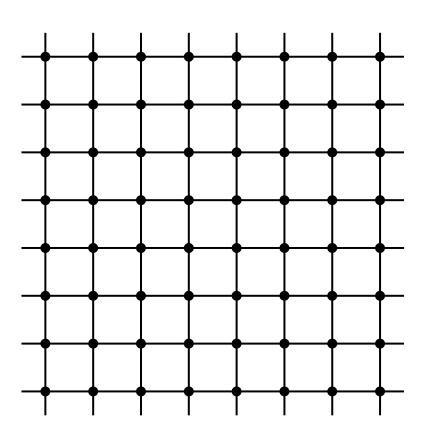
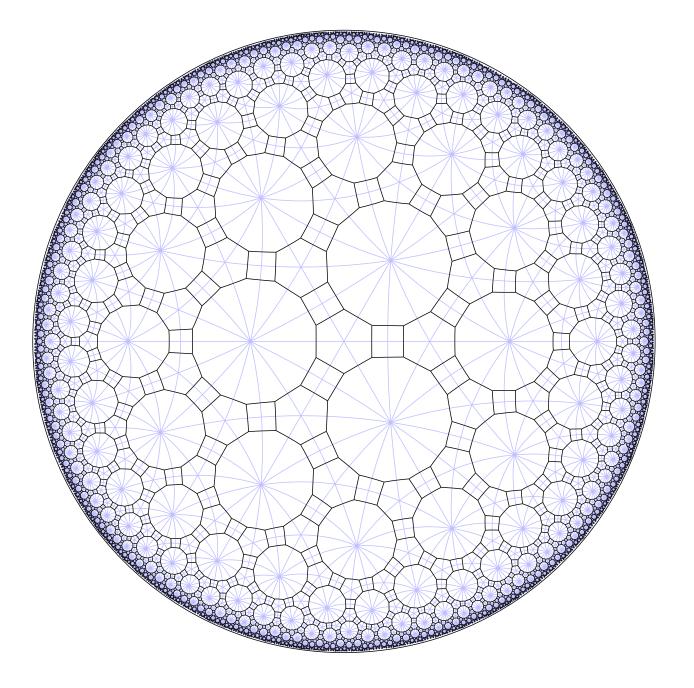
Unimodularity and Stochastic Processes

BY RUSSELL LYONS (Indiana University)

http://mypage.iu.edu/~rdlyons

We might explain unimodularity as a non-obvious use of group-invariance. Simplest setting: transitive graphs. A **graph** is a pair G = (V, E) with E a symmetric subset of $V \times V$. An **automorphism** of G is a permutation of V that induces a permutation of V that induces





Consider the following examples: Let G be an infinite transitive graph and let \mathbf{P} be an invariant percolation, i.e., an $\operatorname{Aut}(G)$ -invariant measure on 2^{V} , on 2^{E} , or even on $2^{\mathsf{V} \cup \mathsf{E}}$. Let ω be a configuration with distribution \mathbf{P} .

EXAMPLE: Could it be that ω is a single vertex? I.e., is there an invariant way to pick a vertex at random?

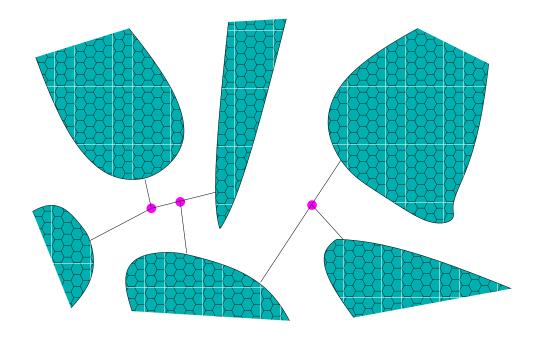
No: If there were, the assumptions would imply that the probability p that $\omega = \{x\}$ is the same for all x, whence an infinite sum of p would equal 1, an impossibility.

EXAMPLE: Could it be that ω is a finite nonempty vertex set? I.e., is there an invariant way to pick a finite set of vertices at random?

No: If there were, then we could pick one of the vertices of the finite set at random (uniformly), thereby obtaining an invariant probability measure on singletons.

Cluster means connected component of ω .

A vertex x is a **furcation** of a configuration ω if removing x would split the cluster containing x into at least 3 infinite clusters.



EXAMPLE: The number of furcations is **P**-a.s. 0 or ∞ . For the set of furcations has an invariant distribution on 2^{\vee} .

Example: **P**-a.s. each cluster has 0 or ∞ furcations.

This does not follow from elementary considerations as the previous examples do (we can prove this).

But suppose we have the following kind of conservation of mass.

We call $f: V \times V \to [0, \infty]$ diagonally invariant if $f(\gamma x, \gamma y) = f(x, y)$ for all $x, y \in V$ and $\gamma \in \operatorname{Aut}(G)$.

The Mass-Transport Principle. For all diagonally invariant f, we have

$$\sum_{x \in \mathbf{V}} f(o, x) = \sum_{x \in \mathbf{V}} f(x, o),$$

where o is any fixed vertex of G.

Suppose this holds.

Write K(x) for the cluster containing x.

Now, given the configuration ω , define $F(x, y; \omega)$ to be 0 if K(x) has 0 or ∞ furcations, but to be 1/N if y is one of N furcations of K(x) and $1 \le N < \infty$. Then F is diagonally invariant, whence the Mass-Transport Principle applies to $f(x, y) := \mathbf{E}F(x, y; \omega)$. Since $\sum_{y} F(x, y; \omega) \le 1$, we have

$$\sum_{x} f(o, x) \le 1. \tag{1}$$

If any cluster has a finite positive number of furcations, then each of them receives infinite mass. More precisely, if o is one of a finite number of furcations of K(o), then $\sum_{x} F(x, o; \omega) = \infty$. Therefore, if with positive probability some cluster has a finite positive number of furcations, then with positive probability o is one of a finite number of furcations of K(o), and therefore $\mathbf{E}\left[\sum_{x} F(x, o; \omega)\right] = \infty$. That is, $\sum_{x} f(x, o) = \infty$, which contradicts the Mass-Transport Principle and (1).

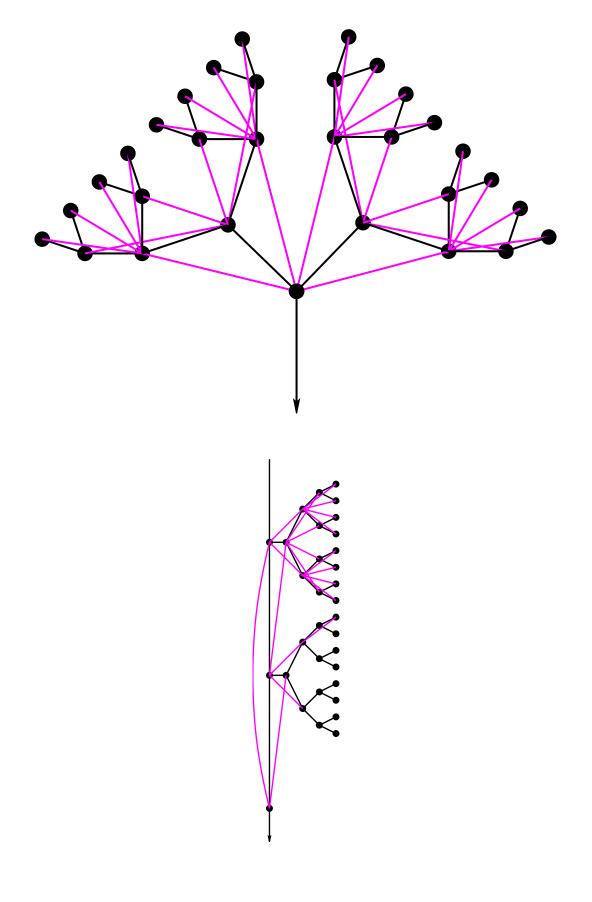
Call G unimodular if the Mass-Transport Principle holds for G. Which graphs enjoy this wonderful property? All graphs do that are properly embedded in euclidean or hyperbolic space with a transitive action of isometries of the space. All Cayley graphs do:

We say that a group Γ is **generated** by a subset S of its elements if the smallest subgroup containing S is all of Γ . In other words, every element of Γ can be written as a product of elements of the form s or s^{-1} with $s \in S$. If Γ is generated by S, then we form the associated **Cayley graph** G with vertices Γ and (unoriented) edges $\{(x, xs); x \in G, s \in S \cup S^{-1}\}$. Because S generates Γ , the graph is connected. Cayley graphs are transitive since left multiplication by yx^{-1} is an automorphism of G that carries x to y.

Now if $f: \Gamma^2 \to [0, \infty]$ is diagonally invariant, then for o the identity of Γ and any $x \in \Gamma$, we have $f(o, x) = f(x^{-1}, o)$. Since inversion preserves counting measure on Γ , we obtain the Mass-Transport Principle.

(For a general transitive graph, the Mass-Transport Principle is equivalent to unimodularity of Haar measure on $\operatorname{Aut}(G)$. History: Adams (1990), van den Berg and Meester (1991), Häggström (1997), Benjamini, L., Peres, Schramm (1999). I ignore other uses of unimodularity in probability that go back considerably longer.)

Non-example: the "grandparent" graph of Trofimov:



The grandparent graph is not unimodular: let f(x, y) be the indicator that y is the grandparent of x. Then

$$\sum_{x} f(o, x) = 1$$

while

$$\sum_{x} f(x, o) = 4.$$

Another definition: G is **amenable** if there is a sequence K_n of finite vertex sets in G such that the number of neighbors of K_n divided by the size of K_n tends to 0.

Example: \mathbb{Z}^d

Non-examples: regular trees of degree at least 3; hyperbolic tessellations.

All amenable transitive graphs are unimodular (Soardi and Woess).

A selection of theorems:

Bernoulli(p) percolation on G puts each edge in ω independently with probability p. The probability of an infinite cluster in ω is 0 or 1 by Kolmogorov's 0-1 Law. It increases in p, so there is a **critical** value p_c where it changes. What is the probability of an infinite cluster at p_c ? Benjamini and Schramm conjectured it is 0 on any transitive graph with $p_c < 1$. It was known for \mathbb{Z}^d for d = 2 (Kesten) and $d \ge 19$ (Hara and Slade).

Theorem (BLPS 1999). This is true for all non-amenable transitive unimodular graphs.

It is unknown whether this holds for non-unimodular graphs.

Theorem (Häggström; Häggström and Peres; L. and Peres; L. and Schramm). Let G be a transitive unimodular graph. Given invariant random transition probabilities $p_{\omega}(x,y)$ and an invariant p-stationary measure $\nu_{\omega}(x)$, biasing ω by $\nu_{\omega}(o)$ gives a measure that is invariant from the point of view of the walker.

EXAMPLE: Degree-biasing for simple random walk on the clusters.

This is false on non-unimodular graphs.

Theorem (Aldous and L.). Let G be a transitive unimodular graph. Given invariant random symmetric rates $r_{\omega}(x,y)$ such that $\mathbf{E}\left[\sum_{x} r(o,x)\right] < \infty$, the associated continuous-time random walk has no explosions a.s.

This is false on non-unimodular graphs.

Theorem (Fontes and Mathieu; Aldous and L.). Let G be a transitive unimodular graph. Given invariant random pairs of symmetric rates (r_{ω}, R_{ω}) such that

$$r_{\omega}(x,y) \le R_{\omega}(x,y)$$

for all x, y and almost all ω , let $p_t(o, o)$ and $P_t(o, o)$ be the expected [annealed] return probabilities for the associated continuous-time (minimal) random walks. Then for all t > 0, we have

$$p_t(o,o) \ge P_t(o,o)$$
.

It is unknown whether this holds for non-unimodular graphs.

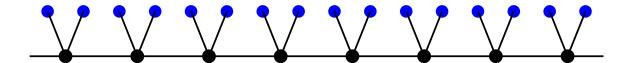
Extensions of unimodularity:

On finite graphs, the Mass-Transport Principle is obvious if we take o to be a uniform random "root" and average over o:

$$\mathbf{E}\left[\sum_{x} f(o, x)\right] = \mathbf{E}\left[\sum_{x} f(x, o)\right]. \tag{2}$$

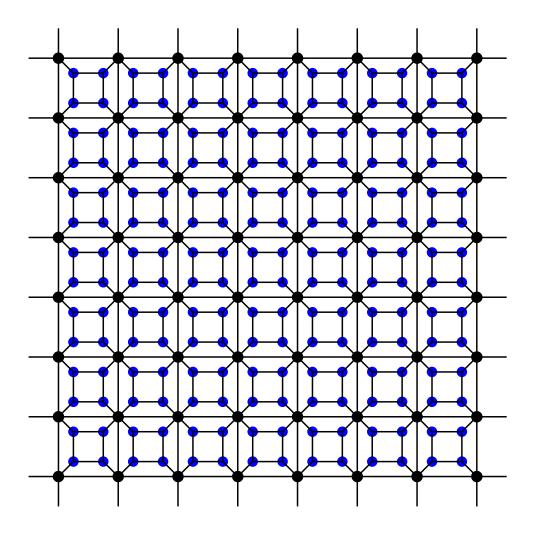
This is just interchanging the order of summation. But it is crucial that the root be chosen uniformly. Indeed, (2) characterizes the uniform measure.

Consider this graph:



We should choose o to be a blue vertex with probability twice that of a black vertex in order that (2) hold.

With this graph:



we should choose o to be a blue vertex with probability four times that of a black vertex in order that (2) hold.

What about the hyperbolic triangle tessellation?

We call G quasi-transitive if Aut(G) acts quasi-transitively on V (i.e., there are only finitely many orbits). If G is quasi-transitive and amenable, then each orbit has a natural frequency (BLPS), which should be used for the probability of choosing a representative from that orbit for o in (2).

If there are probabilities α_i for the orbit representatives o_1, \ldots, o_L such that choosing o_i with probability α_i makes (2) true, then we call G unimodular.

How do we tell? The following is necessary and sufficient: if x is in the orbit of o_i and y is in the orbit of o_j , then

$$\frac{|S(x)y|}{|S(y)x|} = \frac{\alpha_j}{\alpha_i},$$

where $S(x) := \{ \gamma \in \text{Aut}(G) ; \gamma x = x \}.$

Consider now the space of rooted graphs or networks. In fact, consider only rooted-isomorphism classes of networks. A probability measure on this space is **unimodular** if the Mass-Transport Principle holds:

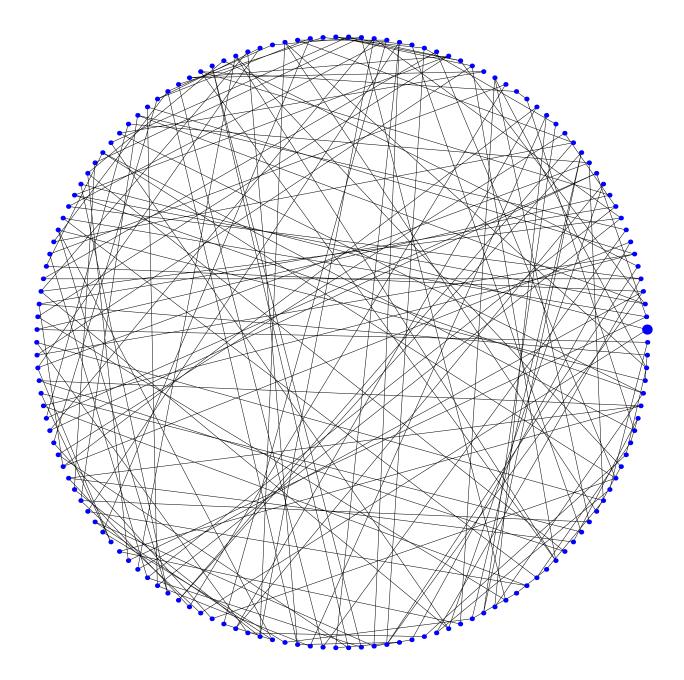
$$\mathbf{E}\left[\sum_{x\in\mathbf{V}(G)}f(G;o,x)\right] = \mathbf{E}\left[\sum_{x\in\mathbf{V}(G)}f(G;x,o)\right] \quad (3)$$

for all Borel non-negative f that are invariant under isomorphisms.

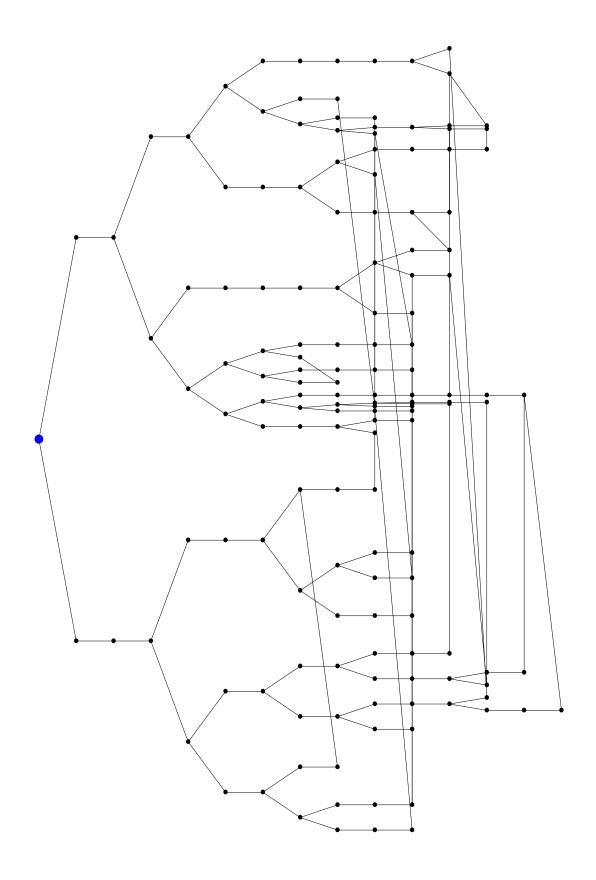
For example, as observed by Benjamini and Schramm and by Aldous and Steele, all weak limits of uniformly rooted finite networks are unimodular.

EXAMPLE: If we want the offspring distribution $\langle p_k \rangle$ for a unimodular version UGW of Galton-Watson trees, let $r_k := c^{-1}p_{k-1}/k$ for $k \geq 1$ and $r_0 := 0$, where $c := \sum_{k \geq 0} p_k/(k+1)$. With the sequence $\langle r_k \rangle$ and n vertices, give each vertex k balls with probability r_k , independently. Then pair the balls at random and place an edge for each pair between the corresponding vertices. There may be one ball left over; if so, ignore it. In the limit, we get a random tree where the root has degree k with probability r_k and each neighbor of the root has an independent Galton-Watson($\langle p_k \rangle$) tree.

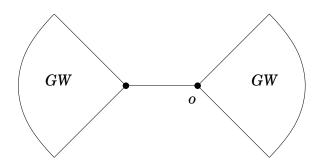
All the theorems given for transitive unimodular graphs hold for unimodular random rooted networks (Aldous-L.).



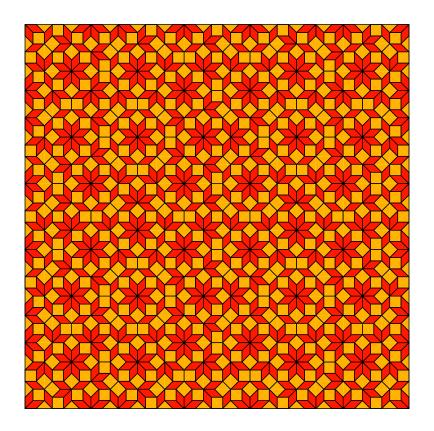
(150 vertices with $p_1 = p_2 = 1/2$)



EXAMPLE: Biasing UGW by the degree of the root gives a stationary measure for simple random walk (L., Pemantle and Peres):



EXAMPLE: Aperiodic tessellations:



Like Palm measure.