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The standard Gaussian on n-dimensional

Hilbert space

has density function e−(v,v)/2 (times an appropriate constant). We can
write a sample from this distribution as

n
∑

i=1

αivi

where the vi are an orthonormal basis for R
n under the given inner

product, and the αi are mean zero, unit variance Gaussians.
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The discrete Gaussian free field

The Dirichlet energy of a real function f on the vertices of a planar
graph Λ is H(f) = (f, f)∇ where (f, g)∇ is the Dirichlet form

(f, g)∇ =
∑

x∼y

(f(x) − f(y)) (g(x) − g(y)) .

Fix a function f0 on boundary vertices of Λ. The set of functions f

that agree with f0 is isomorphic to R
n, where n is the number of

interior vertices. The discrete Gaussian free field is a random
element of this space with probability density proportional to e−H(f)/2.
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Discrete GFF on 20× 20 grid, zero boundary
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Some DGFF properties:

Zero boundary conditions: The Dirichlet form (f, f)∇ is an inner
product on the space of functions with zero boundary, and the DGFF
is a standard Gaussian on this space.

Other boundary conditions: DGFF with boundary conditions f0 is
an affine translation of DGFF with zero boundary; i.e., the same as
DGFF with zero boundary conditions plus the (discrete) harmonic
interpolation of f0 to Λ.

Markov property: Given the values of f on the boundary of a
subgraph Λ′ of Λ, the values of f on the remainder of Λ′ have the law
of a DGFF on Λ′, with boundary condition given by the observed
values of f on ∂Λ′.
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The continuum Gaussian free field

is a “standard Gaussian” on an infinite dimensional Hilbert space.
Given a planar domain D, let H(D) be the Hilbert space closure of the
set of smooth, compactly supported functions on D under the
conformally invariant Dirichlet inner product

(f1, f2)∇ =

∫

D

(∇f1 · ∇f2)dxdy.

One way to view GFF: A formal sum h =
∑

αifi, where the fi are an
orthonormal basis for H and the αi are i.i.d. Gaussians. The sum does
not converge point-wise, but h can be defined as a random

distribution—the pairings (h, φ) are well defined whenever φ is
sufficiently smooth. The projection of the GFF onto the space of
functions piecewise linear on triangle lattice triangles gives the DGFF
(times the lattice-dependent constant 31/4).
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Laplacian of the Gaussian free field

If ρ = −∆h describes an electric charge density, then h is its Coulomb

gas electrostatic potential function (grounded at the boundary of
D), and (h, h)∇ is its total potential energy (i.e., the energy of assembly

of the distribution). The Laplacian of a Gaussian free field is thus a
random distribution that we may interpret as a random continuum
charge distribution (a type of continuum charge Coulomb gas).
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Scaling limit of zero-height contour line

Theorem (Schramm, S): If initial boundary heights are λ on one
boundary arc and −λ on the complementary arc, where λ is the
constant

√

π
8 , then the scaling limit of the zero-height interface (as the

mesh size tends to zero) is SLE4.

If the initial boundary heights are instead are instead −(1 + a)λ and
(1 + b)λ, then as the mesh gets finer, the laws of the random paths
described above converge to the law of SLE4,a,b.
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DGFF with ±λ boundary conditions
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Expectations given values along interface
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Expectations given interface, ±3λ boundary

conditions
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“As mesh gets finer”

Let TG be triangular lattice, D a domain whose boundary is simple
curve comprised of edges and vertices of TG. The discrete
(zero-boundary) GFF is a projection of the continuum GFF onto the
subspace HTG(D) of H(D) comprised of continuous functions that are
linear on each triangle. Let φD be conformal map from D to H. Write
rD = inrφ−1

D
(i)(D) where inrx(D) denotes the radius of D viewed from

x. As rD → ∞, the subspaces {f ◦ φ−1
D : f ∈ HTG(D)} become

asymptotically dense in H(H), i.e.,

LEMMA: For each f ∈ H(H), the values ||PD(f) − f ||∇ tend to zero
as rD → ∞, where PD is projection onto {f ◦ φ−1

D : f ∈ HTG(D)}. In
fact, if f ∈ Hs(D), then ||PD(f) − f ||∇ = O( 1

rD

).
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Height gap lemma

Take any boundary conditions for a DGFF bounded above by some
universal constant M , non-negative on a right boundary arc and
non-positive on the left. Let γ denote the discrete interface as above
and let T be some discrete stopping time for γ and let γT denote γ

stopped at T . Let v be some vertex in D. Let FT denote the function
that is +λ on right side V+(γT ) of γT , −λ on left side V−(γT ) of γT ,
equal to boundary values of h on ∂D, and discrete-harmonic at all
other vertices in D. Let hT be the discrete harmonic interpolation of
the values of h on V−(γT ) ∪ V+(γT ) and on all TG-vertices in ∂D.
LEMMA: Assume setting as above. Then

hT − FT (v) → 0

in probability as D and v are taken so that dist(v, ∂D) → ∞, while M

is held fixed. The same holds as r → ∞ when v is a random vertex
(with law independent of h) supported on the set of points of distance
at least r from ∂D.
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Property of SLE4

Observe: SLE4 is the only random path γ with the following property:
Given γ([0, t]), the probability that γ passes z on right equals the
probability that Brownian motion started at z first hits R ∩ γ[0, t] on
the left side of γ(t). Similar characterizations apply to the SLE4,a,b.

This is the idea behind proof that discrete paths converge in law to
SLE4,a,b. To formally define level lines of the continuum field—and
show that the discrete paths converge in probability to these—we will
need some more abstract machinery.

0-17



Almost independence

Say two coupled variables X and Y are almost independent if their
joint law is absolutely continuous with respect to the product of the
marginal laws. Equivalently, for almost all X, the conditional law of Y

given X is absolutely continuous with respect to the unconditioned law.

LEMMA: If D is the unit disc with subdomains A and B, then the
law of the GFF restricted to A and restricted to B are almost
independent whenever the distance between A and B is positive.
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Discrete deterministic local sets

A vertex-subset valued function A defined on the set of possible
instances h of the GFF (i.e., set of real-valued functions on the vertices
of G) is called local if A(h1) = A(h2) whenever h1 and h2 agree on A.
Such an A is called a deterministic local set (i.e., given h, it is a
deterministic function of A).
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Discrete non-deterministic local sets

A coupling (h, A) of a subset A of the vertices with a DGFF h is is
called local if for every deterministic set A0, the conditional probability
P (A ⊂ A0|h) is a measurable function of the values of h in A0.

In case of the DGFF, this is equivalent to saying that P (A ⊂ A0|h) is a
measurable function of the projection of h onto the space of functions
that are harmonic on the complement of A0. Equivalently, it is
independent of the projection of h onto the orthogonal space of
functions supported on A0.
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Equivalent definition of local

LEMMA: A random subset A of the vertices of D, coupled with an
instance h of the discrete Gaussian free field on G with boundary
conditions h∂ , is local if and only if for every deterministic subset A0

of the vertices of G and function φ on the vertices of G that vanishes
outside of A0, the event A ⊂ A0 is independent of the random variable
(h, φ)∇.
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Space of closed subsets of H

Let Γ be the space all closed subsets of H∪ {∞} (with respect to the d∗

metric). Then Γ is a compact metric space when it is endowed with the
Hausdorff metric induced by d∗, i.e., the distance between sets
S1, S2 ∈ Γ is

max{ sup
x∈S1

d∗(x, S2), sup
y∈S2

d∗(y, S1)}.

Let G be the Borel σ-algebra on Γ induced by this metric.
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Continuum local sets

Following the discrete definitions, we say a random closed set A (with
law given by a measure on (Γ,G)), coupled with the GFF h, is local if
for every deterministic open B ⊂ D and function φ ∈ H(B) (which
vanishes in D\B), the event B ∩ A 6= ∅ is independent of the random
variable (h, φ)∇.

Equivalently, for every deterministic closed A0 ⊂ D, the conditional
probability P (A ⊂ A0|h) is a measurable function of the projection of h

onto the space of functions that are harmonic off of A0—i.e., it does
not depend on the projection of h onto the orthogonal space of
functions supported on A0.

Denote by ηA the expectation of h in the complement of A conditioned
on the heights on (an infinitesimal neighborhood of) A. This ηA is
harmonic off of A.
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Unions of local sets

Given two local sets A1 and A2 (coupled with GFF) we define a
coupling of the triple (A1, A2, h) in a way that preserves the marginal
laws of (h, A1) and (h, A2) and such that conditioned on h, the
conditional laws of A1 and A2 are almost surely independent of one
another.
LEMMA: If A1 and A2 are boundary-connected local sets coupled
with h, then their union A1 ∪A2 (with the coupling described above) is
also local. Moreover, ηA1∪A2

almost surely tends to ηA1
on paths in

D\(A1 ∪ A2) approaching points in A1\A2.
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Limits of discrete local sets are local

LEMMA: Let Dn be a sequence of TG-domains with maps
φn : Dn → H such that rD → ∞ as n → ∞, and let An be a sequence
of discrete local subsets of Dn ∩TG. Then there is a subsequence along
which (h, φnAn) converges weakly to a limiting coupling (h, A). In any
such limit, A is local.
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