infinities require mathematical procedure or regularization to quantify them

Dimensional regularization: set space-time dimension to be d whered =4 — 2¢, ¢ > 0
and g, = Z,gu>¢ with p an arbitrary mass scale

Lattice regularization: discretize space-time which introduces a scale a which is the size
of the lattice spacing

Physics independent of the arbitrary scale 1 or a which leads to the renormalization group

For a Green’s function T'(") (u, g, . . .) one requires

d
I

Will primarily concentrate on ultraviolet infinities here; infrared infinities are regularized
when one has a non-zero mass
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Renormalization constants depend on e and involve simple poles in e
To have a finite theory need to remove these poles systematically and consistently

Requires specification of method of removal or subtraction - various standard schemes to
achieve this

Minimal Subtraction (MS) - remove only the poles in e (and common factor of 4we ")
corresponds to a mass independent renormalization scheme

Mass dependent renormalization schemes - subtraction removes a finite part in addition to
the poles where the particular finite part derives from say putting external particles on
their mass shell; MOM or on-shell schemes

RI” (modified regularization invariant) scheme which is used in lattice computations and
is a cross between MS and MOM but is a mass dependent scheme

Whatever regularization and scheme one uses they must be compatible with the
symmetries of the underlying quantum field theory such as gauge symmetry and
supersymmetry

Ultimately physical quantities are scheme independent
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Need methods to extract regularized divergences from Feynman integrals at one loop and
higher

One loop standard tool is to use Feynman parameters based on

1 dx
ab /0 l[ax + (1 — z)b]?

where a = k? — m? and b = (k — p)? — m?2

Not practical at higher loops as presence of one or more mass scales complicates
integration

Develop different approach primarily tailored to the problem on interest
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Can renormalize massive field theories and extract divergences by expanding in vacuum
bubbles (ie no external momenta)

1 3 1 B p?
/k: k2 —m?][(k —p)2 —m?] /k [k? —m2]2 /k [k? —m2]?

+4/ k2p2 4
d Ji [k2 — m?2]4

Truncation from renormalizability criterion
For bosonic 2-point function O ((p2)2) terms will be finite in renormalizable theories

In four dimensions three loop single mass scale vacuum bubbles known to their finite
part; two loop three mass scale vacuum bubbles known to the finite part

More recently new technique for two loop four-point boxes has been developed by
Smirnov et al based on representing the propagator by a Mellin-Barnes integral and using
contour integration to evaluate the Feynman integral

No infrared problems
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Extend vacuum bubble expansion technique to massless case, [Chetyrkin et al], by
introducing fictitous mass i which acts as an infrared regulator

Based on the iteration of the identity

1 1 [2kp — p* — p°]

k-2 [ —p2  (k—p2lk — 2]

In a particular Feynman graph truncate expansion by applying Weinberg’s criterion for
finiteness of an integral

Another technique is integration by parts based on the identity

A%k O
0 = /(%)d SF [k I(p, K, ....)]

where I is the integrand derived from the propagators and vertices

For massless theories the rule produces powers of k2 which cancel denominator
propagators and reduces Feynman diagrams to a simpler integration topology

MINCER algorithm constructed on this principle [Chetyrkin et al]
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Package for evaluating massless 2-point functions in dimensional regularization to their
finite parts [Chetyrkin et al]

Encoded in symbolic manipulation language FORM and freely available

At three loops there are 14 basic independent integration topologies each with their own
integration by parts routine

Can be used for higher point functions but only in cases where external momenta are
nullified to reduce to a 2-point function and where this does not introduce spurious

Nullification can be systematically dealt with by using infrared rearrangement
[Vladimirov et al]

MINCER widely used for renormalization of four dimensional gauge theories including
QCD
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Higher loop calculations involve huge number of Feynman diagrams

For example, three loop QCD fixed in the maximal abelian gauge involves 37322
Feynman diagrams to extract all wave function anomalous dimensions and the
B-function; four loop QCD B-function in linear covariant gauge requires O(50000)
diagrams [Vermaseren et al]

Such calculations require computer tools involving MINCER or new packages for four
loops

Diagrams automatically generated by QGRAF package and converted to MINCER input
form

Extraction of renormalization constants is the final stage

Traditional approach is by method of subtractions where the absolute divergence of a
diagram is determined by subtracting all subgraph divergences

Alternative is to calculate completely as a function of bare parameters

Counterterms introduced naturally (and equivalently to subtraction method) by rescaling
with the renormalization constants g, = Z,;g etc

Amenable to automatic computer algebra programmes
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Example of QGRAF diagram - three loop gluon 2-point function of the benz topology
*--#[ dthree276:

1/ 2
*VX(AA(-1), AA(1), AA(2))
*VX(AA(-3), AA(3), AA(4))
*VX(AA(L), AA(3), AA(S))
*VX(AA(2), AA(5) , AA(6) )
*VX(AA(4), AA(T7), AA(8))
*VX(AA(B), AA(T7), AA(8) ) ;

#define CHO CE " 7"
#def i ne TOPOLOGY " be"

*

*--#] dthree276:
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Recently a new strategy has been developed for n-point functions at two loop for cases
where the external momenta are non-zero

Differential equation method of Remiddi el al

Basic idea to derive the complete set of differential equations from the loop integrals at a
particular loop order and solve them using master integrals as boundary conditions

Another approach is that of conformal integration in d-dimensions called unigueness

When sum of the powers of the propagators round a momentum loop equals the spacetime
dimension d then the loop integration can be performed to give the answer as the product
of I"-functions whose arguments depend on the exponents of the massless propagators

More appropriate for large /Ny methods when one computes in the neighbourhood of a
fixed point of the B-function and where there is a scaling symmetry
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Usual internal consistency checks from the renormalization group structure of
renormalization constants

Blg) = (d—4)g+ Ag*>+ Bg® + Cg* + O(g°)
v6(9) = ag+bg®+cg®+ O(g*)

where {A, B, C, ...} and {a, b, c, ...} are independent of d

B Ag A? B
%o = 1_0ﬁﬂ94_(w—4ﬁ__%d—®)92

A3 7TAB C
i [_ (d—47 T 6[d—42 3(d— 4)] g’ +0(s")

B ag (a? — aA) b
% = 1+(w—®'+(2w—4ﬂ'*%d—®>92
(2aA% —3a?A +a3)  (3ab— 2aB — 2bA) c 3
[ 6(d — 4)3 T T s@—a2z 3a—a)°

+ 0O(g%)
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This check is important for automatic calculations

Renormalization group functions in mass independent (MS) renormalization scheme
depend only on a,,1 - the residue of the simple poles in e

This leaves a,,1 unchecked

Other checks potentially available from symmetries of underlying field theory -
supersymmetry and/or gauge symmetry

For example quantities of a physical nature have gauge independent renormalization
group functions in mass independent schemes

Partial checks available from large N critical point method [Vasil’ev et al]
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MS B-function in d-dimensions defines non-trivial d-dimensional Wilson-Fisher fixed
point g. given by B(g.) = 0 where

_ g g9° g°
Blg) = (d—4)§ + [N+8]E — [3N+14]€

4
+ [33N? + 922N + 2960 + 96(5N + 22)¢(3)] 4% + O(g°)

In d = 4 — 2e the critical coupling g. depends on e and N

Expanding in powers of 1/N as N — oo

6e 1 !
ge = - + [48e+108% — 99¢° + O(e*)] -5 + O (m)

Critical exponent 8’ (g.) is scheme independent object

5 1 1
/ _ 2 3 Y 4 5y o
B (ge) = —e + |18¢e° — 33¢ 5 € + O(e )] + O( 2)
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If one can compute 8’(g.) in d-dimensions via 1/N expansion methods then coefficients
of the polynomial in N in original 3-function can be read off directly

Vasil’ev et al provided technique of large N d-dimensional critical point analysis

Exploits d-dimensional Wilson-Fisher fixed point equivalence of O(N) ¢ in
d =4 — 2eand O(NN) non-linear o model ind =2+ ¢

First three terms in 1 /NN series for exponents 7, v and w known

Allows one to predict higher order coefficients
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For wave function renormalization set (e; = 0)
’Y(g) = Ziozl (cf,aN2 +d,N + er)N'r’—2gr+1

Hence with Ug 2 = Z,f;o>m>0 —(_;gm;
eo = [1560674304¢(10) — 12534896640((9) + 11070010560((8)

+ 1732018176¢(7)¢(3) + 581961984((7) — 3411394560¢(6)¢(3)
— 2684240640¢(6) + 209534976¢2(5) — 1567752192¢(5)¢(4)

+ 1754664960¢ (5)((3) — 975533568((5) — 9289728((4)¢2(3)
+ 1310201856¢ (4)¢(3) + 1636615872¢(4) — 137158656¢>(3)

— 1708996608¢2(3) + 294403968((3)

— 89800704Us2 — 341350433]/1950396973056

Us,2 is knot number associated with (3, 4) torus knot
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Similar method but exponents are known to fewer orders in 1/N¢

w at O(1/Ny) and quark wave function and mass anomalous dimensions at O(1/Nf2) in
d-dimensions

N is number of quark flavours; N is number of colours
At analogous d-dimensional Wilson fixed point QCD is equivalent to non-abelian
Thirring model (NATM) 1 <i < N;, 1 <I < Np,1<a < Ny

il g A [ ilma iJ)?
L= i ot + T ($Tf )

Or
. . . . Aa?
L = i@yt + AGPUTE Myt —
1 1 o
LQCD = — ZGZ,,G““” — —(8“’AZ)2 — ¢c*0¥*Dyc* + st Iyt

20

Quark loops in NATM reproduce the triple and quartic gluon interactions at criticality
[Hasenfratz and Hasenfratz]
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Compute related critical exponent w = — 8’(g.) at d-dimensional Wilson-Fisher fixed
point

Insert (gauge invariant) operator O = G7,, G*#* in gluon 2-point function using NATM
Lagrangian

Anomalous dimension of this operator relates to critical renormalization group function
of the associated coupling of the operator

Massless propagators in critical region are

w(k) ~ b = e

W ) A;W(’“) ~ W {”hw_ 12

Wherea:,u—l—ln,ﬁzl—n—xandd:Zu
2

Canonical dimensions derived from d-dimensional Lagrangian
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Relevant Feynman diagrams at each order in large N perturbation theory derived by
noting that quark loop is O(N¢), A = O(1) and B = O(1/Ny)

Regularization is introduced by shifting the quark-gluon anomalous dimension
B—pB—A

Poles in A are subtracted in a minimal way into a renormalization constant which
determines the critical exponent

Requires the computation of massless critical Feynman diagrams using uniqueness

w = (p—2) = [(2p—3)(p—3)C2(R)
 (4p* —18p® 4 44p — 45 + 14)Ca (G) n?
42p —1)(p—1) T(R)Ny

where n° = (2u — 1)(p — 2)T(2p) /[4T% ()T (1 + 1)T(2 — p)]
New coefficients

as = —[154CF + 53C4]/3888
as = [(288¢(3) +214)CF + (480¢(3) —229)C4]/31104
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Repeat exercise for NATM with analogous operator %AZA“ K
Insert operator into gluon 2-point function

Gauge variant operator but compute in Landau gauge

CAU? 1
- _ ol =
a2 p—21eN;, T O\ N2

Interesting structure
Yaz(9c) = va(ge) + Ve(ge)
in all dimensions at O(1/N¢)

In four dimensions «y 42 (9) = va(g) + 7c(g) to all orders in perturbation theory in
Landau gauge

Shown first explicitly at three loops in MS computation
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Properties of %AgAa K subject of intense study for potential relation to an effective
gluon mass in various gauges

In maximal abelian gauge (MAG) there is a similar renormalization structure for
analogous dimension two operator involving off-diagonal fields

o .
AATA = ASTS + ALTY

where [T*, T7] =0, T* € {centre}

Comparable all orders result is

Yo(9) = Yai(g) — i (9)
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Nonlinear gauge fixing where gauge field is split into diagonal (centre) and off-diagonal
components A4T4 = AST* + A* T* with 1 < a < N (off-diagonal), 1 <i < N§

(centre)

Gauge fixing is via a modification of covariant gauge fixing procedure

Landau .«

L of — 85
MAG =T

L of — &

%A/‘:‘AA Ko %aEAcA]

5AZAY 4 actc®| + 6 [ci0rAl]

Algebraic renormalization defines structure of renormalization constants

NS = Zaar | AY = T Al
cao = Z.c? an = \/Z.c%

C

o = VZuic, T = — Y0 = \/Zu¥,
C'L
90 = KZgg, a0 = Z5'Zaa,ag = Z;ileiaf
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a2 i)2 —a a —17 )
Lgf = — o (0" AL) o (0MA})" + 0" 0uc® + oM dyc
+g [fabkAZEkaucb . fabcAZEba,ucc
1

bk b 5k bk bk
fOROH AL A ARY — fOROM AL e
L %fabcauAZEbcc . 2fabkAl]an8“Eb . fabkap,Allebcc

[facbdAZAb pzepd ifgk:blAZAb u Ak ALV
20

. ) 1 ) ) ) )
+ [T AR AT Ewe — o fgﬂchgAﬂ Hece® 4 fRI AL AT HEe !
‘|‘fglchZAj ,LLECcl . focjdiAiAj K& fabcdcacbcccd
fabcdcacbcccd 4 = facbdca cbcccd fabcl —acbcccl
8 8
(8%
4 facbl CaCbCCCl fglbc Cbcccl 4+ = fgkbl Cacbckcl]

fABC’D fABifC’Di fABC’D — fABefCDe
1 Jo
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Renormalize 2-point functions to deduce wave function anomalous dimensions, except
for ¢

B-function emerges from A* 2-point renormalization; similar to background field gauge
renormalization

Deduce Z_; from renormalization of Aﬁ(‘:icb vertex

Deduce y» (a) from these anomalous dimensions and Slavnov-Taylor identity
Extensive use of computer algebra using MINCER algorithm

Feynman rules generated automatically from the gauge fixing term

The off-diagonal sector of the MAG corresponds to QCD fixed in the (nonlinear)
Curci-Ferrari gauge

Group theory based on

f’ij — O, f’LjC — 0’ f’LbC # 0, fabc # O
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Green’s function || One loop | Two loop | Three loop Total
A AY 6 131 6590 6727

Al A, 3 54 2527 2584

c® eb 3 81 4006 4090

PP 2 27 979 1008
Al ¢t b 5 287 22621 22913
Total 19 580 36723 37322

Number of Feynman diagrams for each Green’s function for the MAG renormalization.

Green’s function || Oneloop | Two loop | Three loop | Total
At AB 3 19 282 304

cA B 1 9 124 134

P 1 6 79 86
Adpp 2 33 697 732
Total 7 67 1182 1256

Number of Feynman diagrams for each Green’s function for the CF gauge renormalization.
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Vi (@)

1
ANG

NS ((—a = 3)Ca) + Nf (—2a— 6)Ca) | a

+ [NS? ((— 6a® — 66a — 190)C3 + 80C A Tr Ny)

96N S
+ N§N§ ((— 54a® — 354a — 323)C% + 160C A Tr Ny)
+ N{* ((— 60a% — 8720 + 510)C3) | ?

1
6912N ¢

— 1944¢3 — 63268)C3 + (6912 + 622083 + 6208)C% Tr Ny

+ (— 82944(3 + 77760)C A Cp Ty Ny + 8960C 4 T5 N7

+ N2 N{((— 275403 + 648¢30” — 289170 — 4212(30 — 69309
+ 37260¢3 — 64544)C3 + (25488 + 103680(3 — 13072)C3 Tr Ny
+ (— 165888(3 + 155520)CACrTr Ny + 17920C 4T3 Nf)

+ [NG?((— 162a® — 2727a? — 2592(3a — 18036a

+ NSN?((— 7884a® + 22680¢302 — 845640 + 97524(3a — 47142
+ 433836¢3 — 56430)C3 + (25056 — 124416(5 — 18144)C% Tr Ny)
+ N9 ((— 6480a® + 34992¢502 — 7009202 + 8424(5q

+ 114912 + 77112¢3 — 161028)C3)] a® + O(a?)
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1
ola) = —— [N;; ((— 30+ 35)C 4 — 16Ty N;) + N2 ((— 60 — 18)CA)] a
A

+ [N§? ((— 6a® — 66 + 898)C3 — 560C 4 Ty Ny

96N S?
— 384CpTyNy) + NSN§ ((— 54a® — 354a — 323)C3 + 160C 4 T Ny )
+ N&* ((— 60a* — 8720 + 510)C3) | a?

1
6912N g3 [

+ 302428)C3 + (6912a + 62208(5 — 356032)C5 Tr Ny + (— 82944(3
— 79680)C A CpTr Ny 4 49408CAT7 N7 + 13824CE Ty Ny
+33792Cr T3 N7 ) + NP2 N ((— 27540 + 648a° (3 — 2891707

— 421203 — 693090 + 372603 — 64544)C3 + (25488c + 103680(3
— 13072)C4Tr Ny + (— 165888¢3 + 155520)C 4 CpTr Ny

+ N3 ((— 1622 — 272702 — 2592¢3a — 180360 — 1944(3

+17920C AT N?) + NoNI? (- 788403 + 2268002 (s — 8456402

+ 975243 — 471420 + 433836(3 — 56430)C3, + (250560 — 1244163
— 18144)C3TpNy) + N2 ((— 648003 + 34992025 — 700920

+ 8424a(z + 114912a + 77112¢3 — 161028)C3)] a®> + O(a*)
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Structure of renormalization constants not inconsistent with renormalization group
Repeated Landau gauge results with split algebra code prior to renormalizing MAG
Correct MS B-function emerges at three loops from  4; (a) - independent of o, N ;{l and
Ng

Curci-Ferrari anomalous dimensions correctly emerge for the off-diagonal sector in the
limit N¢/Ng — 0; difficult to see in SU(N:)

Correct abelian limit emerges V Nj and N

MAG anomalous dimensions cannot be deduced from Landau or CF gauge results
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In non-abelian gauge theory there is a problem fixing the gauge globally [Gribov]
7z — /DA 5(9" A%) det (—0” D2) =5

Gribov introduced a dimensional parameter ~ such that v# is effectively the volume of
the region defined by the first zero of the Faddeev-Popov operator

~ is not independent and satisfies the (Gribov) mass gap equation

Zwanziger localized Gribov’s non-local formulation of the problem into a renormalizable
Lagrangian

LZ _ LQCD + ggab © oY (Dygbﬂ)ab o u—)ab © oY (Dywﬂ)ab
L gfabcauwae (DVC)b ¢ec 7
2 4
L L abc qa p 1 be abc qapzbc) dNA'Y
NG (f Ak gbe 4 pabe gangh ) 0o

Involves new ghost fields: {¢, ¢} and {w, @}
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The renormalization properties of the Zwanziger’s extra (ghost) fields, ¢ and w, have
been constructed and have interesting properties

Zg = Zw = Zc inthe Landau gauge

Moreover Zy = Z., = Z. inarbitrary linear covariant gauge by explicit calculation at
two loops

a

(@) = (16TwNy — (35 +30)Ca)

2
+ (192C Ty Ny + 280C 4 Tp Ny — (449 — 3a))1% + 0(a3)

v~ (@) in the Landau gauge is not independent since

1

(@) = 7 (14(@) + 7e(@))

Similar to the renormalization of the dimension two operator %Aa HAT

Ya2(a) = va(a) + 7e(a)
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As Zwanziger’s Lagrangian is local and renormalizable, it can be used to study problems
involving a non-zero ~y

For example, the correction to Gribov’s one loop mass gap can be computed

Zwanziger demonstrated that the Gribov horizon condition leading to the mass gap
equation was equivalent to

dNa~?

per A @)l @) =

With non-zero ~ gluon and ghost propagtors are modified (P, (p) = nuw — pupbv/p?)

“ b, o 5abp2
<A/J, (p)AV( p)> - [(p2)2 + CA’Y4] PHV(p)
u e _ fabc,y2
@B = - e s Pup)
" . 5ac5bd fabefcde 4
<¢p,b(p)¢ud(_p)> — o p—QnMV + pg[(pz)g + CffyA,)A]PI«“/(p)
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The presence of the non-zero ~ leads to a gluon propagator which is suppressed in the
infrared

Evaluating Zwanziger’s condition at two loops leads to the (finite) gap equation where

So = (2\/5/9)C|2 (271‘/3)

4
1 = (Cy {§—§ln(cA7 )}a
8 8 w
2017 11097 65 Cav? )
C>? —
+ { A(768 2048 2T 256C() 48 n( 1A

35 C a4 ) ) 2 1137 20572
22 (1 _
HEDT: (n( A * 2560 V3 — o1

25 7 Cav?
+CATFNf <_ﬁ_<(2)+ﬁln( 24?/ )

1 4 2 2
S 0(%5) + %)
8 7% 8

One loop gap equation also ensures Faddeev-Popov ghost propagator is enhanced in the
infrared [Gribov]

a? + O(a?)
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Full ghost propagator is of the form

5ab
Ge (P2) —

p?[1 +u(p?)]

Kugo-Ojima confinement condition requires ghost enhancement in the infrared which
corresponds to 1/(p?)? behaviour as p? — 0 which is equivalent to u(0) = — 1

Can compute the ghost propagator in the Gribov-Zwanziger Lagrangian and expand to
O(p?) at two loops

The Kugo-Ojima condition is satisfied at two loops provided the Gribov mass gap
condition is used

Hence ghost enhancement at two loops in the Gribov-Zwanziger Lagrangian

Gap equation and ghost propagator calculations required use of multi-scale two loop
vacuum bubble integrals such as

1
I(m%,mg,mg,) — /k:l (k2 — m%][ﬂ — m%][(k —1)? —mg]

The quantities s2 and ¢(2)+/5 arise in the finite parts of
I(iv/C a7v2,iv/C a2, i/ C av?) and I1(iv/C a2, iv/Cav?, —in/Cav?) respectively
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Problem with study of dimension two operator %AZA“ K is lack of gauge invariance
First term of two gauge invariant but non-local operators
A2 min U 2 a 1 a puv
A, ={U} [ (4)) and G, 56
Concentrate on latter and repeat Zwanziger localization of operator

Rewrite
2

f m a a puv
L =19 ——GM,,EG b

as
L = L9f+—(Ba _Be,)Gw 1L Be (D°D,BR) LA (Do D, HE)e
- 4 HY ’ 4 MY ’

where {BW, V} and {Hp,,

Lagrangian is renormalizable but not multiplicatively

gy} are localizing ghosts; H ;,, are anti-commuting

Analysing symmetry and stability conditions using algebraic renormalization, new
interactions generated
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New quartic interaction A*b¢¢ (B2 B°Hv — He HYHV) (Bg B4°P — HS H®P)
Mass operator mixes into dimension two operators (B2, B*** — H% H®*") and
(B = Bji)”

Renormalize massless theory at one loop using MINCER algorithm

Renormalization group functions of A%, c® and « and B-function are unchanged
ve(a) = yu(a) = (a—3)Caa + O(a?)

Compute anomalous dimension of non-local operator G7,,, #Ga ~v by substituting

gauge invariant equivalent operator B, G #¥ into B-gluon two-point function
Compute in theory with massless fields which means there is no mixing; similar to how
one computes the quark mass anomalous dimension

11 2
vBa(a) = — (ECA_ g FNf> a® + O(a3)

Same one loop anomalous dimension emerges for each of the operators in the set
GG, DGy, DFG*Y?, D, Dy GS,DF DY G*?° and
DuDyDsG%, D* DY D7 G* PP
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Lattice regularization of gauge theories allows one to study non-perturbative structure -
hadron masses, confinement mechanism, instantons etc

Requires large numerical calculations using supercomputers

Hence it is necessary to have an optimal computational strategy, one of which is the
choice of renormalization scheme

One illustrative problem is the extraction of structure function moments underlying deep
inelastic scattering and in particular the coupling of the twist-2 non-singlet gauge
invariant operators

py\¥1Dr2  DHnly | D, = 8, + igT*AY

for low moment, n

Dealing with space-time derivatives on the lattice is computationally complex and adds
significantly to the calculation time

Define new renormalization scheme, RI’, regularization invariant

Compute quantities on the lattice in RI” and then match same quantity computed in
continuum in dimensional regularization
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Quark propagator is renormalized as in a mass dependent scheme

e—0

lim [zﬁ"zw(p)}

2_,,2

p H

where X, (p) is the bare (massless) quark two-point function

In MS right hand side would be non-unit

Gluon and ghost wave function renormalization constants defined in similar way
Coupling constant renormalized as in MS

Need to relate variables of the theory as defined in RI” to those in the standard reference
scheme MS

Clearly
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Leading to following relationship between the variables (known to three loops)

o/ = a4+ 0(a®)
o = [14/((~90% ~18a — 97) C4 +80TpNy) 3%] a + O(a?)

The anomalous dimensions have a different form

1
Yap (a) = aCpa+ Z [(Oﬂ2 + 8a + 25)CACF — 60%1 — SCFTFNf} a’

vp(a) = aCpa + [(9a° 4+ 450° + 223a + 225) Cx

Cra?
36

— 54CF — (80a + 72) Tr Ny
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Renormalize operator y{* DV} (n = 2) in both MS and RI”

8 8CFr

'Y&,Y;J,Duw(a) = gCFa, + 7 [47CA — 14CF — 16TFij| a2 + O(a3)
Vgoupry(@) = sCra + - [(27a” + 81la + 1434) Cy

— 224Cf — 504Tr Nf| a® + O(a®)

Scheme dependence of renormalization group function appears at two loops

In mass independent renormalization scheme the anomalous dimensions are independent
of the gauge parameter

Lattice matching of finite parts of the Green’s functions such as

G oy o (P) = (B(0) [STy# DI ](0) B(—p))

carried out in the Landau gauge (o = 0)
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Have given an overview of technical problems with renormalizing quantum field theories

These include exploiting the properties of the renormalization group equation and critical
point theory to probe the higher order structure of the renormalization group functions

Practical computations require algorithms which can be implemented in symbolic
manipulation programmes

Possibility of studying problems where there is non-locality in non-abelian theories

Also scheme issues for interfacing with the lattice computations lead to improved
extraction of physical quantities
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