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We might explain unimodularity as a non-obvious
use of group-invariance. Simplest setting: transitive
graphs. A graph is a pair G = (V,E) with E a
symmetric subset of V x V. An automorphism of
(G is a permutation of V that induces a permutation
of E. The set of all automorphisms of G forms a
group, Aut(G). We call G transitive if Aut(G) acts

transitively on V (i.e., there is only one orbit).
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Consider the following examples: Let G be an infi-
nite transitive graph and let P be an invariant per-
colation, i.e., an Aut(G)-invariant measure on 2V, on
25 or even on 2VYE. Let w be a configuration with
distribution P.

ExAMPLE: Could it be that w is a single vertex?
I.e., is there an invariant way to pick a vertex at
random?

No: If there were, the assumptions would imply that
the probability p that w = {x} is the same for all
x, whence an infinite sum of p would equal 1, an

impossibility.

ExAMPLE: Could it be that w is a finite nonempty
vertex set? I.e., is there an invariant way to pick a

finite set of vertices at random?

No: If there were, then we could pick one of the ver-
tices of the finite set at random (uniformly), thereby
obtaining an invariant probability measure on sin-

gletons.



Cluster means connected component of w.

A vertex x is a furcation of a configuration w if
removing x would split the cluster containing x into

at least 3 infinite clusters.

Ei,

ExXAMPLE: The number of furcations is P-a.s. 0 or

0o. For the set of furcations has an invariant distri-

bution on 2V.
ExAMPLE: P-a.s. each cluster has 0 or oo furcations.

This does not follow from elementary considerations

as the previous examples do (we can prove this).



But suppose we have the following kind of conserva-

tion of mass.

We call f:V xV — [0,¢0] diagonally invariant if
f(yvx,vy) = f(x,y) for all x,y € V and v € Aut(G).

THE MASS-TRANSPORT PRINCIPLE. For all diag-

onally invariant f, we have

Zf(07x) :Zf(x70)a

xeV xeV

where o 1s any fixed vertex of G.

Suppose this holds.

Write /K (z) for the cluster containing x.



Now, given the configuration w, define F(x,y;w)
to be 0 if K(x) has 0 or oo furcations, but to be
1/N if y is one of N furcations of K(x) and 1 <
N < oo. Then F' is diagonally invariant, whence
the Mass-Transport Principle applies to f(x,y) :=
EF(z,y;w). Since ) F(z,y;w) <1, we have

> flo,x) <1. (1)

If any cluster has a finite positive number of furca-
tions, then each of them receives infinite mass. More
precisely, if o is one of a finite number of furcations
of K(o), then ) F(z,0;w) = co. Therefore, if with
positive probability some cluster has a finite posi-
tive number of furcations, then with positive prob-
ability o is one of a finite number of furcations of
K (o), and therefore E[Zx F(z,o;w)| = oo. That
is, >, f(z,0) = oo, which contradicts the Mass-
Transport Principle and (1).



Call G unimodular if the Mass-Transport Princi-
ple holds for G. Which graphs enjoy this wonderful
property? All graphs do that are properly embed-
ded in euclidean or hyperbolic space with a transitive

action of isometries of the space. All Cayley graphs
do:

We say that a group I' is generated by a subset S
of its elements if the smallest subgroup containing .S
is all of I'. In other words, every element of I' can
be written as a product of elements of the form s or
s7! with s € S. If I is generated by S, then we form
the associated Cayley graph G with vertices I' and
(unoriented) edges {(z,zs); z € G, s € SUS*}.
Because S generates I', the graph is connected. Cay-
ley graphs are transitive since left multiplication by

yx~ ! is an automorphism of G that carries x to y.



Now if f : I'* — [0, 00] is diagonally invariant, then
for o the identity of I' and any * € I, we have
f(o,z) = f(x~1, 0). Since inversion preserves count-
ing measure on [, we obtain the Mass-Transport

Principle.

(For a general transitive graph, the Mass-Transport
Principle is equivalent to unimodularity of Haar mea-
sure on Aut((G). History: Adams (1990), van den
Berg and Meester (1991), Haggstrom (1997), Ben-
jamini, L., Peres, Schramm (1999). I ignore other
uses of unimodularity in probability that go back

considerably longer.)

Non-example: the “grandparent” graph of Trofimov:






The grandparent graph is not unimodular: let f(x,y)
be the indicator that y is the grandparent of x. Then

while

Another definition: G is amenable if there is a se-
quence K, of finite vertex sets in G such that the
number of neighbors of K, divided by the size of
K,, tends to 0.

EXAMPLE: Z¢

Non-examples: regular trees of degree at least 3; hy-

perbolic tessellations.

All amenable transitive graphs are unimodular (Soardi
and Woess).



A selection of theorems:

Bernoulli(p) percolation on GG puts each edge in w
independently with probability p. The probability
of an infinite cluster in w is 0 or 1 by Kolmogorov’s
0-1 Law. It increases in p, so there is a critical
value p. where it changes. What is the probability
of an infinite cluster at p.? Benjamini and Schramm

conjectured it is 0 on any transitive graph with p. <
1. It was known for Z¢ for d = 2 (Kesten) and d > 19
(Hara and Slade).

THEOREM (BLPS 1999). This is true for all non-

amenable transitive unimodular graphs.

It is unknown whether this holds for non-unimodular

graphs.



THEOREM (HAGGSTROM; HAGGSTROM AND PERES;
L. AND PERES; L. AND SCHRAMM). Let G be a
transitive unimodular graph. Given invariant ran-
dom transition probabilities p.,(x,y) and an invari-
ant p-stationary measure v, (x), biasing w by v, (0)
gives a measure that is tnvariant from the point of

view of the walker.

EXAMPLE: Degree-biasing for simple random walk

on the clusters.

This is false on non-unimodular graphs.

THEOREM (ALDOUS AND L.). Let G be a transitive
unimodular graph. Given invariant random symmet-
ric rates ro,(z,y) such that E| Y r(o,z)] < oo, the
associated continuous-time random walk has no ex-

plosions a.s.

This is false on non-unimodular graphs.



THEOREM (FONTES AND MATHIEU; ALDOUS AND
L.). Let G be a transitive unimodular graph. Given

invariant random pairs of symmetric rates (rw, Rw)
such that

Tw(xvy) < Rw(ﬂf,y)

for all x,y and almost all w, let ps(0,0) and P;(0,0)
be the expected [annealed] return probabilities for the
associated continuous-time (minimal) random walks.

Then for allt > 0, we have

pt(0,0) > Pi(0,0).

It is unknown whether this holds for non-unimodular

graphs.



Extensions of unimodularity:

On finite graphs, the Mass-Transport Principle is ob-
vious if we take o to be a uniform random “root” and

average over o:
E[) flo.z)] =E[) f(z,0)]. (2)

This is just interchanging the order of summation.
But it is crucial that the root be chosen uniformly.

Indeed, (2) characterizes the uniform measure.

Consider this graph:

VVVVVVVY

We should choose o to be a blue vertex with proba-
bility twice that of a black vertex in order that (2)
hold.




With this graph:

we should choose o to be a blue vertex with proba-

bility four times that of a black vertex in order that

(2) hold.

What about the hyperbolic triangle tessellation?



We call G quasi-transitive if Aut(G) acts quasi-
transitively on V (i.e., there are only finitely many
orbits). If G is quasi-transitive and amenable, then
each orbit has a natural frequency (BLPS), which
should be used for the probability of choosing a rep-

resentative from that orbit for o in (2).

If there are probabilities «; for the orbit representa-
tives o1, ..., 0, such that choosing o; with probabil-

ity a; makes (2) true, then we call G unimodular.

How do we tell? The following is necessary and suf-
ficient: if = is in the orbit of 0, and y is in the orbit

of 0;, then
S@yl o
1S(y)z| o

where S(z) := {7 € Aut(GQ); yo = z}.




Consider now the space of rooted graphs or networks.
In fact, consider only rooted-isomorphism classes of
networks. A probability measure on this space is

unimodular if the Mass-Transport Principle holds:

Z f(Gso,2)] = Z f(G;z,0)]  (3)

2EV(Q) 2EV(Q)

for all Borel non-negative f that are invariant under

isomorphisms.

For example, as observed by Benjamini and Schramm
and by Aldous and Steele, all weak limits of uni-

formly rooted finite networks are unimodular.



EXAMPLE: If we want the offspring distribution (py)
for a unimodular version UGW of Galton-Watson
trees, let vy := ¢ lpy_1/k for k > 1 and rq := 0,
where ¢ := ), - pr/(k+1). With the sequence (ry)
and n Vertices,_give each vertex k£ balls with proba-
bility 7, independently. Then pair the balls at ran-
dom and place an edge for each pair between the
corresponding vertices. There may be one ball left
over; if so, ignore it. In the limit, we get a random
tree where the root has degree k with probability rg
and each neighbor of the root has an independent
Galton-Watson((px)) tree.

All the theorems given for transitive unimodular graphs

hold for unimodular random rooted networks (Aldous-
L.).
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EXAMPLE: Biasing UGW by the degree of the root

gives a stationary measure for simple random walk
(L., Pemantle and Peres):

EXAMPLE: Aperiodic tessellations:

Like Palm measure.



