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Introduction

The six-vertex model, or the model of two-
dimensional ice, is stated on a square lattice
with arrows on edges. The arrows obey the
rule that at every vertex there are two arrows
pointing in and two arrows pointing out. Such
rule is sometimes called the ice-rule. There
are only six possible configurations of arrows
at each vertex, hence the name of the model.

(1) (2) (3)

(4) (5) (6)

Fig. 1. The six possible configurations of
arrows at each vertex.
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We will consider the domain wall boundary con-

dition (DWBC), in which the arrows on the up-

per and lower boundaries point in the square,

and the ones on the left and right boundaries

point out. One possible configuration with

DWBC on the 4×4 lattice is shown on Fig. 2.

Fig. 2. An example of 4 × 4 configuration.

3



The name of square ice comes from the two-

dimensional arrangement of water molecules,

H2O, with oxygen atoms at the vertices of a

lattice and one hydrogen atom between each

pair of adjacent oxygen atoms. We place an

arrow in the direction from a hydrogen atom

toward an oxygen atom if there is a bond be-

tween them.
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Fig. 3. The corresponding ice model.
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For each possible vertex state we assign the

weight wi, i = 1, . . . ,6, and define, as usual,

the partition function as a sum over all possible

arrow configurations, given as the product of

all the corresponding vertex weights

ZN =
∑

arrow configurations

6∏

i=1

w
ni
i ,

where ni is the number of vertices in the state

i in each arrow configuration. We will consider

the case, when the weights are invariant under

the simultaneous reversal of all arrows, i.e.,

a := w3 = w4, b := w5 = w6, c := w1 = w2.

Define the parameter ∆ as

∆ =
a2 + b2 − c2

2ab
.
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There are three physical phases for the six-
vertex model: the ferroelectric phase, ∆ > 1;
the anti-ferroelectric phase, ∆ < −1; and, the
disordered phase, −1 < ∆ < 1. The phase
diagram of the model is given on Fig. 4.

0 1

D

F

F

AF

a/c

b/c

1 A(1)

A(2)

A(3)

Fig. 4. The phase diagram of the model,
where F, AF and D mark ferroelectric, antifer-
roelectric, and disordered phases, respectively.
The circular arc corresponds to the so-called
”free fermion” line, when ∆ = 0, and the three
dots correspond to 1-, 2-, and 3-enumeration
of alternating sign matrices.
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In these phases we parametrize the weights in

the standard way: for the ferroelectric phase,

a = sinh(t − γ), b = sinh(t + γ), c = sinh(2γ),

|γ| < t,

for the anti-ferroelectric phase,

a = sinh(γ − t), b = sinh(γ + t), c = sinh(2γ),

|t| < γ,

and for the disordered phase

a = sin(γ − t), b = sin(γ + t), c = sin(2γ),

|t| < γ.

Here we will discuss the disordered phase, and

we will use the last parametrization. There are

two parameters in the model: t and γ.
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A solution for the free energy of the six-vertex

model with periodic boundary conditions (PBC)

was found by Lieb by means of Bethe Ansatz.

E. H. Lieb, Phys. Rev. Lett. 18 (1967) 692;

Phys. Rev. Lett. 18 (1967) 1046-1048; Phys.

Rev. Lett. 19 (1967) 108-110; Phys. Rev.

162 (1967) 162.

In the most general form of the six-vertex model

the Bethe Ansatz solution with PBC was ob-

tained by Sutherland.

B. Sutherland, Phys. Rev. Lett. 19 (1967)

103-104.
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A detailed classification of the phases of the

six-vertex model is given in the book of Baxter.

R. Baxter, Exactly solved models in statistical

mechanics, Academic Press, San Diego, CA.

The six-vertex model with antiperiodic bound-

ary conditions is solved in the paper

M. T. Batchelor, R. J. Baxter, M. J. O’Rourke,

and C. M. Yung, J. Phys. A 28 (1995) 2759–

2770.
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The six-vertex model with DWBC was intro-

duced by Korepin,

V. E. Korepin, Commun. Math. Phys. 86

(1982), 391-418,

who derived an important recursion relation for

the partition function of the model. This lead

to a beautiful determinantal formula for the

partition function of Izergin,

A. G. Izergin, Sov. Phys. Dokl. 32 (1987),

878.

A detailed proof of this formula and its gen-

eralizations are given in the paper of Izergin,

Coker, and Korepin,

A. G. Izergin, D. A. Coker, and V. E. Korepin,

J. Phys. A, 25 (1992), 4315.
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The formula of Izergin is

ZN =
[sin(γ + t) sin(γ − t)]N

2

(∏N−1
n=0 n!

)2 τN ,

where τN is the Hankel determinant,

τN = det

(
di+k−2φ

dti+k−2

)

1≤i,k≤N

,

and

φ(t) =
sin(2γ)

sin(γ + t) sin(γ − t)
.

An elegant derivation of the Izergin formula
from the Yang-Baxter equation is given in the
papers of Korepin and Zinn-Justin,

V. Korepin and P. Zinn-Justin, J. Phys. A 33
No. 40 (2000), 7053

and Kuperberg,

G. Kuperberg, Intern. Math. Res. Notes
(1996), 139-150.
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One of the applications of the determinantal
formula is that it implies that the partition
function τN solves the Toda equation,

τNτ ′′N − τ ′N
2

= τN+1τN−1, (′) =
∂

∂t
,

This was used by Korepin and Zinn-Justin to
derive the free energy of the six-vertex model
with DWBC, assuming some Ansatz on the
behavior of subdominant terms in the large N

asymptotics of the free energy.

Another application of the Izergin determinan-
tal formula is that τN can be expressed in terms
of a partition function of a random matrix model.
The relation to the random matrix model was
obtained and used by Zinn-Justin,

P. Zinn-Justin, Phys. Rev. E 62 (2000), 3411-
3418,

This relation will be very important for us. It
can be described as follows.
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For the evaluation of the Hankel determinant,

it is convenient to use the integral representa-

tion of φ(t), namely, to write it in the form of

the Laplace transform,

φ(t) =
∫ ∞

−∞
etλm(λ)dλ,

where

m(λ) =
sinh λ

2(π − 2γ)

sinh λ
2π

.

Then, after some manipulations, we arrive at

the formula,

τN =

∏N−1
n=0 n!

πN(N−1)/2

∫
dMeTr [tM−V (M)],

where the integration is over the space of

N ×N Hermitian matrices, and m(x) = e−V (x).

The matrix model integral can be solved, fur-

thermore, in terms of orthogonal polynomials.
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Introduce monic polynomials Pn(x) = xn + . . . ,
orthogonal on the line with respect to the weight
etxm(x), so that

∫ ∞

−∞
Pn(x)Pm(x)etxm(x)dx = hnδnm.

Then it follows from the matrix integral that

τN =
N−1∏

n=0

hn.

(the Dyson formula). The orthogonal polyno-
mials satisfy the three term recurrent relation,

xPn(x) = Pn+1(x) + QnPn(x) + RnPn−1(x),

where Rn can be found as Rn = hn
hn−1

, This
gives that hn = h0

∏n
j=1 Rj, where

h0 =
∫ ∞

−∞
etxm(x)dx =

sin(2γ)

sin(γ + t) sin(γ − t)
.

Thus,

τN = hN
0

N−1∏

n=1

RN−n
n .

14



The main technical result of our work is the

asymptotics of Rn as n → ∞.

Theorem 1. (Asymptotics of the recurrent co-

efficient). As n → ∞,

Rn =
n2

γ2
[R + cos(nω)

∑

j: κj≤2

cjn
−κj

+ cn−2 + O(n−2−ε)], ε > 0,

where

R =


 π

2cos πζ
2




2

, ζ ≡
t

γ
; ω = π(1 + ζ) ;

κj = 1 +
2j

π
2γ − 1

,

and cj, c are some explicit numbers.
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Applications

Define

FN =
1

N2
ln

τN(∏N−1
n=0 n!

)2.

Theorem 2. (Leading asymptotics). As N →
∞,

FN = F + O(N−1),

where

F =
1

2
ln

R

γ2
= ln


 π

2γ cos πζ
2


 .

This coincides with the formula of Zinn-Justin,
obtained in the saddle-point approximation. Ear-
lier it was derived by Korepin and Zinn-Justin,
from an Ansatz for the free energy asymp-
totics.
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We have the identity,

∂2FN

∂t2
=

RN

N2
,

which is equivalent to the Toda equation.

By using this identity, we obtain the following

asymptotics.

Theorem 3. (Subdominant asymptotics). As

N → ∞,

∂2(FN − F)

∂t2
=

1

γ2
cos(Nω)

∑

j: κj≤2

cjN
−κj

+ cN−2 + O(N−2−ε).

This gives a quasiperiodic behavior, as N →
∞, of the second derivative of the free energy

subdominant terms.
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For the partition function ZN we obtain the
leading asymptotics,

1

N2
lnZN = f + O(N−1),

f = ln


π[cos(2t) − cos(2γ)]

4γ cos πt
2γ


 .

Let us compare this asymptotics with known
exact results. There are cases, for which the
model has been solved earlier by different meth-
ods: the free fermion line and A(1),A(2),A(3).

0 1

D

F

F

AF

a/c

b/c

1 A(1)

A(2)

A(3)

Phase diagram.
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The free fermion line, γ = π
4, |t| < π

4.

In this case the exact result is

ZN = 1,

see

F. Colomo and A. G. Pronko, Square ice, alter-

nating sign matrices, and classical orthogonal

polynomials. Preprint (arXiv:math-ph/0411076)

It implies f = 0. This agrees with our formula,

which also gives f = 0 when γ = π
4.
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The ASM (ice) point, γ = π
3 , t = 0. In this

case the weights are a = b = c =
√

3
2 , hence

ZN =
(√

3
2

)N2

A(N), where A(N) is the number

of configurations in the six-vertex model with
DWBC. There is a one-to-one correspondence
between the set of configurations in the six-
vertex model with DWBC and the set of N ×
N alternating sign matrices. By definition, an
alternating sign matrix (ASM) is a matrix with
the following properties:

• all entries of the matrix are −1,0,1;

• if we look at the sequence of (−1)’s and
1’s, they are alternating along any row and
any column;

• the sum of entries is equal to 1 along any
row and any column.
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The above correspondence is established as

follows: given a configuration of arrows on

edges, we assign (−1) to any vertex of type

(1), 1 to any vertex of type (2), and 0 to any

vertex of other types.

Example:

0 1 0 0

0 0 1 0

1 −1 0 1

0 1 0 0

A 4 × 4 configuration and the corresponding

ASM.
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For the number of ASMs there is an exact for-

mula:

A(N) =
N−1∏

n=0

(3n + 1)!n!

(2n)!(2n + 1)!
.

This formula was conjectured by Mills, Rob-

bins, and Rumsey, and proved by Zeilberger by

combinatorial arguments. Another proof was

given by Kuperberg, who used the Izergin for-

mula, and also by Colomo and Pronko, who

used orthogonal polynomials. From the for-

mula for A(N) we find that

ZN = C

(
9

8

)N2

N− 5
36
(
1 + O(N−2)

)
.

This gives f = ln 9
8 , which agrees with our

asymptotic formula.
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The x = 3 ASM point, γ = π
6 , t = 0. Here

the exact result is

ZN =
3N/2

2N2 A(N ; 3),

where




A(2m + 1;3) = 3m(m+1)
m∏

k=1

[
(3k − 1)!

(m + k)!

]2
,

A(2m + 2;3) = 3m(3m + 2)!m!

[(2m + 1)!]2
A(2m + 1;3) .

In this case A(N ; 3) counts the number of al-
ternating sign matrices with weight 3k, where

k is the number of (−1) entries. The formulae
for A(N ; 3) were conjectured by Mills, Rob-

bins, and Rumsey, and proved by Kuperberg,
and also by Colomo and Pronko. From these

formulae we obtain that

ZN = C

(
3

4

)N2

N
1
18
(
1 + O(N−2)

)
.

This gives f = ln 3
4 , which agrees with our

asymptotic formula.
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Zinn-Justin’s Conjecture

Zinn-Justin conjectured the asymptotics,

ZN ∼ CNκeN2f ,

i.e.,

lim
N→∞

ZN

CNκeN2f
= 1 .

The equivalent form of the Zinn-Justin con-

jecture is

1

N2
lnZN = f +

κ lnN

N2
+

lnC

N2
+ o(N−2).

The exact formulae on the free fermion line

and at A(1), A(3) support this conjecture, with

the value of κ given as

κ =





0, γ =
π

4
, |t| <

π

4
;

−
5

36
, γ =

π

3
, t = 0;

1

18
, γ =

π

6
, t = 0.
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We prove the Zinn-Justin conjecture and we

obtain an exact formula for the exponent κ.

Theorem 4.

ZN = CNκeN2f
(
1 + O(N−ε)

)
, ε > 0 ,

where

κ =
2γ2

3π(π − 2γ)
−

1

12
.

25



Sketch of the Proof

• Zinn-Justin’s rescaling of the matrix inte-
gral.

• Large N asymptotics of the equilibrium mea-
sure for the rescaled matrix integral.

• The Riemann-Hilbert problem for the rescaled
orthogonal polynomials.

• Undressing of the RH problem and the Deift-
Zhou nonlinear steepest descent method.

• Deformation of contours in the undressed
RH problem and the proof of the large N

asymptotics of the recurrent coefficient.

• Exact solution of the six-vertex model.
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