The Renormalisation Group and Self Avoiding Walk

David Brydges, John Imbrie and Gordon Slade

Simple cubic lattice \mathbb{Z}^d

Simple cubic lattice \mathbb{Z}^d Self-avoiding walk

$$\omega = (\omega_0, \omega_1, \dots, \omega_N)$$

Simple cubic lattice \mathbb{Z}^d Self-avoiding walk

$$\omega = (\omega_0, \omega_1, \dots, \omega_N)$$

is a sequence of N+1 distinct nearest neighbour points in \mathbb{Z}^d , starting at the origin, $\omega_0=0$.

Simple cubic lattice \mathbb{Z}^d Self-avoiding walk

$$\omega = (\omega_0, \omega_1, \dots, \omega_N)$$

is a sequence of N+1 distinct nearest neighbour points in \mathbb{Z}^d , starting at the origin, $\omega_0=0$.

Give all the self-avoiding walks equal probability.

Simple cubic lattice \mathbb{Z}^d Self-avoiding walk

$$\omega = (\omega_0, \omega_1, \dots, \omega_N)$$

is a sequence of N+1 distinct nearest neighbour points in \mathbb{Z}^d , starting at the origin, $\omega_0=0$.

Give all the self-avoiding walks equal probability.

The problem is to find the asymptotic growth as $N \to \infty$ of the expected end-to-end-distance $\langle |\omega_N| \rangle$.

Hara-Slade 92: For dimension $d \ge 5$, $\exists D > 0$ such that

Hara-Slade 92: For dimension $d \ge 5$, $\exists D > 0$ such that

$$\langle \|\omega_N\| \rangle = DN^{1/2}(1 + o(1))$$

Hara-Slade 92: For dimension $d \ge 5$, $\exists D > 0$ such that

$$\langle \|\omega_N\| \rangle = DN^{1/2}(1 + o(1))$$

For simple random walk D = 1.

Hara-Slade 92: For dimension $d \ge 5$, $\exists D > 0$ such that

$$\langle ||\omega_N|| \rangle = DN^{1/2}(1 + o(1))$$

For simple random walk D = 1.

In dimension d = 2, $SLE_{8/3}$ proves, under an assumption of conformal invariance of the scaling limit, that

$$\langle \|\omega_N\| \rangle \sim DN^{3/4}$$
.

Hara-Slade 92: For dimension $d \ge 5$, $\exists D > 0$ such that

$$\langle \|\omega_N\| \rangle = DN^{1/2}(1 + o(1))$$

For simple random walk D = 1.

In dimension d=2, $SLE_{8/3}$ proves, under an assumption of conformal invariance of the scaling limit, that

$$\langle \|\omega_N\| \rangle \sim DN^{3/4}.$$

In dimension d=3 nothing is known rigorously. Simulations and other methods indicate that $\langle \|\omega_N\| \rangle \sim DN^\alpha$ for some $\alpha>\frac{1}{2}$

(Brezin, Le Guillou, Zinn-Justin, 1973) conjecture for d=4:

$$\langle \|\omega_N\| \rangle = DN^{1/2} \log^{1/8}(N)(1 + o(1))$$

(Brezin, Le Guillou, Zinn-Justin, 1973) conjecture for d=4:

$$\langle \|\omega_N\| \rangle = DN^{1/2} \log^{1/8}(N)(1 + o(1))$$

Brydges - Imbrie CMP 2003: Conjecture proved for a related model on a four dimensional hierarchical lattice

(Brezin, Le Guillou, Zinn-Justin, 1973) conjecture for d=4:

$$\langle \|\omega_N\| \rangle = DN^{1/2} \log^{1/8}(N)(1 + o(1))$$

Brydges - Imbrie CMP 2003: Conjecture proved for a related model on a four dimensional hierarchical lattice

The hierarchical lattice differs from the usual lattice by measuring distance with an ultra-metric.

(Brezin, Le Guillou, Zinn-Justin, 1973) conjecture for d=4:

$$\langle \|\omega_N\| \rangle = DN^{1/2} \log^{1/8}(N)(1 + o(1))$$

Brydges - Imbrie CMP 2003: Conjecture proved for a related model on a four dimensional hierarchical lattice

The hierarchical lattice differs from the usual lattice by measuring distance with an ultra-metric.

Hierarchical lattice is four dimensional in the sense that a ball of radius R has $O(R^4)$ lattice points in it.

(Brezin, Le Guillou, Zinn-Justin, 1973) conjecture for d=4:

$$\langle \|\omega_N\| \rangle = DN^{1/2} \log^{1/8}(N)(1 + o(1))$$

Brydges - Imbrie CMP 2003: Conjecture proved for a related model on a four dimensional hierarchical lattice

The hierarchical lattice differs from the usual lattice by measuring distance with an ultra-metric.

Hierarchical lattice is four dimensional in the sense that a ball of radius R has $O(R^4)$ lattice points in it.

Small parameter: Walk need not be self-avoiding but weighted so as to suppress self intersections.

Small parameter (weak self repulsion)

$$\exp(-\lambda^2|\text{self-intersections}|^2), \ \lambda > 0 \text{ small}$$

Small parameter (weak self repulsion)

$$\exp(-\lambda^2|\text{self-intersections}|^2), \ \lambda > 0 \text{ small}$$

Alternative small parameter. Walk is self-avoiding but not nearest neighbour.

Small parameter (weak self repulsion)

$$\exp\left(-\frac{\lambda^2}{|\text{self-intersections}|^2}\right), \ \lambda > 0 \text{ small}$$

Alternative small parameter. Walk is self-avoiding but not nearest neighbour. Choose a symmetric positive-definite matrix A whose inverse has non-negative entries.

Small parameter (weak self repulsion)

$$\exp(-\lambda^2|\text{self-intersections}|^2), \ \lambda > 0 \text{ small}$$

Alternative small parameter. Walk is self-avoiding but not nearest neighbour . Choose a symmetric positive-definite matrix A whose inverse has non-negative entries. Assign to ω the weight

$$\prod_{\text{step } xy \in \omega} (A^{-1})_{x,y}$$

The susceptibility χ_{β} is a sum over self-avoiding walks ω of all lengths $|\omega| = 1, 2, \dots$ starting from the origin

The susceptibility χ_{β} is a sum over self-avoiding walks ω of all lengths $|\omega| = 1, 2, \dots$ starting from the origin defined by

$$\chi_{\beta} = \sum_{\omega} \beta^{|\omega|} \prod_{\text{step } xy \in \omega} (A^{-1})_{x,y}$$

The susceptibility χ_{β} is a sum over self-avoiding walks ω of all lengths $|\omega| = 1, 2, \dots$ starting from the origin defined by

$$\chi_{\beta} = \sum_{\omega} \beta^{|\omega|} \prod_{\text{step } xy \in \omega} (A^{-1})_{x,y}$$

 χ_{β} is a power series with radius of convergence β_c .

The susceptibility χ_{β} is a sum over self-avoiding walks ω of all lengths $|\omega| = 1, 2, \dots$ starting from the origin defined by

$$\chi_{\beta} = \sum_{\omega} \beta^{|\omega|} \prod_{\text{step } xy \in \omega} (A^{-1})_{x,y}$$

 χ_{β} is a power series with radius of convergence β_c .

Key step: Prove that

$$\chi_{\beta} \sim (\hat{\beta} |\log^{1/4} \hat{\beta}|)^{-1}$$
 where $\hat{\beta} = (\beta - \beta_c)$

 Λ finite subset of lattice (hierarchical or \mathbb{Z}^4). Sites in Λ denoted by x, y and a, b.

 Λ finite subset of lattice (hierarchical or \mathbb{Z}^4). Sites in Λ denoted by x, y and a, b.

To each site x we associate two real variables u_x, v_x

 Λ finite subset of lattice (hierarchical or \mathbb{Z}^4). Sites in Λ denoted by x, y and a, b.

To each site x we associate two real variables u_x, v_x which we unite into one complex variable $\varphi_x = u_x + iv_x$

 Λ finite subset of lattice (hierarchical or \mathbb{Z}^4). Sites in Λ denoted by x, y and a, b.

To each site x we associate two real variables u_x, v_x which we unite into one complex variable $\varphi_x = u_x + iv_x$ so that $\varphi = (\varphi_x, x \in \Lambda) \in \mathbb{R}^{2\Lambda}$.

 Λ finite subset of lattice (hierarchical or \mathbb{Z}^4). Sites in Λ denoted by x, y and a, b.

To each site x we associate two real variables u_x, v_x which we unite into one complex variable $\varphi_x = u_x + iv_x$ so that $\varphi = (\varphi_x, x \in \Lambda) \in \mathbb{R}^{2\Lambda}$. $d^{\Lambda}\varphi$ is Lebesgue measure on $\mathbb{R}^{2\Lambda}$.

 Λ finite subset of lattice (hierarchical or \mathbb{Z}^4). Sites in Λ denoted by x, y and a, b.

To each site x we associate two real variables u_x, v_x which we unite into one complex variable $\varphi_x = u_x + iv_x$ so that $\varphi = (\varphi_x, x \in \Lambda) \in \mathbb{R}^{2\Lambda}$. $d^{\Lambda}\varphi$ is Lebesgue measure on $\mathbb{R}^{2\Lambda}$.

Quadratic form: $(\varphi, A\varphi) = \sum \varphi_x A_{x,y} \overline{\varphi}_y > 0$.

 Λ finite subset of lattice (hierarchical or \mathbb{Z}^4). Sites in Λ denoted by x, y and a, b.

To each site x we associate two real variables u_x, v_x which we unite into one complex variable $\varphi_x = u_x + iv_x$ so that $\varphi = (\varphi_x, x \in \Lambda) \in \mathbb{R}^{2\Lambda}$. $d^{\Lambda}\varphi$ is Lebesgue measure on $\mathbb{R}^{2\Lambda}$.

Quadratic form: $(\varphi, A\varphi) = \sum \varphi_x A_{x,y} \overline{\varphi}_y > 0$.

$$\int d^{\Lambda} \varphi e^{-(\varphi, A\varphi)} \overline{\varphi}_a \varphi_b = (\det A)^{-1} (A^{-1})_{a,b}$$

 Λ finite subset of lattice (hierarchical or \mathbb{Z}^4). Sites in Λ denoted by x, y and a, b.

To each site x we associate two real variables u_x, v_x which we unite into one complex variable $\varphi_x = u_x + iv_x$ so that $\varphi = (\varphi_x, x \in \Lambda) \in \mathbb{R}^{2\Lambda}$. $d^{\Lambda}\varphi$ is Lebesgue measure on $\mathbb{R}^{2\Lambda}$.

Quadratic form: $(\varphi, A\varphi) = \sum \varphi_x A_{x,y} \overline{\varphi}_y > 0$.

$$\int d^{\Lambda} \varphi e^{-(\varphi, A\varphi)} \overline{\varphi}_a \varphi_b = (\det A)^{-1} (A^{-1})_{a,b}$$

 $(2\pi)^{\Lambda}$ absorbed into Lebesgue measure.

Differential form:

$$(d\varphi, Ad\varphi) =$$

Differential form:

$$(d\varphi, Ad\varphi) = \sum A_{x,y} d\varphi_x \wedge d\overline{\varphi}_y$$

Differential form:

$$(d\varphi, Ad\varphi) = \sum A_{x,y} d\varphi_x \wedge d\overline{\varphi}_y = -(2i) \sum A_{x,y} du_x \wedge dv_y$$

Differential form:

$$(d\varphi, Ad\varphi) = \sum A_{x,y} d\varphi_x \wedge d\overline{\varphi}_y = -(2i) \sum A_{x,y} du_x \wedge dv_y$$

Form of mixed degree:

1

Differential form:

$$(d\varphi, Ad\varphi) = \sum A_{x,y} d\varphi_x \wedge d\overline{\varphi}_y = -(2i) \sum A_{x,y} du_x \wedge dv_y$$

$$1 + \frac{1}{1!}(d\varphi, Ad\varphi)$$

Differential form:

$$(d\varphi, Ad\varphi) = \sum A_{x,y} d\varphi_x \wedge d\overline{\varphi}_y = -(2i) \sum A_{x,y} du_x \wedge dv_y$$

$$1 + \frac{1}{1!}(d\varphi, Ad\varphi) + \frac{1}{2!}(d\varphi, Ad\varphi)^{^2}$$

Differential form:

$$(d\varphi, Ad\varphi) = \sum A_{x,y} d\varphi_x \wedge d\overline{\varphi}_y = -(2i) \sum A_{x,y} du_x \wedge dv_y$$

$$1 + \frac{1}{1!}(d\varphi, Ad\varphi) + \frac{1}{2!}(d\varphi, Ad\varphi)^{\wedge 2} + \dots$$

Differential form:

$$(d\varphi, Ad\varphi) = \sum A_{x,y} d\varphi_x \wedge d\overline{\varphi}_y = -(2i) \sum A_{x,y} du_x \wedge dv_y$$

$$1 + \frac{1}{1!}(d\varphi, Ad\varphi) + \frac{1}{2!}(d\varphi, Ad\varphi)^{^2} + \dots =: e^{-(d\varphi, Ad\varphi)}$$

Differential form:

$$(d\varphi, Ad\varphi) = \sum A_{x,y} d\varphi_x \wedge d\overline{\varphi}_y = -(2i) \sum A_{x,y} du_x \wedge dv_y$$

$$1 + \frac{1}{1!}(d\varphi, Ad\varphi) + \frac{1}{2!}(d\varphi, Ad\varphi)^{\wedge 2} + \dots =: e^{-(d\varphi, Ad\varphi)}$$

$$\int e^{-(\varphi,A\varphi)-(d\varphi,Ad\varphi)} \overline{\varphi}_a \varphi_b = (A^{-1})_{a,b}$$

All moments of Gaussian integrals can be evaluated.

All moments of Gaussian integrals can be evaluated. Integration by parts in

$$\int e^{-(\varphi,A\varphi)-(d\varphi,Ad\varphi)}\overline{\varphi}_a F$$

All moments of Gaussian integrals can be evaluated. Integration by parts in

$$\int e^{-(\varphi,A\varphi)-(d\varphi,Ad\varphi)}\overline{\varphi}_a F$$

replaces

$$\overline{\varphi}_a F$$

by

All moments of Gaussian integrals can be evaluated. Integration by parts in

$$\int e^{-(\varphi,A\varphi)-(d\varphi,Ad\varphi)}\overline{\varphi}_a F$$

replaces

 $\overline{\varphi}_a F$

by

$$\sum_{x} (A^{-1})_{a,x} \frac{\partial F}{\partial \varphi_x}$$

All moments of Gaussian integrals can be evaluated. Integration by parts in

$$\int e^{-(\varphi,A\varphi)-(d\varphi,Ad\varphi)} \overline{\varphi}_a F$$

replaces

 $\overline{\varphi}_a F$

by

$$\sum_{x} (A^{-1})_{a,x} \frac{\partial F}{\partial \varphi_x}$$

With right choice of F this says "add a step to the walk".

Another form of mixed degree

$$\tau_x =$$

Another form of mixed degree

$$\tau_x = \varphi_x \overline{\varphi}_x + d\varphi_x \wedge d\overline{\varphi}_x$$

Another form of mixed degree

$$\tau_x = \varphi_x \overline{\varphi}_x + d\varphi_x \wedge d\overline{\varphi}_x$$

$$\left(1+\tau\right)^{X} := \prod_{x \in X} \left(1+\tau_{x}\right)$$

Another form of mixed degree

$$\tau_x = \varphi_x \overline{\varphi}_x + d\varphi_x \wedge d\overline{\varphi}_x$$

$$\left(1+\tau\right)^X := \prod_{x \in X} \left(1+\tau_x\right)$$

$$\sum_{\omega:a\to b}\prod_{\mathsf{steps}}(A^{-1})_{\mathsf{step}}=$$

Another form of mixed degree

$$\tau_x = \varphi_x \overline{\varphi}_x + d\varphi_x \wedge d\overline{\varphi}_x$$

$$\left(1+\tau\right)^X := \prod_{x \in X} \left(1+\tau_x\right)$$

$$\sum_{\omega:a\to b}\prod_{\text{steps}}(A^{-1})_{\text{step}} = \int e^{-(\varphi,A\varphi)-(d\varphi,Ad\varphi)}$$

Another form of mixed degree

$$\tau_x = \varphi_x \overline{\varphi}_x + d\varphi_x \wedge d\overline{\varphi}_x$$

$$(1+\tau)^X := \prod_{x \in X} (1+\tau_x)$$

$$\sum_{\omega: a \to b} \prod_{\text{steps}} (A^{-1})_{\text{step}} = \int e^{-(\varphi, A\varphi) - (d\varphi, Ad\varphi)} \left(1 + \tau\right)^{\Lambda \setminus \{a, b\}}$$

Another form of mixed degree

$$\tau_x = \varphi_x \overline{\varphi}_x + d\varphi_x \wedge d\overline{\varphi}_x$$

$$(1+\tau)^X := \prod_{x \in X} (1+\tau_x)$$

$$\begin{split} \sum_{\omega: a \to b} \prod_{\mathsf{steps}} (A^{-1})_{\mathsf{step}} &= \\ & \int e^{-(\varphi, A\varphi) - (d\varphi, Ad\varphi)} \ \left(1 + \tau\right)^{\Lambda \backslash \{a, b\}} \ \overline{\varphi}_a \varphi_b \end{split}$$

$$\mathbb{E}Z = \int e^{(\varphi,\Delta\varphi) + (d\varphi,\Delta d\varphi)} Z$$

$$\mathbb{E}Z = \int e^{(\varphi, \Delta\varphi) + (d\varphi, \Delta d\varphi)} Z$$

$$I_{x} = \begin{cases} (1 + \beta \lambda \tau_{x})e^{-\lambda \tau} & \text{for } x \neq a, b \\ \varphi_{a}, \overline{\varphi}_{b} & \text{for } x = a, b \end{cases}$$

$$\mathbb{E}Z = \int e^{(\varphi, \Delta\varphi) + (d\varphi, \Delta d\varphi)} Z$$

$$I_{x} = \begin{cases} (1 + \beta \lambda \tau_{x})e^{-\lambda \tau} & \text{for } x \neq a, b \\ \varphi_{a}, \overline{\varphi}_{b} & \text{for } x = a, b \end{cases}$$

$$\chi_{\beta} = \sum_{b} \mathbb{E} \left[I^{\Lambda} \right]$$

Decomposition of \mathbb{E}

Theorem: (Brydges-Talarczyk) Inverses of elliptic operators admit decomposition into sum of finite range positive-definite functions.

Decomposition of \mathbb{E}

Theorem: (Brydges-Talarczyk) Inverses of elliptic operators admit decomposition into sum of finite range positive-definite functions.

(Brydges, Guadagni, Mitter) Earlier, less general theorem for lattice $(-\Delta)^{-1}$.

Decomposition of \mathbb{E}

Theorem: (Brydges-Talarczyk) Inverses of elliptic operators admit decomposition into sum of finite range positive-definite functions.

(Brydges, Guadagni, Mitter) Earlier, less general theorem for lattice $(-\Delta)^{-1}$.

Consequence:

$$\mathbb{E}(I^{\Lambda}) = \mathbb{E}_{\mathbf{n}} \dots \mathbb{E}_{\mathbf{2}} \mathbb{E}_{\mathbf{1}}(I^{\Lambda})$$

where, in right hand side, $\varphi = \sum_{j} \varphi_{j}$ and likewise $d\varphi$

Renormalisation Group

Starting with $Z_0 = I^{\Lambda}$, let

$$Z_{j+1} = \mathbb{E}_{j+1} Z_j$$

Renormalisation Group

Starting with $Z_0 = I^{\Lambda}$, let

$$Z_{j+1} = \mathbb{E}_{j+1} Z_j$$

For each scale j = 0, 1, ... we write Z_j in terms of coordinates (I_j, K_j) such that

$$Z_j = \sum_{X \subset \Lambda} I_j^{\Lambda \setminus X} K_j(X)$$

Renormalisation Group

Starting with $Z_0 = I^{\Lambda}$, let

$$Z_{j+1} = \mathbb{E}_{j+1} Z_j$$

For each scale j = 0, 1, ... we write Z_j in terms of coordinates (I_j, K_j) such that

$$Z_j = \sum_{X \subset \Lambda} I_j^{\Lambda \setminus X} K_j(X)$$

where X is summed over all subsets of Λ which are unions of scale j+1 disjoint cubes partitioning Λ .

Renormalisation Group Continued

 (I_j, K_j) are elements in a Banach space and have the properties

$$K_j(X) = \prod_{Y \in \text{ components of } X} K_j(Y)$$

Renormalisation Group Continued

 (I_j, K_j) are elements in a Banach space and have the properties

$$K_j(X) = \prod_{Y \in \text{ components of } X} K_j(Y)$$

 $I_{j,x}$ depends only on φ_y for y nearest neighbours of x.

Results on RG

The representation of Z_j by (I_j, K_j) is not unique but can be made unique by imposing a normalisation condition on K_j . Then we have proved, in the hierarchical case, that as $j \to \infty$,

Results on RG

The representation of Z_j by (I_j, K_j) is not unique but can be made unique by imposing a normalisation condition on K_j . Then we have proved, in the hierarchical case, that as $j \to \infty$,

$$||K_j||_j \to 0$$

and

Results on RG

The representation of Z_j by (I_j, K_j) is not unique but can be made unique by imposing a normalisation condition on K_j . Then we have proved, in the hierarchical case, that as $j \to \infty$,

$$||K_j||_j \to 0$$

and

If
$$\beta = \beta_c$$
 for $j = 0$, for $x \neq a, b$,

$$I_{j,x} \to 1$$

Results on RG continued

If $\beta < \beta_c$ for j = 0 then , for $x \neq a, b$,

$$I_{j,x} \sim e^{-\beta_j \tau}$$

Results on RG continued

If $\beta < \beta_c$ for j = 0 then , for $x \neq a, b$,

$$I_{j,x} \sim e^{-\beta_j \tau}$$

The analysis of the sequence β_j enables us to prove that

Results on RG continued

If $\beta < \beta_c$ for j = 0 then , for $x \neq a, b$,

$$I_{j,x} \sim e^{-\beta_j \tau}$$

The analysis of the sequence β_j enables us to prove that

$$\chi_{\beta} \sim (\hat{\beta} |\log^{1/4} \hat{\beta}|)^{-1}$$
 where $\hat{\beta} = (\beta - \beta_c)$

$$Z_j = \sum_X I_j^{\Lambda \setminus X} K_j(X)$$

$$Z_{j} = \sum_{X} I_{j}^{\Lambda \setminus X} K_{j}(X)$$
$$= \sum_{X} \left(I_{j+1} + \delta_{j+1} \right)^{\Lambda \setminus X} K_{j}(X)$$

$$Z_{j} = \sum_{X} I_{j}^{\Lambda \setminus X} K_{j}(X)$$

$$= \sum_{X} \left(I_{j+1} + \delta_{j+1} \right)^{\Lambda \setminus X} K_{j}(X)$$

$$= \sum_{X,Y} I_{j+1}^{\Lambda \setminus (X \cup Y)} \delta_{j+1}^{Y} K_{j}(X)$$

$$\begin{split} Z_{j} &= \sum_{X} I_{j}^{\Lambda \backslash X} K_{j}(X) \\ &= \sum_{X} \left(I_{j+1} + \delta_{j+1} \right)^{\Lambda \backslash X} K_{j}(X) \\ &= \sum_{X,Y} I_{j+1}^{\Lambda \backslash (X \cup Y)} \delta_{j+1}^{Y} \ K_{j}(X) \\ &= \sum_{U} I_{j+1}^{\Lambda \backslash U} \ \sum_{X,Y: \text{ union } = U} \delta_{j+1}^{Y} K_{j}(X) \end{split}$$

$$\begin{split} Z_{j} &= \sum_{X} I_{j}^{\Lambda \backslash X} K_{j}(X) \\ &= \sum_{X} \left(I_{j+1} + \delta_{j+1} \right)^{\Lambda \backslash X} K_{j}(X) \\ &= \sum_{X,Y} I_{j+1}^{\Lambda \backslash (X \cup Y)} \delta_{j+1}^{Y} \ K_{j}(X) \\ &= \sum_{U} I_{j+1}^{\Lambda \backslash U} \ \sum_{X,Y: \text{ union } = U} \delta_{j+1}^{Y} K_{j}(X) \\ &= \sum_{U} I_{j+1}^{\Lambda \backslash U} \bar{K}(U) \end{split}$$

$$\begin{split} Z_{j} &= \sum_{X} I_{j}^{\Lambda \backslash X} K_{j}(X) \\ &= \sum_{X} \left(I_{j+1} + \delta_{j+1} \right)^{\Lambda \backslash X} K_{j}(X) \\ &= \sum_{X,Y} I_{j+1}^{\Lambda \backslash (X \cup Y)} \delta_{j+1}^{Y} \ K_{j}(X) \\ &= \sum_{U} I_{j+1}^{\Lambda \backslash U} \ \sum_{X,Y: \text{ union } = U} \delta_{j+1}^{Y} K_{j}(X) \\ &= \sum_{U} I_{j+1}^{\Lambda \backslash U} \bar{K}(U) \end{split}$$

where

$$\bar{K}(U) = \sum_{Y} \delta_{j+1}^{Y} K_{j}(U \setminus Y)$$

Analysis of RG continued

$$\mathbb{E}_{j+1}Z_j = \sum_{X} I_{j+1}^{\Lambda \setminus X} \mathbb{E}_{j+1} \bar{K}(X)$$

Analysis of RG continued

$$\mathbb{E}_{j+1}Z_j = \sum_X I_{j+1}^{\Lambda \setminus X} \mathbb{E}_{j+1}\bar{K}(X)$$

so we can let

$$K_{j+1}(X) = \mathbb{E}_{j+1}\bar{K}(X)$$

Analysis of RG continued

$$\mathbb{E}_{j+1}Z_j = \sum_X I_{j+1}^{\Lambda \setminus X} \mathbb{E}_{j+1}\bar{K}(X)$$

so we can let

$$K_{j+1}(X) = \mathbb{E}_{j+1}\bar{K}(X)$$

Finite range property of decomposition and cubes of side > range implies

$$K_{j+1}(X) = \prod_{Y \in \text{ components of } X} K_{j+1}(Y)$$