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Background

Simple cubic lattice Z
d

Self-avoiding walk

ω = (ω0, ω1, . . . , ωN )

is a sequence of N + 1 distinct nearest neighbour points in
Z

d, starting at the origin, ω0 = 0.

Give all the self-avoiding walks equal probability.

The problem is to find the asymptotic growth as N → ∞ of
the expected end-to-end-distance 〈|ωN |〉.
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Background Continued

Hara-Slade 92: For dimension d ≥ 5, ∃D > 0 such that

〈‖ωN‖〉 = DN1/2(1 + o(1))

For simple random walk D = 1.

In dimension d = 2, SLE8/3 proves, under an assumption of
conformal invariance of the scaling limit, that

〈‖ωN‖〉 ∼ DN3/4.

In dimension d = 3 nothing is known rigorously. Simulations
and other methods indicate that 〈‖ωN‖〉 ∼ DNα for some
α > 1

2
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Four Dimensions

(Brezin, Le Guillou, Zinn-Justin, 1973) conjecture for d = 4:

〈‖ωN‖〉 = DN1/2 log1/8(N)(1 + o(1))

Brydges - Imbrie CMP 2003: Conjecture proved for a
related model on a four dimensional hierarchical lattice

The hierarchical lattice differs from the usual lattice by
measuring distance with an ultra-metric.
Hierarchical lattice is four dimensional in the sense that a
ball of radius R has O(R4) lattice points in it.
Small parameter: Walk need not be self-avoiding but
weighted so as to suppress self intersections.
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Small Parameter

Small parameter ( weak self repulsion)

exp
(

− λ2|self-intersections|2
)

, λ > 0 small

Alternative small parameter. Walk is self-avoiding but not
nearest neighbour . Choose a symmetric positive-definite
matrix A whose inverse has non-negative entries. Assign
to ω the weight

∏

step xy∈ω

(A−1)x,y
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Susceptibility

The susceptibility χβ is a sum over self-avoiding walks ω of
all lengths |ω| = 1, 2, . . . starting from the origin

defined by

χβ =
∑

ω

β|ω|
∏

step xy∈ω

(A−1)x,y

χβ is a power series with radius of convergence βc.

Key step: Prove that

χβ ∼
(

β̂| log1/4 β̂|
)−1 where β̂ = (β − βc)
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Gaussian Integrals

Λ finite subset of lattice (hierarchical or Z
4). Sites in Λ

denoted by x, y and a, b.

To each site x we associate two real variables ux, vx which
we unite into one complex variable ϕx = ux + ivx so that
ϕ = (ϕx, x ∈ Λ) ∈ R

2Λ. dΛϕ is Lebesgue measure on R
2Λ.

Quadratic form: (ϕ, Aϕ) =
∑

ϕxAx,yϕy > 0.
∫

dΛϕe−(ϕ,Aϕ)ϕaϕb = (det A)−1(A−1)a,b

(2π)Λ absorbed into Lebesgue measure.
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Gaussian Integrals Continued

Differential form:
(dϕ, Adϕ) =

∑

Ax,ydϕx ∧ dϕy = −(2i)
∑

Ax,ydux ∧ dvy

Form of mixed degree:
1 + 1

1!(dϕ, Adϕ) + 1
2!(dϕ, Adϕ)∧2 + . . . =: e−(dϕ,Adϕ)

∫

e−(ϕ,Aϕ)−(dϕ,Adϕ)ϕaϕb = (A−1)a,b
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Wick theorem

All moments of Gaussian integrals can be evaluated.

Integration by parts in
∫

e−(ϕ,Aϕ)−(dϕ,Adϕ)ϕaF

replaces
ϕaF

by
∑

x

(A−1)a,x
∂F

∂ϕx

With right choice of F this says “add a step to the walk”.
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Self-avoiding walk = near Gaussian

Another form of mixed degree
τx =

ϕxϕx + dϕx ∧ dϕx

(

1 + τ
)X

:=
∏

x∈X

(

1 + τx

)

We can rewrite SAW in terms of Gaussian integrals:
∑

ω:a→b

∏

steps(A
−1)step =

∫

e−(ϕ,Aϕ)−(dϕ,Adϕ)
(

1 + τ
)Λ\{a,b}

ϕaϕb
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Susceptibility as Gaussian integral

Convenient choice: A = Id − λ−1∆, where ∆ is lattice (finite
difference) Laplacian

EZ =

∫

e(ϕ,∆ϕ)+(dϕ,∆dϕ)Z

Ix =

{

(1 + βλτx)e−λτ for x 6= a, b

ϕa, ϕb for x = a, b

χβ =
∑

b

E

[

IΛ
]

Fields Institute Oct 2005 – p.11/18



Susceptibility as Gaussian integral

Convenient choice: A = Id − λ−1∆, where ∆ is lattice (finite
difference) Laplacian

EZ =

∫

e(ϕ,∆ϕ)+(dϕ,∆dϕ)Z

Ix =

{

(1 + βλτx)e−λτ for x 6= a, b

ϕa, ϕb for x = a, b

χβ =
∑

b

E

[

IΛ
]

Fields Institute Oct 2005 – p.11/18



Susceptibility as Gaussian integral

Convenient choice: A = Id − λ−1∆, where ∆ is lattice (finite
difference) Laplacian

EZ =

∫

e(ϕ,∆ϕ)+(dϕ,∆dϕ)Z

Ix =

{

(1 + βλτx)e−λτ for x 6= a, b

ϕa, ϕb for x = a, b

χβ =
∑

b

E

[

IΛ
]

Fields Institute Oct 2005 – p.11/18



Susceptibility as Gaussian integral

Convenient choice: A = Id − λ−1∆, where ∆ is lattice (finite
difference) Laplacian

EZ =

∫

e(ϕ,∆ϕ)+(dϕ,∆dϕ)Z

Ix =

{

(1 + βλτx)e−λτ for x 6= a, b

ϕa, ϕb for x = a, b

χβ =
∑

b

E

[

IΛ
]

Fields Institute Oct 2005 – p.11/18



Decomposition of E

Theorem: (Brydges-Talarczyk) Inverses of elliptic operators
admit decomposition into sum of finite range
positive-definite functions.

(Brydges, Guadagni, Mitter) Earlier, less general theorem
for lattice (−∆)−1.

Consequence:

E
(

IΛ
)

= En . . . E2E1

(

IΛ
)

where, in right hand side, ϕ =
∑

j ϕj and likewise dϕ

Fields Institute Oct 2005 – p.12/18



Decomposition of E

Theorem: (Brydges-Talarczyk) Inverses of elliptic operators
admit decomposition into sum of finite range
positive-definite functions.

(Brydges, Guadagni, Mitter) Earlier, less general theorem
for lattice (−∆)−1.

Consequence:

E
(

IΛ
)

= En . . . E2E1

(

IΛ
)

where, in right hand side, ϕ =
∑

j ϕj and likewise dϕ

Fields Institute Oct 2005 – p.12/18



Decomposition of E

Theorem: (Brydges-Talarczyk) Inverses of elliptic operators
admit decomposition into sum of finite range
positive-definite functions.

(Brydges, Guadagni, Mitter) Earlier, less general theorem
for lattice (−∆)−1.

Consequence:

E
(

IΛ
)

= En . . . E2E1

(

IΛ
)

where, in right hand side, ϕ =
∑

j ϕj and likewise dϕ

Fields Institute Oct 2005 – p.12/18



Renormalisation Group

Starting with Z0 = IΛ, let

Zj+1 = Ej+1Zj

For each scale j = 0, 1, . . . we write Zj in terms of
coordinates (Ij , Kj) such that

Zj =
∑

X⊂Λ

I
Λ\X
j Kj(X)

where X is summed over all subsets of Λ which are
unions of scale j + 1 disjoint cubes partitioning Λ.
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Renormalisation Group Continued

(Ij , Kj) are elements in a Banach space and have the
properties

Kj(X) =
∏

Y ∈ components of X

Kj(Y )

Ij,x depends only on ϕy for y nearest neighbours of x.
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Results on RG

The representation of Zj by (Ij , Kj) is not unique but can be
made unique by imposing a normalisation condition on Kj.
Then we have proved, in the hierarchical case, that as
j → ∞,

‖Kj‖j → 0

and
If β = βc for j = 0, for x 6= a, b,

Ij,x → 1
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Results on RG continued

If β < βc for j = 0 then , for x 6= a, b,

Ij,x ∼ e−βjτ

The analysis of the sequence βj enables us to prove that

χβ ∼
(

β̂| log1/4 β̂|
)−1 where β̂ = (β − βc)
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Analysis of RG

Zj =
∑

X Ij
Λ\XKj(X)

=
∑

X

(

Ij+1 + δj+1

)Λ\X
Kj(X)

=
∑

X,Y I
Λ\(X∪Y )
j+1 δY

j+1 Kj(X)

=
∑

U I
Λ\U
j+1

∑

X,Y : union =U δY
j+1Kj(X)

=
∑

U I
Λ\U
j+1 K̄(U)

where

K̄(U) =
∑

Y δY
j+1Kj(U \ Y )
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Analysis of RG continued

Ej+1Zj =
∑

X

I
Λ\X
j+1 Ej+1K̄(X)

so we can let
Kj+1(X) = Ej+1K̄(X)

Finite range property of decomposition and cubes of side
> range implies

Kj+1(X) =
∏

Y ∈ components of X

Kj+1(Y )
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