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Background

Simple cubic lattice Z¢
Self-avoiding walk

w = (wo,W1,...,wN)

IS a sequence of N + 1 distinct nearest neighbour points in
Z4, starting at the origin, wy = 0.
Give all the self-avoiding walks equal probability.

The problem is to find the asymptotic growth as N — oo of
the expected end-to-end-distance (|wy|).
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Background Continued
-

Hara-Slade 92: For dimension d > 5, 4D > 0 such that

-

(lwonll) = DNY2(1 4 o(1))

For simple random walk D = 1.

In dimension d = 2, SLEg,; proves, under an assumption of
conformal invariance of the scaling limit, that

(lwnll) ~ DN/,

In dimension d = 3 nothing is known rigorously. Simulations
and other methods indicate that (||wy||) ~ DN for some

1
Cl(>§
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Four Dimensions

-

(Brezin, Le Guillou, Zinn-Justin, 1973) conjecture for d = 4.

-

(lwnll) = DN log S (N)(1 + o(1))
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Four Dimensions

o N

(Brezin, Le Guillou, Zinn-Justin, 1973) conjecture for d = 4.
(lwnll) = DN 1og!/*(N)(1 + o(1))

Brydges - Imbrie CMP 2003: Conjecture proved for a
related model on a four dimensional hierarchical lattice

The hierarchical lattice differs from the usual lattice by
measuring distance with an ultra-metric.

Hierarchical lattice is four dimensional in the sense that a
ball of radius R has O(R*) lattice points in it.

Small parameter: Walk need not be self-avoiding but
weighted so as to suppress self intersections.
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Small Parameter
-

Small parameter ( weak self repulsion) T

exp ( — \°[self-intersections|?), A > 0 smalll

Alternative small parameter. Walk is self-avoiding but not
nearest neighbour . Choose a symmetric positive-definite
matrix A whose inverse has non-negative entries. Assign

to w the weight
I Ay

step rycw
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Susceptibility
-

The susceptibility xz Is a sum over self-avoiding walks w of
all lengths |w| =1,2,... starting from the origin defined by

XBZZ@(U' H (A_l)af,y

w step rycw

-

X IS a power series with radius of convergence j..
Key step: Prove that

xs ~ (Bllog** 3|) " where 5 = (5 — 3.)
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Gaussian Integrals

-

A finite subset of lattice (hierarchical or Z*). Sites in A
denoted by x,y and a, b.

To each site x we associate two real variables u,, v, which
we unite into one complex variable ¢, = u, + v, SO that

o = (pz,z € A) € R?*, d%y is Lebesgue measure on R?A,
Quadratic form: (p, Ap) = >~ p, Az @, > 0.

/ At oe” G0 = (det A)THAT )0y

(2m)™ absorbed into Lebesgue measure.
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Gaussian Integrals Continued

-

Differential form:
(do, Adp) = > Az ydps Ndp, = —(2i) Y Az ydug A doy

Form of mixed degree:
1 +%(dg0, Adyp) +%(dg0, Adp)? +... = e~ (dp,Adp)

/6—(907A90)_(d90’Ad¢)¢a90b = (A_l)a,b

-
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Integration by parts in
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Wick theorem

-

All moments of Gaussian integrals can be evaluated.
Integration by parts in

F

a

/ e~ (@ Ap)=(dp,Adp)

replaces

by
oF
Z —1
(A )CL,QZ’ 690:3

X

With right choice of F' this says “add a step to the walk”.
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Self-avoiding walk = near Gaussian

-

Another form of mixed degree
Ty = QgPyp T dg&x A d@x

(1 + T)X = 1leex (1 + TSL‘)

We can rewrite SAW in terms of Gaussian integrals:

Zw .a—b Hsteps(A_l)SteIO —
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Self-avoiding walk = near Gaussian

-

Another form of mixed degree
Ty = PPy + dog Ndp,
(1+ T)X = [Loex (14 72)
We can rewrite SAW in terms of Gaussian integrals:
Zw :a—b Hsteps(A_l)SteIO —
fe —(dep,Adp) (1 JrT)A\{a b} 5. 0h

-
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Susceptibility as Gaussian integral

Convenient choice: A =1d — A\~ 'A, where A is lattice (finite
difference) Laplacian

F7 — /6(90,A90)+(d90,Ad90)Z

I (14 BArp)e ™  forx #a,b
) va, B forx =a,b

X5 = ;E{]A}



p.

Decomposition of E

-

Theorem: (Brydges-Talarczyk) Inverses of elliptic operators
admit decomposition into sum of finite range
positive-definite functions.

-
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Decomposition of E

o N

Theorem: (Brydges-Talarczyk) Inverses of elliptic operators
admit decomposition into sum of finite range
positive-definite functions.

(Brydges, Guadagni, Mitter) Earlier, less general theorem
for lattice (—A)~1.

Conseguence:

E(I") =E, ... EE (IY)

where, in right hand side, ¢ = ) . ¢, and likewise dy
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Renormalisation Group

Starting with Z, = 1%, let
Zit1 =E;j117;

For each scale j =0,1,... we write Z; in terms of
coordinates (/;, K;) such that

AX
Zi=Y IME;(X)
XCA

where X Is summed over all subsets of A which are unions
of scale j + 1 disjoint cubes partitioning A.
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Renor malisation Group Continued

-

(I;, K;) are elements in a Banach space and have the
properties

-

Kj(X) = 11 K;(Y)

Y € components of X

I, . depends only on ¢, for y nearest neighbours of .
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Resultson RG
- -

The representation of Z; by (/;, K;) 1s not unique but can be
made unique by imposing a normalisation condition on ;.
Then we have proved, in the hierarchical case, that as

J — 09,
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Resultson RG
- -

The representation of Z; by (/;, K;) 1s not unique but can be
made unique by imposing a normalisation condition on ;.

Then we have proved, in the hierarchical case, that as
J — 09,

K5 — 0

and
If 6 = 0. for j =0, for x # a, b,

ljz —1

o |

Fields Institute Oct 2005 — p.15/18



Resultson RG continued

-

If 5 < 3. for j =0 then , for x # a, b,

Ljw ~ e P

Fields Institute Oct 2005 — p.16/18



Resultson RG continued

-

If 5 < 3. for j =0 then , for x # a, b,
Ljw ~ e P

The analysis of the sequence 3; enables us to prove that

o |

Fields Institute Oct 2005 — p.16/18



Resultson RG continued

-

If 5 < 3. for j =0 then , for x # a, b,
Ljw ~ e P

The analysis of the sequence 3; enables us to prove that

xs ~ (Blog"* 3|) " where 3 = (5 — 3.)
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Analysisof RG
B -

Z' _ ZX],A\XK.(X)

A\ X

= > x (Lj41 +6j+1) \ K;(X)
A X Y

—ZXY ngl - )53;1 (X)
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Analysisof RG
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Analysisof RG
B -

Zi =3 x ;MY K;(X)

A\X
= S (L + 6500 MK (X)
A X Y
_ZXY j—i}l - )5};1 (X)

A U
=2 ]—l}l ZX,Y: union U5;/+1 i (X)
A U
— ZU ]"}1 ( )
where

K(U) =3y 01 K;(U\Y)
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Analysis of RG continued
- -

FNX
Kji12; _Z JJ>1 B K(X

SO we can let
Kjp1(X) = Ej1 K(X)
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Analysis of RG continued
- -

AX
Fj125 = ]—I}l ]+1K X)

SO we can let
Kjp1(X) = Ej1 K(X)

Finite range property of decomposition and cubes of side >
range implies

KiX)= [ K

Y € components of X

o |

Fields Institute Oct 2005 — p.18/18



	Background
	Background Continued
	Four Dimensions
	Small Parameter
	Susceptibility
	Gaussian Integrals
	Gaussian Integrals Continued
	Wick theorem
	Self-avoiding walk = near Gaussian
	Susceptibility as Gaussian integral
	Decomposition of $EE $
	Renormalisation Group
	Renormalisation Group Continued
	Results on RG
	Results on RG continued
	Analysis of RG
	Analysis of RG continued

