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Associate to each A the simply connected ‘union of squares’ domain A C C

A C 7Z? simply connected, A™: those A with n < inrad(A) < 2n




Fomin’s Identity

P Sil =yl 5’22 = y?, 5'2[0,7'31]051:@}
A A

= hoa(z',y')  hoa(z?,y*) — hoa(z',y?) - hoa(z?, y')




Fomin’s Identity

Suppose A € A", and z!,... a2k y* ..., y! are distinct points in A, ordered
counterclockwise.

Fori=1,...,k, let £L* denote loop erasure of path [Sé = z°, S{,

Let C =C(z!,..., 2", y*,...,y'; A) be event that both

S0, 74]n(ctu--uLtH =0, i=2,... k.

Theorem (Fomin).




Fomin’s Conjecture

This theorem is a special case of an identity that Fomin established for general

discrete stationary Markov processes.

“In order for the statement of Theorem 7.5 to make sense, the Markov
process under consideration does not have to be discrete.... The proofs
can be obtained by passing to a limit in the discrete approximation. The
same limiting procedure can be used to justify the well-definedness of the
quantities involved; notice that in order to define a continuous analogue of
Theorem 7.5, we do not need the notion of loop-erased Brownian motion.
Instead, we discretize the model, compute the probability, and then pass to
the limit. One can further extend these results to densities of the
corresponding hitting distributions. Technical details are omitted.”




D, D’ C C simply connected domains; f : D — D’ conformal transformation

z € D; 0D locally analytic at x, y; D’ locally analytic at f(z), f(v)

Poisson Kernel

Poisson kernel, density of harmonic measure wrt Lebesgue measure, exists

Fact. Hp(z,y) =|f' (y)| Hp' (f(2), f(v))

Excursion Poisson Kernel

1
Definition. Hyp(z,y) = lir(lgl+ — Hp(x +eng,y)
EgE—r o)

Fact. Hop (z,y) = [f'(2)|[f' (y)| Hop: (f(2), f(y))




Main Estimate

Theorem (Lawler-K). If A € A™ with associated ‘union of squares’ domain
ACCand fa: A—=D, fa(0) =0, f4(0) >0, 64(z) = arg(fa(z)), then

hoa(z,y) =

(7/2) ha(0,2) ha(0,y) [1 +0 ( e > } |

1 —cos(0a(x) —04(y)) n1/1616 4 (z) — 6 (y)l

provided that |04 (x) — 0.4 (y)| > n=1/16 log? n.




An Example and an Exact Formula

Example. If u = ¢? v = et?’ g # 0, then

Hop( ) 1 1 1 1
u,v) = — = :
oD mlv—ul?2 27 1—cos(6 —0)

2m HD (07 :C) HD (07 y)

Fact. For z,y € 0D Hyp(x,y) =
DY) = T (0p () — 60 (W)

Proof.  4m2Hp(0,e*D(®))Hy (0,0 W)) =1

21 Hpy (0, €D (#)) Hgp (0, 9D (¥))

H@]D)(eieD(x)a eieD(y)) — 1 COS(HD (33) —0p (y))

Hp(z,y) = |f ()| |f'(y)|Hon (P (), &0 (V)

Hp (va)HD (Ovy) - |f/(:IZ)| |f/(y)|HD(07 eiOD(:c))HD((),eiGD(y))



Hitting Matrix Determinant Identities

det hg 4 (x,y)

~ Tk
[ roa(=",y")
71=1

hoa(z?,y!
det[ 8A(x.’y.)]
hoa(z?,y?) 1<4,l<k

represents the conditional probability that (f) holds given (}) holds.




The “Brownian Motion” Analogue

Let D be a smooth Jordan domain, and z!,...,z* y*, ..., y' distinct points on
0D ordered counterclockwise.

H@D(mjayl)] _
Hop(27,97) l1<j 1<k

det H@D (X, y)

Ap(zt, ... zF % ... yl) = det [

k
H H@D (:BJ ’ yj)
=1

Conformal covariance of the excursion Poisson kernel gives

Ap(at,....2" yF, o yh) = Ap(f(=h),. .., F(2F), FWR), ..., F (YY)

1 —cos(@p(z?) —0p(y?))
1 — cos(0p(x3) — Op(yh)) 1<4,1<k

= det

where f is a conformal transformation of D onto D and 0p(z) = arg(f(z)).




An Important Corollary

Corollary. Suppose A € A" and x1,...,z* y*,... y! are distinct points in

OA ordered counterclockwise. Let
m = min{ [04(z") — 04(y")|, 104(z") — 04 (¥")| }.

If m > n—1/16 1o0g? n, then

h@A(xja yl) il
hoa(x?,y7) J1<j i<k

det [

1—COS(9A(£IZj)—9A(yj)):| L0 < logn )
L= cos(Ba(e)) =0a(WD) Jicjuck  \n!/16m2R+1 )]

:det[




An Important Corollary

Proof. The Main Estimate gives

hoa(z,y") ]
hoa(z?,y?) 1<j5,l<k

det [

~ae [ ey [0 ()] ]

But, if |0;;| < e, multilinearity of the determinant and the estimate
det[b; ;] < k*/2 [sup |b; ;|]* shows that

| det[b; (1 + ;)] — det[b; ;]| < [(1+¢€)® — 1]k*/2 [sup [b; ,]]*.




Kenyon's Crossing Exponent for LERW

Using the corollary, we can approximate the determinant for random walks, and
hence the probability of the crossing event C, in terms of the corresponding
quantity for Brownian motion, at least for simply connected domains.

1

We consider the asymptotics of Ap(z!,...,z* y*, ... y!) when =1, ... z* get

close and y!,...,y* get close.

Since Ap is a conformal invariant, we take D = R, where
Rr={z: 0<Re(z) <L,0< Im(z) <},

T L+ ir

L +iq
L + g,

1q1

yl
y2
y> oL +iqg,
"

L +iq),




Kenyon's Crossing Exponent for LERW

Example. Using separation of variables,

n sin(nq) sin(nq’)

Hyr, (ig, L +1iq') =

Theorem (Lawler-K). As L — oo,

ARL(iql,...,iqk,L—i—iq;{;,...,L—l—iq’l)

= k!

: . . 1 / ;
det[Sln(ZQJ)]1<] i<k det[sin(lg})]1<j1<k e~ k(k=1)L/2 | O (o—k(k+1)L/2)

H sin(g;) sin qj)

g=1

This crossing exponent k(k — 1)/2 was first proved by Kenyon for loop-erased walk.




Kenyon's Crossing Exponent for LERW

/

Proof. Let 9 = (q1,.-.,q%), d' = 1,---7612;),

sin(jq1)
sin(jq2)

| sin(jqr) | | sin(jgy,) |

Using the example, (7/2)* det Hoxr , (iq, L + iq’) can be written as

q JSan(h . °°"jq2 >\ j qu =
etz ’UZ v Z )

—t sinh(j
J= 1<j<k

By multilinearity of the determinant, we can write the determinant above as

S (41 Jr) sin(j1q1) - - sin(Jrqr)

. . 3 . dt[ ]17-'-7779']{;]'
Wi sinh(j1L) - - - sinh(jx L)

The determinants in the last sum equal zero if the indices are not distinct.




Also it is not difficult to show that

S R <ok, R)e B
jit++jr>R Slnh(JlL) T Slnh(JkL)

. except for error of Ok(e_(k2+k+2)L/2), (r/2)* det Hor, (iq, L + iq’) equals

k! sin(0(1)q1) - -sin(o(k)qx) .
Z sinh(L smh(2L) -sinh(kL) et[Uo (1) -+ s Uo (k)5 (*)

where the sum is over all permutations o of {1,...,k}.

But, det[v, Ug(1)s - - '7170(1::)] = (sgn o) det[v1, ..., U]

Hence (*) equals
k! det|uy,...,ur] det[v,..., Uk]
sinh(L) sinh(2L) - - -sinh(kL) ’

which up to an error of Ok(e_(k2+k+2)L/2) equals

ok k1 e Rk DL/2 e[y, ..., 1] det[tn, ...,




To finish the proof, note that we can also write

4
Har, (iq, L + iq') = — e L sing sing’ [1+0(e )],
0

so that

k k

(7/2)F HH@RL (iqj,L—|—7jq2-) — ok g=kL Hsinqj sinq;- [1+ Or(e 1))
71=1 71=1




Green'’s Function Estimate

G A(x): the expected number of visits to = before leaving A of a simple random
walk starting at 0

a: potential kernel for two-dimensional simple random walk

2
Fact. 3 kg such that a(z) = = log |z| + ko + O(Jz|™2) as & — oo.
T

Theorem (Lawler-K). If A € A™ and = # 0, then

2
Ga(z) == ga(z) + ke + O(n~ 13 logn).

T

where ga(x) = —log |fa(x)| is Green’s function for Brownian motion in A and

2
ke = ko + — log |z| — a(x).




Notes on the Proof of the Main Estimate

o The error term O(n~1/16 logn) is not optimal, and we probably could have

improved it slightly. However, our methods are not strong enough to give the
optimal error term. The importance of this result is that the error is bounded
uniformly over all simply connected domains and that the error is in terms of a
power of n. For domains with “smooth” boundaries, one can definitely
improve the power of n.

To help understand this estimate, one should consider hg 4 (z,y) as having a
“local” and a “global” part. The local part, which is very dependent on the
structure of A near x and y, is represented by the h4(0,z) h4(0,y) term. The
global part, which is [1 — cos(64(x) — 04 (y))] ™!, is the conformal invariant
and depends only on the image of the points under the conformal
transformation of A onto the unit disk.




Notes on the Proof of the Main Estimate

To prove the main result required the following tools:
e conformal invariance
Koebe 1/4 Theorem
Beurling estimates for simple random walk and Brownian motion
Komlds-Major-Tusnddy strong approximation

Brownian motion/simple random walk near the boundary is likely to exit

nearby, and quickly

Brownian motion and simple random walk can be strongly coupled

establishing Green's function estimates so that we can establish Poisson kernel

estimates




