## LOCAL SETS

of the

### GAUSSIAN FREE FIELD

## PART TWO

Scott Sheffield

based on work with Schramm; Schramm and Wilson; and Werner

DGFF with  $\pm \lambda$  boundary conditions



Zero contour lines, zero boundary conditions



### Discrete deterministic local sets

A vertex-subset valued function A defined on the set of possible instances h of the GFF (i.e., set of real-valued functions on the vertices of G) is called **local** if  $A(h_1) = A(h_2)$  whenever  $h_1$  and  $h_2$  agree on A. Such an A is called a **deterministic local set** (i.e., given h, it is a deterministic function of h).

## Discrete non-deterministic local sets

A coupling (h, A) of a subset A of the vertices with a DGFF h is is called **local** if for every deterministic set  $A_0$ , the conditional probability  $P(A \subset A_0|h)$  is a measurable function of the values of h in  $A_0$ .

## Examples of discrete local sets

- 1. Any deterministic set that does not depend on h.
- 2. Union of all negative-height hexagon clusters that include hexagons adjacent to the boundary.
- 3. A coupling of h with a random set A that is equal to (1) with probability  $\frac{1}{3}$  and (2) with probability  $\frac{2}{3}$ .

## Equivalent definition of local

**LEMMA:** A random subset A of the vertices of D, coupled with an instance h of the discrete Gaussian free field on G with boundary conditions  $h_{\partial}$ , is **local** if and only if for every deterministic subset  $A_0$  of the vertices of G and function  $\phi$  on the vertices of G that vanishes outside of  $A_0$ , the event  $A \subset A_0$  is independent of the random variable  $(h, \phi)_{\nabla}$ .

# Space of closed subsets of $\overline{\mathbb{H}}$

Let  $\Gamma$  be the space all closed subsets of  $\overline{\mathbb{H}} \cup \{\infty\}$  (with respect to the  $d_*$  metric). Then  $\Gamma$  is a compact metric space when it is endowed with the **Hausdorff** metric induced by  $d_*$ , i.e., the distance between sets  $S_1, S_2 \in \Gamma$  is

$$\max\{\sup_{x\in S_1} d_*(x, S_2), \sup_{y\in S_2} d_*(y, S_1)\}.$$

Let  $\mathcal{G}$  be the Borel  $\sigma$ -algebra on  $\Gamma$  induced by this metric.

### Continuum local sets

Following the discrete definitions, we say a random closed set A (with law given by a measure on  $(\Gamma, \mathcal{G})$ ), coupled with the GFF h, is **local** if for every deterministic open  $B \subset D$  and function  $\phi \in H(B)$  (which vanishes in  $D \setminus B$ ), the event  $B \cap A \neq \emptyset$  is independent of the random variable  $(h, \phi)_{\nabla}$ .

Equivalently, for every deterministic closed  $A_0 \subset D$ , the conditional probability  $P(A \subset A_0|h)$  is a measurable function of the projection of h onto the space of functions that are harmonic off of  $A_0$ —i.e., it does not depend on the projection of h onto the orthogonal space of functions supported on  $A_0$ .

Denote by  $\eta_A$  the expectation of h in the complement of A conditioned on the heights on (an infinitesimal neighborhood of) A. This  $\eta_A$  is harmonic off of A.

### Unions of local sets

Given two local sets  $A_1$  and  $A_2$  (coupled with GFF) we define a coupling of the triple  $(A_1, A_2, h)$  in a way that preserves the marginal laws of  $(h, A_1)$  and  $(h, A_2)$  and such that *conditioned* on h, the conditional laws of  $A_1$  and  $A_2$  are almost surely independent of one another.

**LEMMA:** If  $A_1$  and  $A_2$  are boundary connected local sets coupled with h, then their union  $A_1 \cup A_2$  (with the coupling described above) is also local. Moreover,  $\eta_{A_1 \cup A_2}$  almost surely tends to  $\eta_{A_1}$  on paths in  $D \setminus (A_1 \cup A_2)$  approaching points in  $A_1 \setminus A_2$ .

# Examples of discrete local set

- 1. Any deterministic set that does not depend on h.
- 2. What else?

### Limits of discrete local sets are local

**LEMMA:** Let  $D_n$  be a sequence of TG-domains with maps  $\phi_n: D_n \to \mathbb{H}$  such that  $r_D \to \infty$  as  $n \to \infty$ , and let  $A_n$  be a sequence of discrete local subsets of  $D_n \cap TG$ . Then there is a subsequence along which  $(h, \phi_n A_n)$  converges weakly to a limiting coupling (h, A). In any such limit, A is local.

# Vector Field $e^{ih}$ where $h(x,y) = \pi/2 - y$



# Vector Field $e^{ih}$ where $h(x,y) = x^2 + y^2$



### Some time derivatives of SLE

We will construct our first really interesting local sets using SLE. From definition of SLE, we have  $dg_t(z) = \frac{2}{g_t(z) - W(t)}$  and  $dW_t = \sqrt{\kappa} dB_t$ . Write  $f_t(z) = g_t(z) - W_t$  and apply Ito's formula to compute time derivatives of  $f_t(z)$ ,  $\log f_t(z)$ ,  $f'_t(z)$ , and  $\log f'_t(z)$ :

$$df_t(z) = \frac{2}{f_t(z)}dt - \sqrt{\kappa}dB_t$$

$$d\log f_t(z) = \frac{2}{f_t(z)^2}dt - \frac{\sqrt{\kappa}}{f_t(z)}dB_t - \frac{\kappa}{2f_t(z)^2}dt$$

$$= \frac{(4-\kappa)}{2f_t(z)^2}dt - \frac{\sqrt{\kappa}}{f_t(z)}dB_t$$

$$df'_t = \frac{-f'_t}{f_t(z)^2}dt$$

$$d\log f'_t(z) = \frac{-2}{f_t(z)^2}dt$$

## Important martingale of SLE

Observe:

$$d[\log f_t(z) + \frac{4 - \kappa}{4} \log g'_t(z)] = -\sqrt{\kappa} f_t(z)^{-1} dB_t.$$

Thus, for any fixed value of z, the following linear combination of the angle and the winding number is a martingale:

$$h_t(z) = -\frac{2\lambda}{\pi} \arg(f_t(z)) - \chi \arg f'_t(z) + \lambda$$

where 
$$\lambda := \lambda(\kappa) := \sqrt{\frac{\pi}{2\kappa}}$$
 and  $\chi := \chi(\kappa) := (4 - \kappa)\lambda$ .

We chose  $\lambda$  and  $\chi$  in such a way that makes  $dh_t(z)$  (which is a multiple of  $\text{Im}(f_t(z)^{-1})dB_t$ ) independent of  $\kappa$ .

## Harmonic measure of the tip

The function  $-2\operatorname{Im}(f_t(z)^{-1})dB_t$  is significant. At time t=0, the function  $-2\operatorname{Im}(f_t(z)^{-1})$  is simply  $-2\operatorname{Im}(z^{-1})$ . This is a positive harmonic function whose level sets are circles in  $\mathbb{H}$  that are tangent to  $\mathbb{R}$  at the origin. And in fact, it is a derivative of the Green's function  $G(x,y) = \log \left| \frac{x-y}{x-\overline{y}} \right|$  in the following sense:

$$\left[\frac{\partial}{\partial s}G(is,z)\right]_{s=0} = \frac{\partial}{\partial s} \left| \frac{z-is}{z+is} \right|_{s=0} = \operatorname{Re} \frac{-2iz}{|z^2|} = -2\operatorname{Im}(z^{-1}).$$

Intuitively, the value of  $-2\text{Im}(f_t(z)^{-1})$  represents the harmonic measure of the tip of  $\gamma_t$  as seen from the point z.

In this setup,  $h_0$  is the harmonic function on  $\mathbb{H}$  with boundary conditions  $\lambda$  on the negative real axis and  $-\lambda$  on the positive real axis. Observe that when  $\kappa = 4$ , we have  $\chi = 0$  and hence each  $h_t$  is the harmonic function on  $\mathbb{H}\backslash\gamma_t$  with boundary conditions  $\lambda$  on the left side of the tip of  $\gamma_t$  and  $-\lambda$  on the right side. In this case,  $h_t(z)$  is simply a linear function of the angle  $\arg f_t(z)$ .

## Log conformal radius parameterization

Write  $C_t(z)$  for the conformal radius of z in  $\mathbb{H}\backslash \gamma_t$ . Observe that we can also write:

$$\log C_t(z) = -\text{Re}[\log g'_t(z)] + \log \text{Im}g_t(z)$$

Write  $\theta = \arg f_t(z)$ . Then

$$d\text{Im} f_t(z) = 2\text{Im} f_t(z)^{-1} dt = -2|f_t(z)|^{-1} \sin(\theta) dt$$
 and

$$d \log \text{Im} g_t(z) = \frac{-2|f_t(z)|^{-1} \sin(\theta)}{-\sin(\theta)|f_t(z)|} dt = 2|f_t(z)|^{-2} dt$$
. Now we can compute:

$$d \log C_t(z) = -2[\operatorname{Re}(|f_t(z)|^{-2}dt) - |f_t(z)|^2]dt = -2[\cos(2\theta) - 1]|f_t(z)|^{-2} =$$

$$-2[-2\sin^2\theta]|f_t(z)|^{-2} = -4[\sin(\theta)]^2|f_t(z)|^{-2} = -4[\operatorname{Im} f_t(z)^{-1}]^2dt$$

Using the convention  $dB_t dB_t = dt$ , we have

$$(dh_t)^2 = -d\log C_t. (1)$$

By standard Ito calculus, this implies that if time is parameterized by the negative log conformal radius  $-\log C_t(z)$ , then  $h_t(z)$  is a standard Brownian motion.

## What about multiple points?

Weighted averages of  $h_t$  over multiple points in  $\mathbb{H}$  are also Brownian motions when properly parametrized. Our computation uses the Green's function on  $\mathbb{H}$ :  $G(x,y) = \log \left| \frac{x-y}{x-\overline{y}} \right|$ . (Here  $\overline{y}$  is the complex conjugate of y.)

Write  $G_t(x,y) = G(f_t(x) - f_t(y))$  when x and y are both in the infinite component of  $\mathbb{H}\backslash \gamma_t$ . Otherwise, we let  $G_t(x,y)$  be the limiting value of  $G_s(x,y)$  as s approaches the first time at which one of x or y ceases to be in this infinite component. For fixed x and y, this limit exists almost surely when  $4 < \kappa < 8$ : it is equal to zero when x and y are in different connected components of  $\mathbb{H}\backslash \gamma_t$ , and when x and y lie in the same component, it is simply the Green's function of x and y on this bounded domain. Now we have:

$$dG_{t}(x,y) = d \operatorname{Re} \log[g_{t}(x) - g_{t}(y)] - d \operatorname{Re} \log[g_{t}(x) - \overline{g_{t}(y)}]$$

$$= 2\operatorname{Re} \frac{(f_{t}(x))^{-1} - (f_{t}(y))^{-1}}{g_{t}(x) - g_{t}(y)} dt - \frac{(g_{t}(x) - W_{t})^{-1} - (\overline{g_{t}(y)} - W_{t})^{-1}}{g_{t}(x) - \overline{g_{t}(y)}} dt$$

$$= -2\operatorname{Re} f_{t}(x)^{-1} f_{t}(z)^{-1} dt + 2\operatorname{Re} f_{t}(x) \overline{f_{t}(y)}^{-1} dt$$

$$= -4\operatorname{Re} [i f_{t}(x)^{-1} \operatorname{Im} f_{t}(z)^{-1}]$$

$$= -4\operatorname{Im} f_{t}(x)^{-1} \operatorname{Im} f_{t}(z)^{-1} dt.$$

Using the convention  $dB_t dB_t = dt$  and the expression for  $dh_t(x)$  in the previous section, this gives:

$$dG_t(x,y) = -(dh_t(x)dh_t(y)) (2)$$

The above equations imply:

**LEMMA:** For any  $x_1, \ldots, x_m \in \mathbb{H}$ ,  $a_1, \ldots, a_m \in \mathbb{R}$ , and  $h_t$  and  $G_t$  defined as above, we have:

$$\left(d\sum_{j=1}^{m} a_j h_t(x_j)\right)^2 = -d\left(\sum_{1 \le j,k \le m} a_j a_k \tilde{G}_t(x_j, x_k)\right)$$

where

$$\tilde{G}_t(x,y) = \begin{cases} G_t(x,y) & x \neq y \\ \log C_t(x) & x = y \end{cases}.$$

Note that if  $\kappa \geq 8$  (so that  $\gamma$  is space-filling) and  $x \in \mathbb{H}$ , then the value  $-\log C_t(x)$  tends (almost surely) to infinity as  $\gamma$  approaches and finally hits the point x. If  $\kappa < 8$  and  $x, y \in \mathbb{H}$ , then  $-\log C_t(x)$ ,  $-G_t(x, y)$ , and  $h_t(x)$  each tend almost surely to a finite limit as t tends to infinity.

## What about a continuous density function?

We extend to the case that  $\nu$  is a measure with a density function  $\rho \in \Delta H(D)$  (so that, in particular,  $\nu$  has no point masses, and thus we have no  $-\log C_t(x)$  terms). Write

$$E_t(\rho) := \int G_t(x, y) \rho(x) \rho(y) dx dy$$

for the energy of assembly of  $\rho$  in the domain or union of domains  $\mathbb{H}\backslash\gamma_t$ .

**LEMMA:** Fix  $0 < \kappa < 8$ . Then for any  $\rho \in \Delta H(D)$ , we have  $(d(h_t, \rho))^2 = -dE_t(\rho)$ . In other words,  $d(h_t, \rho)$  is a Brownian motion when parametrized by minus the energy of assembly of  $\rho$  in the union of domains  $\mathbb{H}\backslash \gamma_t$ .

**PROOF:** By Fubini's theorem we have:

$$d(h_t, \rho) = \left(\int \rho(x)dh_t(x)dx\right)$$

$$(d(h_t, \rho))^2 = \left(d\int \rho(x)h_t(x)\right)^2$$

$$= -d\left(\int \rho(x)\rho(y)G_t(x, y)\right)$$

Now, define  $h_{\infty}(z) = \lim_{t\to\infty} h_t(z)$ ,  $G_{\infty}(x,y) = \lim_{t\to\infty} h_t(x,y)$ , and  $E_{\infty}(\rho) = \lim_{t\to\infty} E_t(\rho)$ . If  $\kappa < 8$ , then the reader may check that for fixed  $x h_{\infty}(x)$  is almost surely finite and harmonic in  $\mathbb{H} \setminus \gamma$ . Similarly, since  $G_t(x,y)$  and  $E_{\infty}(\rho)$  are decreasing functions of t, these limits also exist almost surely.

**THEOREM:** Let  $0 < \kappa < 8$ , let h be equal to  $h_{\infty}$  plus an independent sum of zero-boundary GFF's, one in each of component of  $\mathbb{H}\backslash\gamma$ . Then h is a GFF in  $\mathbb{H}$  with boundary conditions given by

$$\phi(x) = \begin{cases} \lambda & x \ge 0 \\ -\lambda & x < 0 \end{cases},$$

for  $x \in \mathbb{R}$ .

## GFF convergence

Since each  $(h, \rho)$  is a sum of a Brownian motion stopped at time  $E_0(\rho) - E_{\infty}(\rho)$  and a Gaussian of variance  $E_{\infty}(\rho)$ , it has the same law as a Gaussian of variance  $E_0(\rho)$ . The fact that the limiting field has the stated boundary conditions follows from the fact that each  $h_t$  has these boundary conditions.

If  $\kappa \geq 8$ ,  $\text{SLE}_{\kappa}$  is space-filling, and  $h_t$  is not a function a.e., be may still define  $(h_t, \rho)$  to be the solution to  $d(h_t, \rho) = (-2\text{Im}(f_t)^{-1}, \rho)dB_t$ .

**THEOREM:** When  $\kappa \geq 8$  the variables  $(h, \rho)$ , for  $\rho \in \Delta H(D)$ , are the Gaussian free field on  $\mathbb{H}$  with boundary conditions

$$\epsilon(x) = \begin{cases} \lambda & x \ge 0 \\ -\lambda & x < 0 \end{cases},$$

for all  $x \in \mathbb{R}$ .

## Contour lines: local and deterministic?

**THEOREM:** In the couplings  $(h, \gamma)$  of the free field h and an  $\text{SLE}_{\kappa}$ , as described above, the random set  $\gamma([0, \infty])$  is a local set. In fact, for any stopping time T, the set  $\gamma([0, T])$  is local.