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Discrete deterministic local sets

A vertex-subset valued function A defined on the set of possible
instances h of the GFF (i.e., set of real-valued functions on the vertices
of G) is called local if A(hy1) = A(hs) whenever hy and hs agree on A.
Such an A is called a deterministic local set (i.e., given h, it is a
deterministic function of h).



Discrete non-deterministic local sets

A coupling (h, A) of a subset A of the vertices with a DGFF h is is
called local if for every deterministic set A, the conditional probability
P(A C Ag|h) is a measurable function of the values of h in Ajg.



Examples of discrete local sets

1. Any deterministic set that does not depend on h.

2. Union of all negative-height hexagon clusters that include hexagons
adjacent to the boundary.

3. A coupling of h with a random set A that is equal to (1) with
probability & and (2) with probability 2.
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Equivalent definition of local

LEMMA: A random subset A of the vertices of D, coupled with an
instance h of the discrete Gaussian free field on G with boundary
conditions hg, is local if and only if for every deterministic subset A
of the vertices of G and function ¢ on the vertices of G that vanishes
outside of Ay, the event A C Ay is independent of the random variable

(h7 ¢)V



Space of closed subsets of H

Let I" be the space all closed subsets of HU {cc0} (with respect to the d,
metric). Then I' is a compact metric space when it is endowed with the
Hausdorff metric induced by d., i.e., the distance between sets

S1,5, €l is

max{ sup d.(z,S2), sup d«(y,S1)}.
rE€ST YyEeSs

Let G be the Borel o-algebra on I' induced by this metric.

0-7



Continuum local sets

Following the discrete definitions, we say a random closed set A (with
law given by a measure on (I',G)), coupled with the GFF h, is local if
for every deterministic open B C D and function ¢ € H(B) (which
vanishes in D\ B), the event BN A # () is independent of the random
variable (h, ¢)v.

Equivalently, for every deterministic closed Ag C D, the conditional
probability P(A C Ag|h) is a measurable function of the projection of h
onto the space of functions that are harmonic off of Ag—i.e., it does
not depend on the projection of h onto the orthogonal space of
functions supported on Ay.

Denote by n4 the expectation of h in the complement of A conditioned
on the heights on (an infinitesimal neighborhood of) A. This n4 is
harmonic off of A.
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Unions of local sets

Given two local sets A; and Ay (coupled with GFF) we define a
coupling of the triple (A1, A3, h) in a way that preserves the marginal
laws of (h, A1) and (h, A3) and such that conditioned on h, the
conditional laws of A; and Ay are almost surely independent of one
another.

LEMMA: If A; and A, are boundary connected local sets coupled
with h, then their union A; U As (with the coupling described above) is
also local. Moreover, 114,04, almost surely tends to 174, on paths in

D\ (A; U As) approaching points in Ap\ As.



Examples of discrete local set

1. Any deterministic set that does not depend on h.
2. What else?
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Limits of discrete local sets are local

LEMMA: Let D,, be a sequence of T'G-domains with maps

O, : D, — H such that rp — oo as n — oo, and let A,, be a sequence
of discrete local subsets of D,, N TG. Then there is a subsequence along
which (h, ¢, A, ) converges weakly to a limiting coupling (h, A). In any
such limit, A is local.
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Vector Field ¢* where h(z,y) = 7/2 —y
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Some time derivatives of SLE

We will construct our first really interesting local sets using SLE. From

definition of SLE, we have dg;(z) 2

= 2 and dW, = /idB,.

Write fi(z) = g:(z) — W, and apply Ito’s formula to compute time
derivatives of f;(z), log f:(2), f/(z), and log f/(z):

dfi(2)

dlog fi(z)

i,

dlog /(=)

2

j}(z)
2 WK K
R T R T e
(4-r), a

2522 T R

L

ft(Z)2dt

—2

fi(2)?

dt — \/kdB;

dt
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Important martingale of SLE

Observe:

4 — K

g gi(2)] = —Vkfi(z) " dBy.

dllog fi(z) +

Thus, for any fixed value of z, the following linear combination of the
angle and the winding number is a martingale:

() = — 2 arg((2)) — xarg f{(2) + A

where A := (k) := /4= and x = x(k) := (4 — k).

We chose A\ and y in such a way that makes dh:(z) (which is a multiple
of Im(f;(2)~1)dB;) independent of x.
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Harmonic measure of the tip

The function —2Im(f;(z)~1)dB; is significant. At time ¢t = 0, the
function —2Im(f;(z)™1) is simply —2Im(z~1). This is a positive
harmonic function whose level sets are circles in H that are tangent to
R at the origin. And in fact, it is a derivative of the Green’s function

G(x,y) = log | =L

in the following sense:

o ., . 0
[@G(ZS, Z)]s:O — Os

= Re 27 = —2Im(z ).

Z — 18

2l 2 N

Intuitively, the value of —2Im(f;(z)~!) represents the harmonic
measure of the tip of 74 as seen from the point z.

In this setup, hg is the harmonic function on H with boundary
conditions A on the negative real axis and —\ on the positive real axis.
Observe that when k = 4, we have yY = 0 and hence each h; is the
harmonic function on H\~; with boundary conditions A on the left side
of the tip of 74 and —\ on the right side. In this case, h:(z) is simply a
linear function of the angle arg f;(z).
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Log conformal radius parameterization

Write Cy(z) for the conformal radius of z in H\~;. Observe that we can
also write:

log Ci(2) = —Re[log ()] + log Tmg (=)

Write 8 = arg fi(z). Then
dimf;(z) = 2Imfi(z)~1dt = —2|f;(2)| ! sin(0)dt and

dlogImg;(z) = _2_|J;ifl’2(')9|)|fts&lzn)(|9) dt = 2|f;(2)]"?dt. Now we can compute:

dlog Cy(z) = —2[Re(| f(2)|2dt)—|f:(2)|?]dt = —2[cos(20)—1]| f:(2)| % =

—2[=2sin® 0]| fr(2)| 7% = —4[sin(0)]?| f;(2)| 7% = —4[Im fe(2) " |°dt
Using the convention dB;dB; = dt, we have

(dhy)* = —dlogC;. (1)

By standard Ito calculus, this implies that if time is parameterized by
the negative log conformal radius — log C(z), then h;(z) is a standard
Brownian motion.
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What about multiple points?

Weighted averages of h; over multiple points in H are also Brownian
motions when properly parametrized. Our computation uses the

Green’s function on H: G(x,y) = log . (Here 3 is the complex

z—y
r—y
conjugate of y.)

Write Gy(z,y) = G(fi(x) — fi(y)) when z and y are both in the infinite
component of H\v;. Otherwise, we let G;(x,y) be the limiting value of
Gs(x,y) as s approaches the first time at which one of x or y ceases to
be in this infinite component. For fixed z and y, this limit exists almost
surely when 4 < k < 8: it is equal to zero when = and y are in different
connected components of H\~;, and when x and y lie in the same
component, it is simply the Green’s function of x and y on this
bounded domain. Now we have:
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dGi(z,y) = dReloglgi(x) — g:(y)] — dRelog|gi(x) — g:+(y)]
B e(ft(fv))_l —(fely)™
= o g9¢(2) — g9¢(y) .
Re (ge(x) = W)=t = (9e(y) — Wt)_ldt

= —2Refy(z) " fi(2)"'dt + 2Refi(x) fiy) dt
= —4R€[’I:ft($)_11mft<z)_l]
—  —dImf,(z) " 'Imf,(z) " dt.

Using the convention dB;dB; = dt and the expression for dh:(z) in the
previous section, this gives:

dGi(z,y) = —(dhi(z)dhi(y)) (2)

The above equations imply:
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LEMMA: For any x1,...,z,, € H, a1,...,a,, € R, and h; and G;
defined as above, we have:

2

dZajht(xj) = —d Z a;arGe(z, 1)
j=1

1<j,E<m

where

~ L Gt(ajay) L #y
Gila,y) = {logC’t(z{;) T=17

Note that if k > 8 (so that v is space-filling) and = € H, then the value
—log Cy(z) tends (almost surely) to infinity as « approaches and finally
hits the point x. If K < 8 and z,y € H, then —log Cy(x), —G(x,y),

and h;(z) each tend almost surely to a finite limit as ¢ tends to infinity.
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What about a continuous density function?

We extend to the case that v is a measure with a density function
p € AH(D) (so that, in particular, v has no point masses, and thus we
have no —log Cy(x) terms). Write

Ei(p) = / Gy, y)p(x) ply) dady

for the energy of assembly of p in the domain or union of domains H\ ;.

LEMMA: Fix 0 < k < 8. Then for any p € AH(D), we have

(d(he, p))* = —dE4(p). In other words, d(hs, p) is a Brownian motion
when parametrized by minus the energy of assembly of p in the union
of domains H\~;.
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PROOF: By Fubini’s theorem we have:

d(hy, p) = ( / p(:z:)dht(a;)da:>
(d(hs, p))* = (d/p(w)ht(w)>2

= —d (/ p(fﬂ)p(y)Gt(fan)>

Now, define hoo(2) = limy o0 ht(2), Goo(x,y) = limy .o he(z,y), and
Eo(p) =lim;_ o Ei(p). If K < 8, then the reader may check that for
fixed © hoo(x) is almost surely finite and harmonic in H\~. Similarly,
since G¢(x,y) and E.(p) are decreasing functions of ¢, these limits also
exist almost surely.
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THEOREM: Let 0 < k < 8, let h be equal to hy plus an independent
sum of zero-boundary GFF’s, one in each of component of H\~. Then
h is a GFF in H with boundary conditions given by

A z>0
¢($){—A o

for x € R.
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GFF convergence

Since each (h, p) is a sum of a Brownian motion stopped at time

Eo(p) — Ex(p) and a Gaussian of variance E(p), it has the same law
as a Gaussian of variance Ey(p). The fact that the limiting field has
the stated boundary conditions follows from the fact that each h; has
these boundary conditions.

If kK > 8, SLE, is space-filling, and h; is not a function a.e., be may still
define (hy, p) to be the solution to d(hy, p) = (—2Im(f;)~1, p)dB;.

THEOREM: When k > 8 the variables (h, p), for p € AH(D), are the
Gaussian free field on H with boundary conditions

A x>0
@=3_5 z<0

for all z € R.
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Contour lines: local and deterministic?

THEOREM: In the couplings (h,7) of the free field h and an SLE,,
as described above, the random set v([0, oc]) is a local set. In fact, for
any stopping time T'; the set v(|0,7]) is local.
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