
LOCAL SETS

of the

GAUSSIAN FREE FIELD

PART TWO

Scott Sheffield

based on work with Schramm; Schramm and Wilson; and Werner

0-0



DGFF with ±λ boundary conditions

0-1



Zero contour lines, zero boundary

conditions

0-2



Discrete deterministic local sets

A vertex-subset valued function A defined on the set of possible
instances h of the GFF (i.e., set of real-valued functions on the vertices
of G) is called local if A(h1) = A(h2) whenever h1 and h2 agree on A.
Such an A is called a deterministic local set (i.e., given h, it is a
deterministic function of h).
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Discrete non-deterministic local sets

A coupling (h, A) of a subset A of the vertices with a DGFF h is is
called local if for every deterministic set A0, the conditional probability
P (A ⊂ A0|h) is a measurable function of the values of h in A0.
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Examples of discrete local sets

1. Any deterministic set that does not depend on h.

2. Union of all negative-height hexagon clusters that include hexagons
adjacent to the boundary.

3. A coupling of h with a random set A that is equal to (1) with
probability 1

3 and (2) with probability 2
3 .
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Equivalent definition of local

LEMMA: A random subset A of the vertices of D, coupled with an
instance h of the discrete Gaussian free field on G with boundary
conditions h∂ , is local if and only if for every deterministic subset A0

of the vertices of G and function φ on the vertices of G that vanishes
outside of A0, the event A ⊂ A0 is independent of the random variable
(h, φ)∇.
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Space of closed subsets of H

Let Γ be the space all closed subsets of H∪ {∞} (with respect to the d∗

metric). Then Γ is a compact metric space when it is endowed with the
Hausdorff metric induced by d∗, i.e., the distance between sets
S1, S2 ∈ Γ is

max{ sup
x∈S1

d∗(x, S2), sup
y∈S2

d∗(y, S1)}.

Let G be the Borel σ-algebra on Γ induced by this metric.
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Continuum local sets

Following the discrete definitions, we say a random closed set A (with
law given by a measure on (Γ,G)), coupled with the GFF h, is local if
for every deterministic open B ⊂ D and function φ ∈ H(B) (which
vanishes in D\B), the event B ∩ A 6= ∅ is independent of the random
variable (h, φ)∇.

Equivalently, for every deterministic closed A0 ⊂ D, the conditional
probability P (A ⊂ A0|h) is a measurable function of the projection of h

onto the space of functions that are harmonic off of A0—i.e., it does
not depend on the projection of h onto the orthogonal space of
functions supported on A0.

Denote by ηA the expectation of h in the complement of A conditioned
on the heights on (an infinitesimal neighborhood of) A. This ηA is
harmonic off of A.
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Unions of local sets

Given two local sets A1 and A2 (coupled with GFF) we define a
coupling of the triple (A1, A2, h) in a way that preserves the marginal
laws of (h, A1) and (h, A2) and such that conditioned on h, the
conditional laws of A1 and A2 are almost surely independent of one
another.

LEMMA: If A1 and A2 are boundary connected local sets coupled
with h, then their union A1 ∪A2 (with the coupling described above) is
also local. Moreover, ηA1∪A2

almost surely tends to ηA1
on paths in

D\(A1 ∪ A2) approaching points in A1\A2.
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Examples of discrete local set

1. Any deterministic set that does not depend on h.

2. What else?
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Limits of discrete local sets are local

LEMMA: Let Dn be a sequence of TG-domains with maps
φn : Dn → H such that rD → ∞ as n → ∞, and let An be a sequence
of discrete local subsets of Dn ∩TG. Then there is a subsequence along
which (h, φnAn) converges weakly to a limiting coupling (h, A). In any
such limit, A is local.
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Vector Field eih where h(x, y) = π/2 − y
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Vector Field eih where h(x, y) = x2 + y2
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Some time derivatives of SLE

We will construct our first really interesting local sets using SLE. From
definition of SLE, we have dgt(z) = 2

gt(z)−W (t) and dWt =
√

κdBt.

Write ft(z) = gt(z) − Wt and apply Ito’s formula to compute time
derivatives of ft(z), log ft(z), f ′

t(z), and log f ′
t(z):

dft(z) =
2

ft(z)
dt −√

κdBt

d log ft(z) =
2

ft(z)2
dt −

√
κ

ft(z)
dBt −

κ

2ft(z)2
dt

=
(4 − κ)

2ft(z)2
dt −

√
κ

ft(z)
dBt

df ′
t =

−f ′
t

ft(z)2
dt

d log f ′
t(z) =

−2

ft(z)2
dt
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Important martingale of SLE

Observe:

d[log ft(z) +
4 − κ

4
log g′t(z)] = −√

κft(z)−1dBt.

Thus, for any fixed value of z, the following linear combination of the
angle and the winding number is a martingale:

ht(z) = −2λ

π
arg(ft(z)) − χ arg f ′

t(z) + λ

where λ := λ(κ) :=
√

π
2κ

and χ := χ(κ) := (4 − κ)λ.

We chose λ and χ in such a way that makes dht(z) (which is a multiple
of Im(ft(z)−1)dBt) independent of κ.
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Harmonic measure of the tip

The function −2Im(ft(z)−1)dBt is significant. At time t = 0, the
function −2Im(ft(z)−1) is simply −2Im(z−1). This is a positive
harmonic function whose level sets are circles in H that are tangent to
R at the origin. And in fact, it is a derivative of the Green’s function

G(x, y) = log
∣

∣

∣

x−y
x−y

∣

∣

∣
in the following sense:

[
∂

∂s
G(is, z)]s=0 =

∂

∂s

∣

∣

∣

∣

z − is

z + is

∣

∣

∣

∣

s=0

= Re
−2iz

|z2| = −2Im(z−1).

Intuitively, the value of −2Im(ft(z)−1) represents the harmonic
measure of the tip of γt as seen from the point z.

In this setup, h0 is the harmonic function on H with boundary
conditions λ on the negative real axis and −λ on the positive real axis.
Observe that when κ = 4, we have χ = 0 and hence each ht is the
harmonic function on H\γt with boundary conditions λ on the left side
of the tip of γt and −λ on the right side. In this case, ht(z) is simply a
linear function of the angle arg ft(z).
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Log conformal radius parameterization

Write Ct(z) for the conformal radius of z in H\γt. Observe that we can
also write:

log Ct(z) = −Re[log g′t(z)] + log Imgt(z)

Write θ = arg ft(z). Then
dImft(z) = 2Imft(z)−1dt = −2|ft(z)|−1 sin(θ)dt and

d log Imgt(z) = −2|ft(z)|−1 sin(θ)
− sin(θ)|ft(z)| dt = 2|ft(z)|−2dt. Now we can compute:

d log Ct(z) = −2[Re(|ft(z)|−2dt)−|ft(z)|2]dt = −2[cos(2θ)−1]|ft(z)|−2 =

−2[−2 sin2 θ]|ft(z)|−2 = −4[sin(θ)]2|ft(z)|−2 = −4[Imft(z)−1]2dt

Using the convention dBtdBt = dt, we have

(dht)
2 = −d log Ct. (1)

By standard Ito calculus, this implies that if time is parameterized by
the negative log conformal radius − log Ct(z), then ht(z) is a standard
Brownian motion.
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What about multiple points?

Weighted averages of ht over multiple points in H are also Brownian
motions when properly parametrized. Our computation uses the

Green’s function on H: G(x, y) = log
∣

∣

∣

x−y
x−y

∣

∣

∣
. (Here y is the complex

conjugate of y.)

Write Gt(x, y) = G(ft(x) − ft(y)) when x and y are both in the infinite
component of H\γt. Otherwise, we let Gt(x, y) be the limiting value of
Gs(x, y) as s approaches the first time at which one of x or y ceases to
be in this infinite component. For fixed x and y, this limit exists almost
surely when 4 < κ < 8: it is equal to zero when x and y are in different
connected components of H\γt, and when x and y lie in the same
component, it is simply the Green’s function of x and y on this
bounded domain. Now we have:
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dGt(x, y) = d Re log[gt(x) − gt(y)] − d Re log[gt(x) − gt(y)]

= 2Re
(ft(x))−1 − (ft(y))−1

gt(x) − gt(y)
dt −

2Re
(gt(x) − Wt)

−1 − (gt(y) − Wt)
−1

gt(x) − gt(y)
dt

= −2Reft(x)−1ft(z)−1dt + 2Reft(x)ft(y)
−1

dt

= −4Re[ift(x)−1Imft(z)−1]

= −4Imft(x)−1Imft(z)−1dt.

Using the convention dBtdBt = dt and the expression for dht(x) in the
previous section, this gives:

dGt(x, y) = −(dht(x)dht(y)) (2)

The above equations imply:
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LEMMA: For any x1, . . . , xm ∈ H, a1, . . . , am ∈ R, and ht and Gt

defined as above, we have:



d

m
∑

j=1

ajht(xj)





2

= −d





∑

1≤j,k≤m

ajakG̃t(xj , xk)





where

G̃t(x, y) =

{

Gt(x, y) x 6= y

log Ct(x) x = y
.

Note that if κ ≥ 8 (so that γ is space-filling) and x ∈ H, then the value
− log Ct(x) tends (almost surely) to infinity as γ approaches and finally
hits the point x. If κ < 8 and x, y ∈ H, then − log Ct(x), −Gt(x, y),
and ht(x) each tend almost surely to a finite limit as t tends to infinity.
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What about a continuous density function?

We extend to the case that ν is a measure with a density function
ρ ∈ ∆H(D) (so that, in particular, ν has no point masses, and thus we
have no − log Ct(x) terms). Write

Et(ρ) :=

∫

Gt(x, y)ρ(x)ρ(y)dxdy

for the energy of assembly of ρ in the domain or union of domains H\γt.

LEMMA: Fix 0 < κ < 8. Then for any ρ ∈ ∆H(D), we have

(d(ht, ρ))
2

= −dEt(ρ). In other words, d(ht, ρ) is a Brownian motion
when parametrized by minus the energy of assembly of ρ in the union
of domains H\γt.
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PROOF: By Fubini’s theorem we have:

d(ht, ρ) =

(∫

ρ(x)dht(x)dx

)

(d(ht, ρ))
2

=

(

d

∫

ρ(x)ht(x)

)2

= −d

(∫

ρ(x)ρ(y)Gt(x, y)

)

Now, define h∞(z) = limt→∞ ht(z), G∞(x, y) = limt→∞ ht(x, y), and
E∞(ρ) = limt→∞ Et(ρ). If κ < 8, then the reader may check that for
fixed x h∞(x) is almost surely finite and harmonic in H\γ. Similarly,
since Gt(x, y) and E∞(ρ) are decreasing functions of t, these limits also
exist almost surely.
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THEOREM: Let 0 < κ < 8, let h be equal to h∞ plus an independent
sum of zero-boundary GFF’s, one in each of component of H\γ. Then
h is a GFF in H with boundary conditions given by

φ(x) =

{

λ x ≥ 0

−λ x < 0
,

for x ∈ R.
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GFF convergence

Since each (h, ρ) is a sum of a Brownian motion stopped at time
E0(ρ) − E∞(ρ) and a Gaussian of variance E∞(ρ), it has the same law
as a Gaussian of variance E0(ρ). The fact that the limiting field has
the stated boundary conditions follows from the fact that each ht has
these boundary conditions.

If κ ≥ 8, SLEκ is space-filling, and ht is not a function a.e., be may still
define (ht, ρ) to be the solution to d(ht, ρ) = (−2Im(ft)

−1, ρ)dBt.

THEOREM: When κ ≥ 8 the variables (h, ρ), for ρ ∈ ∆H(D), are the
Gaussian free field on H with boundary conditions

ǫ(x) =

{

λ x ≥ 0

−λ x < 0
,

for all x ∈ R.
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Contour lines: local and deterministic?

THEOREM: In the couplings (h, γ) of the free field h and an SLEκ,
as described above, the random set γ([0,∞]) is a local set. In fact, for
any stopping time T , the set γ([0, T ]) is local.
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