The corrector approach to random walk in random environment

Marek Biskup

(UCLA)

Joint work with
Noam Berger (UCLA)

Random walk among random conductances

 Uniformly elliptic caseGraph \mathbb{Z}^{d}, edges \mathbb{B} (nearest neighbors only)
i.i.d. conductances $\left(\omega_{b}: b \in \mathbb{B}\right)$; law \mathbb{P}, expectation \mathbb{E}

Uniform ellipticity $\mathbb{P}\left(\omega_{b} \geq \epsilon\right)=1$ for some $\epsilon>0$
Random walk X_{0}, X_{1}, \ldots with quenched law $P_{z, \omega}$

$$
P_{z, \omega}\left(X_{n+1}=x+e \mid X_{n}=x\right)=\frac{\omega_{(x, x+e)}}{\sum_{e^{\prime}:\left|e^{\prime}\right|=1} \omega_{\left(x, x+e^{\prime}\right)}} \quad|e|=1
$$

Initial condition

$$
P_{z, \omega}\left(X_{0}=z\right)=1
$$

Note: annealed law $Q(A)=\mathbb{E}_{z} P_{z, \omega}(A)$ not Markov

Bond percolation on \mathbb{Z}^{d}

Away from uniform ellipticity

Allow $p \stackrel{\text { def }}{=} \mathbb{P}\left(\omega_{b}>0\right)<1$ but $p>p_{c}(d)$ (requires $d \geq 2$)
Case of interest:

$$
\omega_{b}= \begin{cases}1 & \text { with probability } p \\ 0 & \text { otherwise }\end{cases}
$$

Let $\mathscr{C}_{\infty}=\mathscr{C}_{\infty}(\omega)$ be the sites "connected to infinity"
Burton-Keane's Theorem: \mathscr{C}_{∞} is connected with probability 1
Denote $\Omega_{0}=\left\{0 \in \mathscr{C}_{\infty}\right\}$ and $\mathbb{P}_{0}(\cdot)=\mathbb{P}\left(\cdot \mid \Omega_{0}\right)$

A question

Percolation restricted to infinite slab
Is the probability of $\{$ walk exits through top side $\}$ close to $1 / 2$?

- Trivially true for the annealed measure.
- Quenched measure: Prove a Functional CLT.

Main result

Theorem 1 (Functional CLT for RW on percolation cluster)

Let $d \geq 2, p>p_{c}(d)$ and let $\omega \in \Omega_{0}$. Let $\left(X_{n}\right)_{n \geq 0}$ be the random walk with law $P_{0, \omega}$ and let

$$
B_{n}(t)=\frac{1}{\sqrt{n}}\left(X_{\lfloor t n\rfloor}+(t n-\lfloor t n\rfloor)\left(X_{\lfloor t n\rfloor+1}-X_{\lfloor t n\rfloor}\right)\right), \quad t \geq 0
$$

Then for all $T>0$ and \mathbb{P}_{0}-a.e. ω, the law of $\left(B_{n}(t): 0 \leq t \leq T\right)$ on $\left(C[0, T], \mathscr{W}_{T}\right)$ converges weakly to the law of an isotropic (non-degenerate) Brownian motion.

Similarly for variants of above RW (lazy walk, continuous time)

Previous results

- Quenched problem in $d \geq 4$:

Sidoravicius \& Sznitman (2004)

- Annealed problem:

De Masi \& Ferrari \& Goldstein \& Wick (1989)

- Directed version:

Rassoul-Agha \& Sepäläinen (2004)

- Uniformly elliptic case:

Kozlov (1985), Kipnis \& Varadhan (1986),
Sidoravicius \& Sznitman (2004), Fontes \& Mathieu (2004)

- Heat-kernel estimates:

Nash, Varopoulos, Aronson, ..., Heicklen \& Hoffman
Mathieu \& Remy (2004), Barlow (2004)

Simultaneous results

- Same theorem in $d=2,3$

Mathieu \& Piatnitski (2005)
Key word: homogenization theory

Main idea

Geometric embedding of \mathscr{C}_{∞} :

The walk $\left(X_{n}\right)$ is not a martingale.

Main idea

Harmonic embedding of $\mathscr{C}_{\infty}: x \mapsto x+\chi(x, \omega)$

The walk $X_{n}+\chi\left(X_{n}, \omega\right)$ is a martingale.

Corrector

Analytical construction

Kozlov, Kipnis \& Varadhan, Olla, Mathieu \& Piatnitski
Proposition $2\left(d \geq 2, p>p_{c}\right)$
There is $\chi: \mathbb{Z}^{d} \times \Omega_{0} \rightarrow \mathbb{R}^{d}$ such that, for \mathbb{P}_{0}-a.e. $\omega \in \Omega_{0}$:
(0) $\chi(0, \omega)=0$
(1) $x \mapsto x+\chi(x, \omega)$ is harmonic on $\mathscr{C}_{\infty}(\omega)$
(2) χ is a gradient field on \mathscr{C}_{∞} :

$$
\chi(x, \omega)-\chi(y, \omega)=\chi\left(x-y, \tau_{y} \omega\right), \quad x, y \in \mathscr{C}_{\infty}
$$

(3) The gradients of χ are square integrable:

$$
\mathbb{E}_{0}\left([\chi(e, \omega)-\chi(0, \omega)]^{2} 1_{\left\{\omega_{e}=1\right\}}\right)<C, \quad|e|=1
$$

Sketch of proof I.

L^{2}-calculus on Ω

Unit vectors $\mathcal{B}=\left\{ \pm e_{1}, \ldots, \pm e_{d}\right\}$
Vector field (flow) $v: \Omega \times \mathcal{B} \rightarrow \mathbb{R}^{d}$
Consistency: $v(\omega,-b)=-v\left(\tau_{-b} \omega, b\right)$
Inner product on $L^{2}(\Omega \times \mathcal{B})$:

$$
(v, w)=\frac{1}{2} \mathbb{E}_{0}\left[\sum_{b \in \mathcal{B}} \omega_{b} v(\omega, b) w(\omega, b)\right]
$$

Gradient field: For $\phi: \Omega \rightarrow \mathbb{R}^{d}$ let

$$
(\nabla \phi)(\omega, b)=\phi\left(\tau_{b} \omega\right)-\phi(\omega)
$$

Natural L^{2}-subspace

$$
L_{\nabla}^{2}=\overline{\{\nabla \phi: \phi \text {-local }\}} \subset L^{2}(\Omega \times \mathcal{B})
$$

Sketch of proof II.

Orthogonal decomposition

Fact: $w \in\left(L_{\nabla}^{2}\right)^{\perp} \Leftrightarrow \operatorname{div} w=0$ (conserved flow)

$$
(\operatorname{div} w)(\omega)=\sum_{b \in \mathcal{B}} \omega_{b} v(\omega, b)
$$

Now take $g(\omega, b)=b$ and define $\chi=\chi(b, \omega)$ by

$$
\chi=\operatorname{proj}_{L_{V}^{2}}(-g)
$$

Then $g+\chi \in\left(L_{\nabla}^{2}\right)^{\perp}$, i.e., $\operatorname{div}(g+\chi)=0$. This gives

$$
\sum_{b \in \mathcal{B}} \omega_{b}(b+\chi(b, \omega))=0
$$

$g+\chi$ obeys cycle condition \Rightarrow can be extended to \mathscr{C}_{∞}

Deformed random walk

The listed properties make

$$
M_{n}=X_{n}+\chi\left(X_{n}, \omega\right)
$$

an L^{2}-martingale.
Ergodic theorem: $\mathscr{F}_{n}=\sigma\left(M_{1}, \ldots, M_{n}\right)$

$$
\frac{1}{n} \sum_{k=0}^{n-1} E_{0, \omega}\left(\left|M_{k+1}-M_{k}\right|^{2} \mid \mathscr{F}_{k}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}_{0} E_{0, \omega}\left(\left|M_{1}\right|^{2}\right)
$$

Lindenberg-Feller Martingale CLT \Rightarrow
The deformed walk scales to Brownian motion

Controlling the deformation

$d=2$ for now

Need to show that

$$
\max _{1 \leq k \leq n}\left|\chi\left(X_{k}, \omega\right)\right|=o(\sqrt{n}) .
$$

Since $M_{n}=O(\sqrt{n})$, it suffices to prove:

Controlling the deformation

$d=2$ for now

Need to show that

$$
\max _{1 \leq k \leq n}\left|\chi\left(X_{k}, \omega\right)\right|=o(\sqrt{n}) .
$$

Since $M_{n}=O(\sqrt{n})$, it suffices to prove:

Proposition $3(d=2)$
For \mathbb{P}_{0}-a.e. $\omega \in \Omega_{0}$,

$$
\lim _{n \rightarrow \infty} \max _{\substack{x \in \mathscr{C} \infty(\omega) \\|X| \leq n}} \frac{|\chi(x, \omega)|}{n}=0 .
$$

Some ergodic theory Induced shift

For $\omega \in \Omega_{0}$, let $\left(x_{n}\right)_{n \in \mathbb{Z}}$ be the intersections of $\mathscr{C}_{\infty}(\omega)$ with x-axis labeled so that $x_{n}<x_{n+1}$ and $x_{0}=0$.

Some ergodic theory

 Induced shiftFor $\omega \in \Omega_{0}$, let $\left(x_{n}\right)_{n \in \mathbb{Z}}$ be the intersections of $\mathscr{C}_{\infty}(\omega)$ with x-axis labeled so that $x_{n}<x_{n+1}$ and $x_{0}=0$.

Consider the induced shift $\sigma: \Omega_{0} \rightarrow \Omega_{0}$

$$
\sigma(\omega)=\tau_{x_{1}(\omega)}(\omega), \quad \omega \in \Omega_{0}
$$

Standard arguments show:

Some ergodic theory

 Induced shiftFor $\omega \in \Omega_{0}$, let $\left(x_{n}\right)_{n \in \mathbb{Z}}$ be the intersections of $\mathscr{C}_{\infty}(\omega)$ with x-axis labeled so that $x_{n}<x_{n+1}$ and $x_{0}=0$.

Consider the induced shift $\sigma: \Omega_{0} \rightarrow \Omega_{0}$

$$
\sigma(\omega)=\tau_{\chi_{1}(\omega)}(\omega), \quad \omega \in \Omega_{0}
$$

Standard arguments show:

Lemma 4 ($d \geq 2$)
σ is \mathbb{P}_{0}-preserving and ergodic.

Along coordinate axes

Now set

$$
\Psi(\omega)=\chi\left(x_{1}(\omega), \omega\right)-\chi(0, \omega)
$$

Along coordinate axes

Now set

$$
\Psi(\omega)=\chi\left(x_{1}(\omega), \omega\right)-\chi(0, \omega)
$$

Then

$$
\chi\left(x_{n}(\omega), \omega\right)=\sum_{k=1}^{n} \Psi \circ \sigma^{k}(\omega)
$$

Along coordinate axes

Now set

$$
\Psi(\omega)=\chi\left(x_{1}(\omega), \omega\right)-\chi(0, \omega)
$$

Then

$$
\chi\left(x_{n}(\omega), \omega\right)=\sum_{k=1}^{n} \Psi \circ \sigma^{k}(\omega)
$$

But $\Psi \in L^{1}$ (Antal-Pisztora) and

$$
\mathbb{E}_{0}(\Psi)=0
$$

(Ψ is gradient) so the Ergodic Theorem implies:
Corollary $5(d \geq 2)$
For \mathbb{P}_{0}-a.e. $\omega \in \Omega_{0}$,

$$
\lim _{n \rightarrow \infty} \frac{\chi\left(x_{n}(\omega), \omega\right)}{n}=0
$$

Weaving webs of goodness

Good lines and sites

Let $K, \epsilon>0$ and $\omega \in \Omega_{0}$. The x-axis is called good in ω if

$$
|\chi(x, \omega)| \leq K+\epsilon|x|
$$

for every $x \in \mathscr{C}_{\infty}$ on x-axis.

A site $x \in \mathbb{Z}^{d}$ is called good in ω if

- $x \in \mathscr{C}_{\infty}(\omega)$
- Both x and y-axes are good in $\tau_{x}(\omega)$.

Weaving webs of goodness

Good grid

For \mathbb{P}_{0}-a.e. ω and all $\epsilon>0$:

- Origin is good if K is large
- Good sites appear with positive density along both axes

Weaving webs of goodness

Sublinearity everywhere

Weaving webs of goodness

Sublinearity everywhere

Maximum on good grid: $\leq 2 K+2 \epsilon n$.

Weaving webs of goodness

Sublinearity everywhere

Maximum on good grid: $\leq 2 K+2 \epsilon n$.

Weaving webs of goodness

Sublinearity everywhere

Maximum on good grid: $\leq 2 K+2 \epsilon n$.

AND the fact that
$x \mapsto x+\chi(x, \omega)$
is harmonic

Weaving webs of goodness

Sublinearity everywhere

Maximum on good grid: $\leq 2 K+2 \epsilon n$.

AND the fact that
$x \mapsto x+\chi(x, \omega)$
is harmonic

imply:

$$
\max _{\substack{\left.x \in \mathscr{C}_{\infty}(\omega) \\|x| \leq n\right)}}|\chi(x, \omega)| \leq 2 K+2 \epsilon n+o(n)
$$

Higher dimensions

A density bound on corrector

Embarrassing fact:
We do not know how to extend this argument to $d \geq 3$
But we can prove:

Proposition $6(d \geq 3)$
For \mathbb{P}_{0}-a.e. $\omega \in \Omega_{0}$ and all $\epsilon>0$,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n^{d}} \sum_{\substack{x \in \mathscr{C}_{\infty}(\omega) \\|x| \leq n}} 1_{\{|x(x, \omega)| \geq \epsilon n\}}=0
$$

Higher dimensions

Main idea

$n \times n$ square in \mathbb{Z}^{3}
WANT:

$$
|\chi(x, \omega)-\chi(y, \omega)| \leq \epsilon n
$$

for (most of) good
$x, y \in \mathscr{C}_{\infty} \cap$ square

Higher dimensions

Main idea

$n \times n$ square in \mathbb{Z}^{3}

WANT:

$$
|\chi(x, \omega)-\chi(y, \omega)| \leq \epsilon n
$$

for (most of) good
$x, y \in \mathscr{C}_{\infty} \cap$ square

Higher dimensions

Main idea

$n \times n$ square in \mathbb{Z}^{3}
WANT:

$$
|\chi(x, \omega)-\chi(y, \omega)| \leq \epsilon n
$$

for (most of) good
$x, y \in \mathscr{C}_{\infty} \cap$ square

For L large x and y are connected by path shorter than $4 n$

Higher dimensions

Main idea

Finally, perform induction on dimension:

Final touches

To finish, we prove tightness using
Theorem 7 (Barlow 2004)
For \mathbb{P}_{0}-a.e. ω and all $x \in \mathscr{C}_{\infty}(\omega)$,

$$
P_{0, \omega}\left(X_{n}=x\right) \leq \frac{c_{1}}{n^{d / 2}} \exp \left\{-c_{2} \frac{|x|^{2}}{n}\right\}
$$

once n is sufficiently large.
and focus on finite-dimensional distributions.

Final touches

To finish, we prove tightness using
Theorem 7 (Barlow 2004)
For \mathbb{P}_{0}-a.e. ω and all $x \in \mathscr{C}_{\infty}(\omega)$,

$$
P_{0, \omega}\left(X_{n}=x\right) \leq \frac{c_{1}}{n^{d / 2}} \exp \left\{-c_{2} \frac{|x|^{2}}{n}\right\}
$$

once n is sufficiently large. and focus on finite-dimensional distributions.

From Proposition 6, we then have

$$
\frac{\left|\chi\left(X_{n}, \omega\right)\right|}{\sqrt{n}} \underset{n \rightarrow \infty}{\longrightarrow} 0 \quad \text { in } P_{0, \omega} \text {-probability }
$$

i.e., $X_{n} / \sqrt{n}=M_{n} / \sqrt{n}+o(1)$. This implies the CLT in $d \geq 3$.

Future research

Everybody welcome

Limit laws:

- Maximum bound on corrector in $d \geq 3$
- Other graphs, e.g., Voronoi percolation
- Long-range percolation (stable processes)
- Beyond reversible environments (loop representation)

Corrector:

- A.s. uniqueness \leftrightarrow sublinear harmonic functions
- Scaling limit (Gaussian free field/tightness)
- Behavior as $p \downarrow p_{\mathrm{c}}$

Some figures

Percolation cluster and its deformation: $p=0.95$

Some figures

Percolation cluster and its deformation: $p=0.85$

Some figures

Percolation cluster and its deformation: $p=0.75$

Some figures

Percolation cluster and its deformation: $p=0.65$

Some figures

Percolation cluster and its deformation: $p=0.55$

THE END

Slides available from: http://www.math.ucla.edu/~biskup/talks.html

