The Renormalisation Group and Self Avoiding Walk

David Brydges, John Imbrie and Gordon Slade

Background

Simple cubic lattice \mathbb{Z}^{d}

Background

Simple cubic lattice \mathbb{Z}^{d} Self-avoiding walk

$$
\omega=\left(\omega_{0}, \omega_{1}, \ldots, \omega_{N}\right)
$$

Background

Simple cubic lattice \mathbb{Z}^{d}
Self-avoiding walk

$$
\omega=\left(\omega_{0}, \omega_{1}, \ldots, \omega_{N}\right)
$$

is a sequence of $N+1$ distinct nearest neighbour points in \mathbb{Z}^{d}, starting at the origin, $\omega_{0}=0$.

Background

Simple cubic lattice \mathbb{Z}^{d}
Self-avoiding walk

$$
\omega=\left(\omega_{0}, \omega_{1}, \ldots, \omega_{N}\right)
$$

is a sequence of $N+1$ distinct nearest neighbour points in \mathbb{Z}^{d}, starting at the origin, $\omega_{0}=0$.

Give all the self-avoiding walks equal probability.

Background

Simple cubic lattice \mathbb{Z}^{d}
Self-avoiding walk

$$
\omega=\left(\omega_{0}, \omega_{1}, \ldots, \omega_{N}\right)
$$

is a sequence of $N+1$ distinct nearest neighbour points in \mathbb{Z}^{d}, starting at the origin, $\omega_{0}=0$.

Give all the self-avoiding walks equal probability.
The problem is to find the asymptotic growth as $N \rightarrow \infty$ of the expected end-to-end-distance $\langle | \omega_{N}| \rangle$.

Background Continued

Hara-Slade 92: For dimension $d \geq 5, \exists D>0$ such that

Background Continued

Hara-Slade 92: For dimension $d \geq 5, \exists D>0$ such that

$$
\left\langle\left\|\omega_{N}\right\|\right\rangle=D N^{1 / 2}(1+o(1))
$$

Background Continued

Hara-Slade 92: For dimension $d \geq 5, \exists D>0$ such that

$$
\left\langle\left\|\omega_{N}\right\|\right\rangle=D N^{1 / 2}(1+o(1))
$$

For simple random walk $D=1$.

Background Continued

Hara-Slade 92: For dimension $d \geq 5, \exists D>0$ such that

$$
\left\langle\left\|\omega_{N}\right\|\right\rangle=D N^{1 / 2}(1+o(1))
$$

For simple random walk $D=1$.
In dimension $d=2$, SLE $_{8 / 3}$ proves, under an assumption of conformal invariance of the scaling limit, that

$$
\left\langle\left\|\omega_{N}\right\|\right\rangle \sim D N^{3 / 4} .
$$

Background Continued

Hara-Slade 92: For dimension $d \geq 5, \exists D>0$ such that

$$
\left\langle\left\|\omega_{N}\right\|\right\rangle=D N^{1 / 2}(1+o(1))
$$

For simple random walk $D=1$.
In dimension $d=2$, SLE $_{8 / 3}$ proves, under an assumption of conformal invariance of the scaling limit, that

$$
\left\langle\left\|\omega_{N}\right\|\right\rangle \sim D N^{3 / 4} .
$$

In dimension $d=3$ nothing is known rigorously. Simulations and other methods indicate that $\left\langle\left\|\omega_{N}\right\|\right\rangle \sim D N^{\alpha}$ for some $\alpha>\frac{1}{2}$

Four Dimensions

(Brezin, Le Guillou, Zinn-Justin, 1973) conjecture for $d=4$:

$$
\left\langle\left\|\omega_{N}\right\|\right\rangle=D N^{1 / 2} \log ^{1 / 8}(N)(1+o(1))
$$

Four Dimensions

(Brezin, Le Guillou, Zinn-Justin, 1973) conjecture for $d=4$:

$$
\left\langle\left\|\omega_{N}\right\|\right\rangle=D N^{1 / 2} \log ^{1 / 8}(N)(1+o(1))
$$

Brydges - Imbrie CMP 2003: Conjecture proved for a related model on a four dimensional hierarchical lattice

Four Dimensions

(Brezin, Le Guillou, Zinn-Justin, 1973) conjecture for $d=4$:

$$
\left\langle\left\|\omega_{N}\right\|\right\rangle=D N^{1 / 2} \log ^{1 / 8}(N)(1+o(1))
$$

Brydges - Imbrie CMP 2003: Conjecture proved for a related model on a four dimensional hierarchical lattice
The hierarchical lattice differs from the usual lattice by measuring distance with an ultra-metric.

Four Dimensions

(Brezin, Le Guillou, Zinn-Justin, 1973) conjecture for $d=4$:

$$
\left\langle\left\|\omega_{N}\right\|\right\rangle=D N^{1 / 2} \log ^{1 / 8}(N)(1+o(1))
$$

Brydges - Imbrie CMP 2003: Conjecture proved for a related model on a four dimensional hierarchical lattice
The hierarchical lattice differs from the usual lattice by measuring distance with an ultra-metric. Hierarchical lattice is four dimensional in the sense that a ball of radius R has $O\left(R^{4}\right)$ lattice points in it.

Four Dimensions

(Brezin, Le Guillou, Zinn-Justin, 1973) conjecture for $d=4$:

$$
\left\langle\left\|\omega_{N}\right\|\right\rangle=D N^{1 / 2} \log ^{1 / 8}(N)(1+o(1))
$$

Brydges - Imbrie CMP 2003: Conjecture proved for a related model on a four dimensional hierarchical lattice
The hierarchical lattice differs from the usual lattice by measuring distance with an ultra-metric. Hierarchical lattice is four dimensional in the sense that a ball of radius R has $O\left(R^{4}\right)$ lattice points in it. Small parameter: Walk need not be self-avoiding but weighted so as to suppress self intersections.

Small Parameter

Small parameter (weak self repulsion)
$\exp \left(-\lambda^{2} \mid\right.$ self-intersections $\left.\left.\right|^{2}\right), \quad \lambda>0$ small

Small Parameter

Small parameter (weak self repulsion)

$$
\exp \left(-\lambda^{2} \mid \text { self-intersections }\left.\right|^{2}\right), \quad \lambda>0 \text { small }
$$

Alternative small parameter. Walk is self-avoiding but not nearest neighbour .

Small Parameter

Small parameter (weak self repulsion)

$$
\exp \left(-\lambda^{2} \mid \text { self-intersections }\left.\right|^{2}\right), \quad \lambda>0 \text { small }
$$

Alternative small parameter. Walk is self-avoiding but not nearest neighbour. Choose a symmetric positive-definite matrix A whose inverse has non-negative entries.

Small Parameter

Small parameter (weak self repulsion)

$$
\exp \left(-\lambda^{2} \mid \text { self-intersections }\left.\right|^{2}\right), \quad \lambda>0 \text { small }
$$

Alternative small parameter. Walk is self-avoiding but not nearest neighbour. Choose a symmetric positive-definite matrix A whose inverse has non-negative entries. Assign to ω the weight

$$
\prod_{\operatorname{step} x y \in \omega}\left(A^{-1}\right)_{x, y}
$$

Susceptibility

The susceptibility χ_{β} is a sum over self-avoiding walks ω of all lengths $|\omega|=1,2, \ldots$ starting from the origin

Susceptibility

The susceptibility χ_{β} is a sum over self-avoiding walks ω of all lengths $|\omega|=1,2, \ldots$ starting from the origin defined by

$$
\chi_{\beta}=\sum_{\omega} \beta^{|\omega|} \prod_{\operatorname{step} x y \in \omega}\left(A^{-1}\right)_{x, y}
$$

Susceptibility

The susceptibility χ_{β} is a sum over self-avoiding walks ω of all lengths $|\omega|=1,2, \ldots$ starting from the origin defined by

$$
\chi_{\beta}=\sum_{\omega} \beta^{|\omega|} \prod_{\text {step } x y \in \omega}\left(A^{-1}\right)_{x, y}
$$

χ_{β} is a power series with radius of convergence β_{c}.

Susceptibility

The susceptibility χ_{β} is a sum over self-avoiding walks ω of all lengths $|\omega|=1,2, \ldots$ starting from the origin defined by

$$
\chi_{\beta}=\sum_{\omega} \beta^{|\omega|} \prod_{\text {step } x y \in \omega}\left(A^{-1}\right)_{x, y}
$$

χ_{β} is a power series with radius of convergence β_{c}.
Key step: Prove that

$$
\chi_{\beta} \sim\left(\hat{\beta}\left|\log ^{1 / 4} \hat{\beta}\right|\right)^{-1} \text { where } \hat{\beta}=\left(\beta-\beta_{c}\right)
$$

Gaussian Integrals

Λ finite subset of lattice (hierarchical or \mathbb{Z}^{4}). Sites in Λ denoted by x, y and a, b.

Gaussian Integrals

Λ finite subset of lattice (hierarchical or \mathbb{Z}^{4}). Sites in Λ denoted by x, y and a, b.
To each site x we associate two real variables u_{x}, v_{x}

Gaussian Integrals

Λ finite subset of lattice (hierarchical or \mathbb{Z}^{4}). Sites in Λ denoted by x, y and a, b.
To each site x we associate two real variables u_{x}, v_{x} which we unite into one complex variable $\varphi_{x}=u_{x}+i v_{x}$

Gaussian Integrals

Λ finite subset of lattice (hierarchical or \mathbb{Z}^{4}). Sites in Λ denoted by x, y and a, b.
To each site x we associate two real variables u_{x}, v_{x} which we unite into one complex variable $\varphi_{x}=u_{x}+i v_{x}$ so that $\varphi=\left(\varphi_{x}, x \in \Lambda\right) \in \mathbb{R}^{2 \Lambda}$.

Gaussian Integrals

Λ finite subset of lattice (hierarchical or \mathbb{Z}^{4}). Sites in Λ denoted by x, y and a, b.
To each site x we associate two real variables u_{x}, v_{x} which we unite into one complex variable $\varphi_{x}=u_{x}+i v_{x}$ so that $\varphi=\left(\varphi_{x}, x \in \Lambda\right) \in \mathbb{R}^{2 \Lambda}$. $d^{\Lambda} \varphi$ is Lebesgue measure on $\mathbb{R}^{2 \Lambda}$.

Gaussian Integrals

Λ finite subset of lattice (hierarchical or \mathbb{Z}^{4}). Sites in Λ denoted by x, y and a, b.
To each site x we associate two real variables u_{x}, v_{x} which we unite into one complex variable $\varphi_{x}=u_{x}+i v_{x}$ so that $\varphi=\left(\varphi_{x}, x \in \Lambda\right) \in \mathbb{R}^{2 \Lambda}$. $d^{\Lambda} \varphi$ is Lebesgue measure on $\mathbb{R}^{2 \Lambda}$.
Quadratic form: $(\varphi, A \varphi)=\sum \varphi_{x} A_{x, y} \bar{\varphi}_{y}>0$.

Gaussian Integrals

Λ finite subset of lattice (hierarchical or \mathbb{Z}^{4}). Sites in Λ denoted by x, y and a, b.
To each site x we associate two real variables u_{x}, v_{x} which we unite into one complex variable $\varphi_{x}=u_{x}+i v_{x}$ so that $\varphi=\left(\varphi_{x}, x \in \Lambda\right) \in \mathbb{R}^{2 \Lambda}$. $d^{\Lambda} \varphi$ is Lebesgue measure on $\mathbb{R}^{2 \Lambda}$.
Quadratic form: $(\varphi, A \varphi)=\sum \varphi_{x} A_{x, y} \bar{\varphi}_{y}>0$.

$$
\int d^{\Lambda} \varphi e^{-(\varphi, A \varphi)} \bar{\varphi}_{a} \varphi_{b}=(\operatorname{det} A)^{-1}\left(A^{-1}\right)_{a, b}
$$

Gaussian Integrals

Λ finite subset of lattice (hierarchical or \mathbb{Z}^{4}). Sites in Λ denoted by x, y and a, b.
To each site x we associate two real variables u_{x}, v_{x} which we unite into one complex variable $\varphi_{x}=u_{x}+i v_{x}$ so that $\varphi=\left(\varphi_{x}, x \in \Lambda\right) \in \mathbb{R}^{2 \Lambda}$. $d^{\Lambda} \varphi$ is Lebesgue measure on $\mathbb{R}^{2 \Lambda}$.
Quadratic form: $(\varphi, A \varphi)=\sum \varphi_{x} A_{x, y} \bar{\varphi}_{y}>0$.

$$
\int d^{\Lambda} \varphi e^{-(\varphi, A \varphi)} \bar{\varphi}_{a} \varphi_{b}=(\operatorname{det} A)^{-1}\left(A^{-1}\right)_{a, b}
$$

$(2 \pi)^{\Lambda}$ absorbed into Lebesgue measure.

Gaussian Integrals Continued

Differential form:
$(d \varphi, A d \varphi)=$

Gaussian Integrals Continued

Differential form:
$(d \varphi, A d \varphi)=\sum A_{x, y} d \varphi_{x} \wedge d \bar{\varphi}_{y}$

Gaussian Integrals Continued

Differential form:
$(d \varphi, A d \varphi)=\sum A_{x, y} d \varphi_{x} \wedge d \bar{\varphi}_{y}=-(2 i) \sum A_{x, y} d u_{x} \wedge d v_{y}$

Gaussian Integrals Continued

Differential form:

$$
(d \varphi, A d \varphi)=\sum A_{x, y} d \varphi_{x} \wedge d \bar{\varphi}_{y}=-(2 i) \sum A_{x, y} d u_{x} \wedge d v_{y}
$$

Form of mixed degree:
1

Gaussian Integrals Continued

Differential form:

$$
(d \varphi, A d \varphi)=\sum A_{x, y} d \varphi_{x} \wedge d \bar{\varphi}_{y}=-(2 i) \sum A_{x, y} d u_{x} \wedge d v_{y}
$$

Form of mixed degree:
$1+\frac{1}{1!}(d \varphi, A d \varphi)$

Gaussian Integrals Continued

Differential form:

$$
(d \varphi, A d \varphi)=\sum A_{x, y} d \varphi_{x} \wedge d \bar{\varphi}_{y}=-(2 i) \sum A_{x, y} d u_{x} \wedge d v_{y}
$$

Form of mixed degree:
$1+\frac{1}{1!}(d \varphi, A d \varphi)+\frac{1}{2!}(d \varphi, A d \varphi)^{\wedge 2}$

Gaussian Integrals Continued

Differential form:

$$
(d \varphi, A d \varphi)=\sum A_{x, y} d \varphi_{x} \wedge d \bar{\varphi}_{y}=-(2 i) \sum A_{x, y} d u_{x} \wedge d v_{y}
$$

Form of mixed degree:

$$
1+\frac{1}{1!}(d \varphi, A d \varphi)+\frac{1}{2!}(d \varphi, A d \varphi)^{\wedge 2}+\ldots
$$

Gaussian Integrals Continued

Differential form:

$$
(d \varphi, A d \varphi)=\sum A_{x, y} d \varphi_{x} \wedge d \bar{\varphi}_{y}=-(2 i) \sum A_{x, y} d u_{x} \wedge d v_{y}
$$

Form of mixed degree:

$$
1+\frac{1}{1!}(d \varphi, A d \varphi)+\frac{1}{2!}(d \varphi, A d \varphi)^{\wedge 2}+\ldots=: e^{-(d \varphi, A d \varphi)}
$$

Gaussian Integrals Continued

Differential form:

$$
(d \varphi, A d \varphi)=\sum A_{x, y} d \varphi_{x} \wedge d \bar{\varphi}_{y}=-(2 i) \sum A_{x, y} d u_{x} \wedge d v_{y}
$$

Form of mixed degree:

$$
\begin{gathered}
1+\frac{1}{1!}(d \varphi, A d \varphi)+\frac{1}{2!}(d \varphi, A d \varphi)^{\wedge 2}+\ldots=: e^{-(d \varphi, A d \varphi)} \\
\int e^{-(\varphi, A \varphi)-(d \varphi, A d \varphi)} \bar{\varphi}_{a} \varphi_{b}=\left(A^{-1}\right)_{a, b}
\end{gathered}
$$

Wick theorem

All moments of Gaussian integrals can be evaluated.

Wick theorem

All moments of Gaussian integrals can be evaluated. Integration by parts in

$$
\int e^{-(\varphi, A \varphi)-(d \varphi, A d \varphi)} \bar{\varphi}_{a} F
$$

Wick theorem

All moments of Gaussian integrals can be evaluated. Integration by parts in

$$
\int e^{-(\varphi, A \varphi)-(d \varphi, A d \varphi)} \bar{\varphi}_{a} F
$$

replaces

$$
\bar{\varphi}_{a} F
$$

by

Wick theorem

All moments of Gaussian integrals can be evaluated. Integration by parts in

$$
\int e^{-(\varphi, A \varphi)-(d \varphi, A d \varphi)} \bar{\varphi}_{a} F
$$

replaces

$$
\bar{\varphi}_{a} F
$$

by

$$
\sum_{x}\left(A^{-1}\right)_{a, x} \frac{\partial F}{\partial \varphi_{x}}
$$

Wick theorem

All moments of Gaussian integrals can be evaluated. Integration by parts in

$$
\int e^{-(\varphi, A \varphi)-(d \varphi, A d \varphi)} \bar{\varphi}_{a} F
$$

replaces

$$
\bar{\varphi}_{a} F
$$

by

$$
\sum_{x}\left(A^{-1}\right)_{a, x} \frac{\partial F}{\partial \varphi_{x}}
$$

With right choice of F this says "add a step to the walk".

Self-avoiding walk = near Gaussian

Another form of mixed degree
$\tau_{x}=$

Self-avoiding walk = near Gaussian

Another form of mixed degree

$$
\tau_{x}=\varphi_{x} \bar{\varphi}_{x}+d \varphi_{x} \wedge d \bar{\varphi}_{x}
$$

Self-avoiding walk = near Gaussian

Another form of mixed degree

$$
\tau_{x}=\varphi_{x} \bar{\varphi}_{x}+d \varphi_{x} \wedge d \bar{\varphi}_{x}
$$

$$
(1+\tau)^{X}:=\prod_{x \in X}\left(1+\tau_{x}\right)
$$

Self-avoiding walk = near Gaussian

Another form of mixed degree

$$
\tau_{x}=\varphi_{x} \bar{\varphi}_{x}+d \varphi_{x} \wedge d \bar{\varphi}_{x}
$$

$$
(1+\tau)^{X}:=\prod_{x \in X}\left(1+\tau_{x}\right)
$$

We can rewrite SAW in terms of Gaussian integrals:
$\sum_{\omega: a \rightarrow b} \prod_{\text {steps }}\left(A^{-1}\right)_{\text {step }}=$

Self-avoiding walk = near Gaussian

Another form of mixed degree

$$
\begin{gathered}
\tau_{x}=\varphi_{x} \bar{\varphi}_{x}+d \varphi_{x} \wedge d \bar{\varphi}_{x} \\
(1+\tau)^{X}:=\prod_{x \in X}\left(1+\tau_{x}\right)
\end{gathered}
$$

We can rewrite SAW in terms of Gaussian integrals:

$$
\begin{aligned}
& \sum_{\omega: a \rightarrow b} \prod_{\text {steps }}\left(A^{-1}\right)_{\text {step }}= \\
& \int e^{-(\varphi, A \varphi)-(d \varphi, A d \varphi)}
\end{aligned}
$$

Self-avoiding walk = near Gaussian

Another form of mixed degree

$$
\begin{gathered}
\tau_{x}=\varphi_{x} \bar{\varphi}_{x}+d \varphi_{x} \wedge d \bar{\varphi}_{x} \\
(1+\tau)^{X}:=\prod_{x \in X}\left(1+\tau_{x}\right)
\end{gathered}
$$

We can rewrite SAW in terms of Gaussian integrals:

$$
\begin{aligned}
& \sum_{\omega: a \rightarrow b} \prod_{\text {steps }}\left(A^{-1}\right)_{\text {step }}= \\
& \quad \int e^{-(\varphi, A \varphi)-(d \varphi, A d \varphi)}(1+\tau)^{\Lambda \backslash\{a, b\}}
\end{aligned}
$$

Self-avoiding walk = near Gaussian

Another form of mixed degree

$$
\begin{gathered}
\tau_{x}=\varphi_{x} \bar{\varphi}_{x}+d \varphi_{x} \wedge d \bar{\varphi}_{x} \\
(1+\tau)^{X}:=\prod_{x \in X}\left(1+\tau_{x}\right)
\end{gathered}
$$

We can rewrite SAW in terms of Gaussian integrals:

$$
\begin{aligned}
& \sum_{\omega: a \rightarrow b} \prod_{\text {steps }}\left(A^{-1}\right)_{\text {step }}= \\
& \int e^{-(\varphi, A \varphi)-(d \varphi, A d \varphi)}(1+\tau)^{\Lambda \backslash\{a, b\}} \bar{\varphi}_{a} \varphi_{b}
\end{aligned}
$$

Susceptibility as Gaussian integral

Convenient choice: $A=\operatorname{ld}-\lambda^{-1} \Delta$, where Δ is lattice (finite difference) Laplacian

Susceptibility as Gaussian integral

Convenient choice: $A=\operatorname{ld}-\lambda^{-1} \Delta$, where Δ is lattice (finite difference) Laplacian

$$
\mathbb{E} Z=\int e^{(\varphi, \Delta \varphi)+(d \varphi, \Delta d \varphi)} Z
$$

Susceptibility as Gaussian integral

Convenient choice: $A=\operatorname{ld}-\lambda^{-1} \Delta$, where Δ is lattice (finite difference) Laplacian

$$
\begin{gathered}
\mathbb{E} Z=\int e^{(\varphi, \Delta \varphi)+(d \varphi, \Delta d \varphi)} Z \\
I_{x}= \begin{cases}\left(1+\beta \lambda \tau_{x}\right) e^{-\lambda \tau} & \text { for } x \neq a, b \\
\varphi_{a}, \bar{\varphi}_{b} & \text { for } x=a, b\end{cases}
\end{gathered}
$$

Susceptibility as Gaussian integral

Convenient choice: $A=\operatorname{ld}-\lambda^{-1} \Delta$, where Δ is lattice (finite difference) Laplacian

$$
\begin{gathered}
\mathbb{E} Z=\int e^{(\varphi, \Delta \varphi)+(d \varphi, \Delta d \varphi)} Z \\
I_{x}= \begin{cases}\left(1+\beta \lambda \tau_{x}\right) e^{-\lambda \tau} & \text { for } x \neq a, b \\
\varphi_{a}, \bar{\varphi}_{b} & \text { for } x=a, b\end{cases} \\
\chi_{\beta}=\sum_{b} \mathbb{E}\left[I^{\Lambda}\right]
\end{gathered}
$$

Decomposition of \mathbb{E}

Theorem: (Brydges-Talarczyk) Inverses of elliptic operators admit decomposition into sum of finite range positive-definite functions.

Decomposition of \mathbb{E}

Theorem: (Brydges-Talarczyk) Inverses of elliptic operators admit decomposition into sum of finite range positive-definite functions.
(Brydges, Guadagni, Mitter) Earlier, less general theorem for lattice $(-\Delta)^{-1}$.

Decomposition of \mathbb{E}

Theorem: (Brydges-Talarczyk) Inverses of elliptic operators admit decomposition into sum of finite range positive-definite functions.
(Brydges, Guadagni, Mitter) Earlier, less general theorem for lattice $(-\Delta)^{-1}$.

Consequence:

$$
\mathbb{E}\left(I^{\Lambda}\right)=\mathbb{E}_{n} \ldots \mathbb{E}_{2} \mathbb{E}_{1}\left(I^{\Lambda}\right)
$$

where, in right hand side, $\varphi=\sum_{j} \varphi_{j}$ and likewise $d \varphi$

Renormalisation Group

Starting with $Z_{0}=I^{\Lambda}$, let

$$
Z_{j+1}=\mathbb{E}_{j+1} Z_{j}
$$

Renormalisation Group

Starting with $Z_{0}=I^{\Lambda}$, let

$$
Z_{j+1}=\mathbb{E}_{j+1} Z_{j}
$$

For each scale $j=0,1, \ldots$ we write Z_{j} in terms of coordinates (I_{j}, K_{j}) such that

$$
Z_{j}=\sum_{X \subset \Lambda} I_{j}^{\Lambda \backslash X} K_{j}(X)
$$

Renormalisation Group

Starting with $Z_{0}=I^{\Lambda}$, let

$$
Z_{j+1}=\mathbb{E}_{j+1} Z_{j}
$$

For each scale $j=0,1, \ldots$ we write Z_{j} in terms of coordinates (I_{j}, K_{j}) such that

$$
Z_{j}=\sum_{X \subset \Lambda} I_{j}^{\Lambda \backslash X} K_{j}(X)
$$

where X is summed over all subsets of Λ which are unions of scale $j+1$ disjoint cubes partitioning Λ.

Renormalisation Group Continued

$\left(I_{j}, K_{j}\right)$ are elements in a Banach space and have the properties

$$
K_{j}(X)=\prod_{Y \in \text { components of } X} K_{j}(Y)
$$

Renormalisation Group Continued

$\left(I_{j}, K_{j}\right)$ are elements in a Banach space and have the properties

$$
K_{j}(X)=\prod_{Y \in \text { components of } X} K_{j}(Y)
$$

$I_{j, x}$ depends only on φ_{y} for y nearest neighbours of x.

Results on RG

The representation of Z_{j} by $\left(I_{j}, K_{j}\right)$ is not unique but can be made unique by imposing a normalisation condition on K_{j}. Then we have proved, in the hierarchical case, that as $j \rightarrow \infty$,

Results on RG

The representation of Z_{j} by $\left(I_{j}, K_{j}\right)$ is not unique but can be made unique by imposing a normalisation condition on K_{j}. Then we have proved, in the hierarchical case, that as $j \rightarrow \infty$,

$$
\left\|K_{j}\right\|_{j} \rightarrow 0
$$

and

Results on RG

The representation of Z_{j} by $\left(I_{j}, K_{j}\right)$ is not unique but can be made unique by imposing a normalisation condition on K_{j}. Then we have proved, in the hierarchical case, that as $j \rightarrow \infty$,

$$
\left\|K_{j}\right\|_{j} \rightarrow 0
$$

and
If $\beta=\beta_{c}$ for $j=0$, for $x \neq a, b$,

$$
I_{j, x} \rightarrow 1
$$

Results on RG continued

If $\beta<\beta_{c}$ for $j=0$ then , for $x \neq a, b$,

$$
I_{j, x} \sim e^{-\beta_{j} \tau}
$$

Results on RG continued

If $\beta<\beta_{c}$ for $j=0$ then , for $x \neq a, b$,

$$
I_{j, x} \sim e^{-\beta_{j} \tau}
$$

The analysis of the sequence β_{j} enables us to prove that

Results on RG continued

If $\beta<\beta_{c}$ for $j=0$ then, for $x \neq a, b$,

$$
I_{j, x} \sim e^{-\beta_{j} \tau}
$$

The analysis of the sequence β_{j} enables us to prove that

$$
\chi_{\beta} \sim\left(\hat{\beta}\left|\log ^{1 / 4} \hat{\beta}\right|\right)^{-1} \text { where } \hat{\beta}=\left(\beta-\beta_{c}\right)
$$

Analysis of RG

$$
Z_{j}=\sum_{X} I_{j}{ }^{\Lambda \backslash X} K_{j}(X)
$$

Analysis of RG

$$
\begin{aligned}
Z_{j} & =\sum_{X} I_{j}^{\Lambda \backslash X} K_{j}(X) \\
& =\sum_{X}\left(I_{j+1}+\delta_{j+1}\right)^{\Lambda \backslash X} K_{j}(X)
\end{aligned}
$$

Analysis of RG

$$
\begin{aligned}
Z_{j} & =\sum_{X} I_{j}^{\Lambda \backslash X} K_{j}(X) \\
& =\sum_{X}\left(I_{j+1}+\delta_{j+1}\right)^{\Lambda \backslash X} K_{j}(X) \\
& =\sum_{X, Y} I_{j+1}^{\Lambda \backslash(X \cup Y)} \delta_{j+1}^{Y} K_{j}(X)
\end{aligned}
$$

Analysis of RG

$$
\begin{aligned}
Z_{j} & =\sum_{X} I_{j}^{\Lambda \backslash X} K_{j}(X) \\
& =\sum_{X}\left(I_{j+1}+\delta_{j+1}\right)^{\Lambda \backslash X} K_{j}(X) \\
& =\sum_{X, Y} I_{j+1}^{\Lambda \backslash(X \cup Y)} \delta_{j+1}^{Y} K_{j}(X) \\
& =\sum_{U} I_{j+1}^{\Lambda \backslash U} \sum_{X, Y: \text { union }=U} \delta_{j+1}^{Y} K_{j}(X)
\end{aligned}
$$

Analysis of RG

$$
\begin{aligned}
Z_{j} & =\sum_{X} I_{j}{ }^{\Lambda \backslash X} K_{j}(X) \\
& =\sum_{X}\left(I_{j+1}+\delta_{j+1}\right)^{\Lambda \backslash X} K_{j}(X) \\
& =\sum_{X, Y} I_{j+1}^{\Lambda \backslash(X \cup Y)} \delta_{j+1}^{Y} K_{j}(X) \\
& =\sum_{U} I_{j+1}^{\Lambda \backslash U} \sum_{X, Y: \text { union }=U} \delta_{j+1}^{Y} K_{j}(X) \\
& =\sum_{U} I_{j+1}^{\Lambda \backslash U} \bar{K}(U)
\end{aligned}
$$

Analysis of RG

$$
\begin{aligned}
Z_{j} & =\sum_{X} I_{j}^{\Lambda \backslash X} K_{j}(X) \\
& =\sum_{X}\left(I_{j+1}+\delta_{j+1}\right)^{\Lambda \backslash X} K_{j}(X) \\
& =\sum_{X, Y} I_{j+1}^{\Lambda \backslash(X \cup Y)} \delta_{j+1}^{Y} K_{j}(X) \\
& =\sum_{U} I_{j+1}^{\Lambda \backslash U} \sum_{X, Y: \text { union }=U} \delta_{j+1}^{Y} K_{j}(X) \\
& =\sum_{U} I_{j+1}^{\Lambda \backslash U} \bar{K}(U)
\end{aligned}
$$

where

$$
\bar{K}(U)=\sum_{Y} \delta_{j+1}^{Y} K_{j}(U \backslash Y)
$$

Analysis of RG continued

$$
\mathbb{E}_{j+1} Z_{j}=\sum_{X} I_{j+1}^{\Lambda \backslash X} \mathbb{E}_{j+1} \bar{K}(X)
$$

Analysis of RG continued

$$
\mathbb{E}_{j+1} Z_{j}=\sum_{X} I_{j+1}^{\Lambda \backslash X} \mathbb{E}_{j+1} \bar{K}(X)
$$

so we can let

$$
K_{j+1}(X)=\mathbb{E}_{j+1} \bar{K}(X)
$$

Analysis of RG continued

$$
\mathbb{E}_{j+1} Z_{j}=\sum_{X} I_{j+1}^{\Lambda \backslash X} \mathbb{E}_{j+1} \bar{K}(X)
$$

so we can let

$$
K_{j+1}(X)=\mathbb{E}_{j+1} \bar{K}(X)
$$

Finite range property of decomposition and cubes of side $>$ range implies

$$
K_{j+1}(X)=\prod_{Y \in \text { components of } X} K_{j+1}(Y)
$$

