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Abstract

Two dimensional shapes have long been a
preoccupation of mathematicians and theoretical
physicists. They form the root of such subjects as
critical phenomena, fluid motion (via Hele Shaw
motion), growth dynamics (e.g. DLA), and analytic
function theory. Fractal and scale-invariant shapes
are among the most interesting ones

Conformal maps (analytic functions) automatically
generate shapes. Iterated maps (functions of
functions) are powerful tools for generating
Interesting shapes. These can be naturally formed
using ordinary differential equations.

Important efforts exist to use iterated functions to
generate shapes, based in part on the work of
Loewner in the 1920s and the earlier work of Julia
and Fatou. More recent work includes Duplantier on
guantum gravity methods, Schramm, Rohde, Werner.
Lawler, and others on SLE, percolation and self-
avoiding walks, Hastings and Levitov on DLA,
followed by Cardy and others on the relation to
conformal field theory and critical phenomena
problems

| hope to describe some of this development here
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Universality: Another Invariance

The near-critical phase transition problems have
another invariance called Universality. The concept
was sort of current among peope who did critical
phenomena in the 1960s. Among others, | pointed
out its importance and borrowed the word from
Sasha Migdal and Sasha Polyakov in a dollar bar in the
USSR. Briefly the concept states that there are
whole classes of different phase transion problems
which have identally the same singularities and
critical behavior. Not similar, idential. All you have
to do is re-express one problem by translating its
variables into smooth functions of the variables of
the pother problem.

For example, the Ising model and real liquid gas
phase transtions have the same critical behavior.

. POroblems whoich have identical critical behavior are
~ same to belong to the same universality class.

A denumerable infinity of universality classes are
known in two dimensions.

We next turn to the connection between
DLA and Loewner evolution.
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A personal Note

| am a theoretical physicist, not a mathematician, |
have done research related to many of the topics in
this Fall’s Thematic Program on Renormalization and

Universality in Mathematics and Mathematical
Physics. Specifically, | did lots of work which helped
establish concepts related to scaling, universality,
and renormalization in the context of the physics of
phase transitions,

| shall be talking about SLE, Phase Transitions, and
renormalization, using the approach of a physicist.
For me, this approach means that | should argue as
deeply as | can about different models, and then try
to extrapolate the knowledge gained from these
models to larger sets of problems. | won’t state my
premises with absolute clarity, and correspondingly |
shall rarely prove anything.

Often, but not always, this approach enables
physicists to go more quickly than mathematics.
Often, but not always, this approach leaves the
outcome somewhat imprecise and fuzzy,
necessitating further work to clean up and clear up
what has been done.

Next: A List of Problems
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1.The Percolation Model.

Take a simple regular lattice. Each site on the lattice
may be either occupied (black) or empty (red). Each
lattice site is assigned the black color with a
probability p. So the color assignment of each site is
independent of all the others. We divide the lattice
into different clusters by saying that a cluster is a
set of sites of the same color, including all same-
color nearest neighbors of the set members, and
which cannot be divided into smaller sets.

A cluster boundary can be defined by a local process
in which one walks through the centers of nearest
neighbor bonds, always keeping black bonds on the

left and the red ones on the right.
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For small p--we mostly see small isolated clusters of
occupied sites, small clusters of empty sites, and
one very large empty cluster spanning the entire

system.

B

o)

If p is close to one, we same story with the colors

reversed.
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If p is close to one half, lots of large clusters of both
colors are formed

see pics for talk 1!

Toronte [alks--On SLE, DLA and Shapes | page 8 719705



T

o SHOT RN i U FOsony a1 of gg) s ST 8

i8uissoud 1yBii 01 Ya| B4AY1 S| UOIIR|ODIRY



In the limiting case of a very large system, p<1/2
has mostly particle clusters which have a size of
order the distance between lattice sites while p>1/2
has unoccupied sites forming this kind of clusters. in
between, p=1/2 has very large clusters of both
types. This kind of qualitative change in large-scale
behavior is called a phase transition.

A phase transition only makes sense in an infinite
system. Therefore phase transitions always exhibit
large-scale correlated behavior. Our job is to get at
the geometry of this behavior.
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Other Phase Transitibns :

Physicists, chemists, and mathematicians have
worked with a large variety of phase transition
problems. Among these is the change of ice into
liguid water or the change of liquid water into vapor.
In each case as one changes a parameter contolling
the system (often temperature) there is an abrupt
change in the long-distance correlations in the
system. For example consider the Ising model on 3
finite lattice. Once again one puts a two-valued
variable on all the sites of 2 lattice. Here we say the
variable at site r is a spin, or , with values plus or

minus one. The different configurations are given 2
statitical weight which is

W=| Ie"{”’”'

a product over all nearest neighbor sites of a factor
which is larger for equal spins than opposite ones.
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Averages are sums over all spins using the
weighting, W. As K is varied there is, once again, a
qualitative transition. For very large distances Ir-sl
the product <o, o> goes exponentially to zero for

small values of the coupling K, goes to a constant
for K bigger than a critical value, and decays as a
power Ir-s| for K=K¢, the critical coupling.

The standard way of studying both percolation and
the other phase transition problems before the SLE
work was to study the behavior of pointlike

functions, for example, <o, ¢ > or perhaps the

probability that two points separated by a distance
Ir-s| would fall into the same cluster.

1/4

At criticality in the Ising model <o, o >=C/Ir-s| .
This result is universal in that additions of other
kinds of interactions to the weighting function will
not change the correlation at criticality.

SLE gives another perspective on the
problem
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Relation to SLE

SLEg will produce an ensemble of shapes-- so will

the critical percolation problem. SLE’s wonderful new
result is that in the scaling limit, these two
appraoches will give the same ensemble. The
scaling limit considers very large objects which
encompass very many lattice sites. In this limit, one
observes only features of the object that are large
In comparison to a lattice distance.

Shapes can be produced by many other interesting
problems. For example, the two-dimensional Ising
model is a set of spins on a lattice. Each spin takes
on two possible values, say red or black. At the
critical point, (given by sinh 2K¢ =1), the weighting

produces an esemble of clusters, which includes
very large clusters. Although it has not been
proven, most of the people who are experts in the
field believe that, in the scaling limit, the ensemble
of cluster shapes is the same as those generated by
SLE3.

Thus, SLE gives a new way of approaching old
physics problem and gaining new kinds of
information, specifically information about shapes.
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DLA- A problem of Dynamics

In 1981 Witten & Sander developed a dynamical
model called DLA. This model was intended to
construct scale-invariant, (fractal) objects. It did so,
but despite a huge amount of work, we developed
little understanding of the universality, scaling, or
conformal properties of that model.

DLA describes how tiny bits of soot may come
together and form one large, fractal aggregate. It
was one of the first models to be initially expressed
as a computer algorithm. Since the walking process
is a time-independent diffusion, the probability that
the walker appear at x,y , p(x,y) obeys the Laplace
equation in the region outside the aggregate with
the boundary condition that p vanish on the
aggregate and that the probability of adding a walker
is proportional to the normal gradient of p at the
boundary.
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The DLA Algorithm

é Start with
walker
at infinity

It does a

random walk

until it reaches
e

v aggregate

it stops at
nearest
neighbor
site

A walker is
introduced at
infinity once
more

d
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Mathematical Formulation

The random walk is described by a discretizd
diffusion equation for p(x,y), the probability that we
can find a walker at the position (x,y). The time-
independent diffusion means that:

1. p obeys Laplace’s equation in the region outside
the aggregate (defines PDE)

2. There is a source of unit strength at infinity
(defines boundary condition.)

3. p vanishes on aggregate (p is uniquely defined)

The probability of landing on the sites nearest
neighbor to the aggregate site (x,y) is the particle’s
probability being added at (x,y). This is then the
probability of growth at that site. A very interesting
object is produced via an iterative process:
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Invariance Properties of these problems

All of these problems, percolation, phase transitions,
DLA have the same interesting invariance
properties near the critical point. | list them here:

1. translation invariance r-->r +a

2. rotation invariance r-->Mr

" cosi?  sini?
= —-sin cosi?
3. parity invariance x--> x, y -->-y
4. scale invariance r -->r/A

5. Conformal invariance: all of above plus a boost
operation: r --> r/ré

The last implies (alas only in two dimensions) that
the whole theory is invariant under z=x+iy > z+a,

zel9, x-iy, z/2, 1/z and hence under conformal maps.
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From Dynamical Systems to Maps

Loewner evolution can be approached through the
evolution equation, dw/dt = 2/(w-£(t)), and its
solution, w=g(t,z), where we are using the initial data
w=z at t=0. In writing the solution, we have
translated the problem from finding one trajectory in
the complex plane to finding many different

trajectories, parametrized by the initial data, z.

It is best to approach this more generally. Let g
obey the differential equation

dw/dt = V(w,t)

with initial data w=z at time tg. The solution can
then be written down as w = g,(t, 2).

g: can be thought of as a map from the space of
initial conditions, z, to later values, w. Iterated
function theory enters naturally in every dynamical
systems theory problem because if you calculate
the solution in two pieces (from t, to t1) and (from

t1 tot) you first perform one mapping operation and

then another:
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w=§ (Il’gfl('!ﬂ*zj)

In this talk, z, w, and g will all be complex variables
and the g(z) will be an analytic function.

Thus iterated function theory is a very natural tool
for discussing Loewner’s evolution equation.

There are two natural forms of the tool: In chordal
Loewner Evolution (LE) gt(to,z) is a conformal map

from the upper half plane to the unit circle while in
radial LE g conformally maps the region outside a
simply connected finite part of the plane to the
exterior of the unit circle.

The most important property of such mappings is
their composition rule. For completeness | first
defined conformal maps and then describe their
composition rules
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Make a DLA Cluster

From a very large number of small bumps placed on
the circle one can make a DLA cluster as was done
by Hastings and Levitov
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Definition: Conformal Map

A conformal mapping, is a function g(z) analytic
within a simply connected region D of the complex z-
plane, and which has the property that dg/dz is
never zero in 0. It then provides a one-to-one
mapping of the interior of D into the interior of
another simply connected region R and likewise
maps the curves which bounds these regions into
one another. Riemann proved that for finite regions
the mapping is unique. To go backwards from R to
D you use the inverse function f(w) which obeys
g(f(w))=z. This too is unique.

In the complex plane analysis and geometry are the
same thing.
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Composition Properties

picture from Gruzberg and Kadanoff.

Notice how the boundary of the first mapping region
has remained unchanged by the second.
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Example

w=g(z)=(z+z1) takes D into H, the upper half
plane.

e
—

Solve for z. Z=(w+yYw" —4)/2 z=f(w) Then

f takes H into D.

Note that non-analyticity at w=2,-2, z=0 and
vanishing derivatives z=1,-1 at all give interesting
behavior.
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Further

The map w=z-a+r’/(z-a)=g, (z) describes a bump
with radius r centered on the real axis at a. One can
compose these bumps
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real part of trajectory
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Where should we Place the next Bump?
We might

1. Let a random walker find the place, or equally

2. Solve the Laplace equation with a source at
infinity and p=0 on the aggregate. The probability
for landing is proportional to the normal gradient of
the potential on the aggregate, or equally

3. Solve an electrostatics problem with charge one
on the aggregate and a potential, ¢, obeying the
Laplace equation outside the aggregate. Again, the
gradient gives the probability, or equally

4. Form the map g(w) taking the aggregate into the
unit circle, with the extra condition that g --> w as
w--> infinity. Write In g = @ + i1. Again the
gradient gives the probability in the physical- (w-)
plane,

(Note that 3 and 4 are identical since the g in #4 is
identical to the quantity defined in #3. It obeys the
Laplace equation, is logarithmic at infinity, and
vanishes on the aggregate.)

5. Equally, using g, one can say that the charges are
uniformly distributed on the circle, i.e. in the math

plane.
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Therefore we can eliminate the walker
entirely

We construct the DLA cluster for many very small
bumps.

Just use g or g'=f to describe the shape of the
interface.

Placed the next bump randomly on the circle. That is
pick the value of a. Pick its radius, r, to make all the
bumps on the physical plane be of the same size, i.e.
make the bump size inversely proportional to the
derivative of g.

Construct the map for the previous shape plus the
new bump as g'=g¢, 0 g.

This approach gives an iterative method for
constructing the DLA cluster. It was used by
Hastings and Levitov to construct the cluster
previously shown.
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DLA, summarized

One can form DLA aggregates by doing a bump map
many many times. On picks a map of the form

2
r

w=g,(2)=(z-a+ )/ 2,
&=l

which makes bumps with radius r and position a. (r
and a must be real.) The one puts together a bunch
of bumps by successively forming the maps one
after the other:

8(2)=28,(8.48.(8.(8. ()N
One bump:

many bumps tend to clump

&

9(z) serves in the dual role of guiding the placement
of the next bump and defining the shape of the
aggregate.
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Physical models:

DLA: bumps appear at random positions in w, all
equal in size in the physical plane. (Hastings and
Levitov) This model is almost certainly in the
universality class of DLA..

Noise-reduced DLA: The landing probability is
proportional to | V@ " where n=1is DLA. 0<n<4 is
called the dielectric breakdown model and is
probably a different universality class for each n. My
student Chao Tang argued that large n produced 3
new universality class which he called noise-reduced
DLA. | said it was not so. He was right

Other models: Vary bump size. New universality
classes.

Other models yet: In DLA, if the radius of the bump
is the small number ¢, then a new bump is produced

TR 0.
at a “displacement” Aw ==+ "¢ from last bump.

This random walk along the aggregate produces
fractals very different from DLA. Structure of
fractals differs depending on value of x and is
probably SLE, (Oded Schramm had the basic insights,

further developed by Lawler and Warner, and then
Hastings translated them into this language.)
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