SLE \& QUANTUM GRAVITY

Bertrand Duplantier

Service de Physique Théorique de Saclay

Percolation, SLE, and Related Topics Workshop
Thematic program
Renormalization \& Universality
in Mathematics \& Mathematical Physics
The Fields Institute, Toronto
September 20-24, 2005

Brownian Path \& Frontier

Paul Lévy: conformal invariance Mandelbrot conjecture (1982):
Frontier Hausdorff dimension $D=\frac{4}{3}$, as a SAW (Lawler, Schramm \& Werner, 2001; L.-W.; B. D., 1998)

Self-Avoiding Walk

(Courtesy of T. Kennedy)
B. Nienhuis (1982): $D=\frac{4}{3}$; J. Cardy (1984): $\tilde{x}_{1}=\frac{5}{8}$
D. \& Saleur (1986): Multiple SAWs

Percolation Hull \& Frontier

(J. Asikainen et al., 2003)

Cluster; Hull: $D_{\text {Hull }}=\frac{7}{4}$ (D. \& Saleur, 1987; Smirnov, 2001; Beffara, 2002); External Perimeter: $D_{\mathrm{EP}}=\frac{4}{3}$ (Aizenman, D. \& Aharony, 1999; LSW; Beffara)

$\mathrm{SLE}_{\mathrm{K}}$ (Schramm, 1999)

SAW in half plane $-1,000,000$ steps

(G. Lawler, O. Schramm. \& W. Werner; S. Rohde \& O. S.;
S. Smirnov; M. Bauer \& D. Bernard; J. Cardy; W. Kager \& B. Nienhuis;
V. Beffara; N.-G. Kang, J. Dubédat; S. Sheffield; F. Camia \& C. Newman)

2D QUANTUM GRAVITY

Statistical Mechanics on a Regular Lattice

Random lines on the (dual of) a regular triangular lattice.

Randomly Triangulated Lattice

A random planar triangular lattice.

Statistical Mechanics on a Random Lattice

Statistical model on a random planar triangular lattice.

Boundary Effects

Dirichlet boundary conditions on a random disk.

Partition Function on a Random Lattice

Statistical model \mathcal{M} on random lattice G.

$$
Z(\beta)=\sum_{\text {planar } G} e^{-\beta|G|} Z_{G}
$$

Z_{G} : partition function of the statistical model \mathcal{M} on G.
Double Critical Point of $\mathcal{M} \& G$

$$
Z(\beta) \sim\left(\beta-\beta_{c}\right)^{2-\gamma(c)}
$$

The string susceptibility exponent γ depends on \mathfrak{M} through c

Double Critical Behavior

$\gamma_{\text {str }}(c) \equiv \gamma$ is related to the "central charge" c of the CFT describing the statistical model by

$$
c=1-6 \gamma^{2} /(1-\gamma), \gamma \leqslant 0
$$

SLE $_{\kappa}, 0 \leqslant \kappa \leqslant+\infty$

$$
\begin{gathered}
c=\frac{1}{4}(6-\kappa)\left(6-\frac{16}{\kappa}\right) \\
\gamma=1-\frac{4}{\kappa}, \kappa \leqslant 4, \quad \gamma=1-\frac{\kappa}{4}, 4 \leqslant \kappa
\end{gathered}
$$

Symmetric under duality: $\kappa \rightarrow \kappa^{\prime}=16 / \kappa$

Conformal Weights of a Random Path in \mathbb{C} or \mathbb{H}

SAW in half plane - $1,000,000$ steps

Critical Behavior

Partition functions in \mathbb{C} or \mathbb{H}

$$
z \propto\left(\frac{r}{R}\right)^{2 x}, \quad \tilde{z} \propto\left(\frac{r}{R}\right)^{\tilde{x}}
$$

Partition functions in QG

$$
\left.Z \propto\langle | G\left\rangle^{-\Delta}, \quad \tilde{Z} \propto\langle | \partial G\right|\right\rangle^{-\tilde{\Delta}}
$$

Average lattice area $\langle | G\rangle$, boundary length $\langle | \partial G|\rangle$:

$$
\langle | G\left\rangle \sim\left(\beta-\beta_{c}\right)^{-1}\right.
$$

KPZ Knizhnik, Polyakov, Zamolodchikov (88)

A "conformal operator" O (e.g. creating a line extremity) has conformal weight $x=U(\Delta)$ in $\mathbb{C}($ or $\tilde{x}=U(\tilde{\Delta})$ in $\mathbb{H})$

where $\Delta($ or $\tilde{\Delta})$ is the corresponding conformal weight in quantum gravity (or boundary Q. G.)

KPZ : The fundamental quadratic relation exists between the conformal dimensions Δ on a random planar surface and those x in \mathbb{C} or \mathbb{H}

$$
x=U(\Delta)=\Delta \frac{\Delta-\gamma}{1-\gamma}
$$

Inverse KPZ map

$$
\Delta=U^{-1}(x)=\frac{1}{2}\left(\sqrt{4(1-\gamma) x+\gamma^{2}}+\gamma\right)
$$

SLE \& KPZ

Conformal dimensions Δ in (boundary) QG and x in $\mathbb{C}(\mathbb{H})$

$$
x=U(\Delta)=\frac{1}{4} \Delta(\kappa \Delta+4-\kappa)
$$

Inverse KPZ map

$$
\Delta=U^{-1}(x)=\frac{1}{2 \kappa}\left(\sqrt{16 \kappa x+(\kappa-4)^{2}}+\kappa-4\right)
$$

(duality $\kappa \rightarrow 16 / \kappa$)

Duality \& KPZ

Dual conformal dimensions Δ, Δ^{\prime} in QG

$$
x=U_{\kappa}(\Delta)=\Delta \times \frac{1}{4}(\kappa \Delta+4-\kappa)=\Delta \times \Delta^{\prime}
$$

Inverse KPZ к-map

$$
\begin{aligned}
U_{\kappa}^{-1}(x) & =\frac{1}{2 \kappa}\left(\sqrt{16 \kappa x+(\kappa-4)^{2}}+\kappa-4\right) \\
& =\Delta \quad(\kappa \leqslant 4) \quad \text { or } \quad \Delta^{\prime} \quad(\kappa \geqslant 4) \\
x & =U_{\kappa}^{-1}(x) \times U_{16 / \kappa}^{-1}(x)
\end{aligned}
$$

SLE Duality

$D_{\mathrm{EP}}(\kappa)=D_{\mathrm{H}}(\kappa), \kappa \leqslant 4$
$D_{\mathrm{EP}}(\kappa)=D_{\mathrm{H}}\left(\mathrm{K}^{\prime}=16 / \kappa\right), \quad \kappa \geqslant 4$

$$
\frac{1}{4}=\left[D_{\mathrm{EP}}(\kappa)-1\right]\left[D_{\mathrm{H}}(\kappa)-1\right]
$$

Duality: the external perimeter of SLE $_{\mathrm{K} \geqslant 4}$ "is" the simple path of $\operatorname{SLE}_{[(16 / k) \leqslant 4]}$

Life in QG is Easy

I • Bulk-Boundary Conformal Weights Relation

$$
2 \Delta_{A}-\gamma=\tilde{\Delta}_{A}
$$

II • QG Boundary Additivity \& Mutual Avoidance

$A \wedge B$: random sets $A \& B$ avoid each other

$$
2 \Delta_{A \wedge B}-\gamma=\tilde{\Delta}_{A \wedge B}=\tilde{\Delta}_{A}+\tilde{\Delta}_{B}
$$

SLE \& Boundary QG

$$
\begin{aligned}
\tilde{\Delta}_{1} & =\mathrm{U}^{-1}\left(\tilde{x}_{1}\right) \\
& =\frac{1-\gamma}{2}
\end{aligned}
$$

$$
\tilde{\Delta}_{1}=U_{\kappa}^{-1}\left(\tilde{x}_{1}\right)=\frac{2}{\kappa}
$$

Boundary Quantum Gravity is Additive

Brownian Packet Conformal Weight in \mathbb{H}

Dirichlet boundary conformal weights in \mathbb{H} of a single Brownian path (left), and of a packet of n independent Brownian paths (right).

Brownian Packet Conformal Weight in QG

Left: Dirichlet boundary conformal weight n in \mathbb{H} of a packet of n independent Brownian paths; right: its conformal weight $\tilde{\Delta}$ in boundary $Q G$.

Brownian Packet in QG

Boundary conformal weight in \mathbb{H} of a packet of n independent Brownian paths:

$$
\tilde{\zeta}(n)=n
$$

In QG, by inverting KPZ
$\tilde{\Delta}(n)=U_{\kappa}^{-1}(n)=\frac{1}{2 \kappa}\left(\sqrt{16 \kappa n+(\kappa-4)^{2}}+\kappa-4\right)$
The Brownian paths, independent in a fixed metric, are strongly coupled by the metric fluctuations in quantum gravity.

SLE Equivalence

Total Number of Simple Paths: $\#=2+L$ n independent Brownian paths $\Longleftrightarrow L$ mutually-avoiding SLE paths:
$L=\frac{U_{\kappa}^{-1}(n)}{U_{\kappa}^{-1}\left(\tilde{x}_{1}\right)}=\frac{\kappa}{2} U_{\kappa}^{-1}(n)$, from AdDITIVITY of bOUNDARY QG

Brownian Hiding Exponents and SLE (8/3)

$L(m) \quad L(n)$

$$
U_{K=8 / 3}^{-1}(n)=\frac{2}{K} L(n)=\frac{3}{4} L(n)
$$

Hiding Exponents

Combining conformal dimensions $\tilde{\Delta}$ in boundary
QG and \tilde{x} in \mathbb{H}

$$
\begin{gathered}
\tilde{x}_{m, n}=U\left[\frac{3}{4}+U^{-1}\left[m+U\left(U^{-1}(n)-\frac{3}{4}\right)\right]\right] \\
\tilde{x}_{m, n}=m+n+\frac{1}{4} \sqrt{24 m+(\sqrt{1+24 n}-3)^{2}} \\
\quad-\frac{1}{4}(\sqrt{1+24 n}-3)
\end{gathered}
$$

$\operatorname{SLE}(\kappa, \rho) \&$ QG

Left: $\operatorname{SLE}(\kappa, \rho)$ in \mathbb{H}; middle: $\operatorname{SLE}(\kappa)$ and its counterpart of n independent Brownian paths; right: the counterpart as L equivalent $\operatorname{SLE}(\kappa)$ s from $Q G$.

$\operatorname{SLE}(\kappa \geqslant 4, \rho=\kappa-4)$

$$
L=\rho / 2=(\kappa / 2) U^{-1}(n)
$$

Left: $\operatorname{SLE}(\kappa, \rho=\kappa-4)$ conditioned to avoid \mathbb{R}^{-}; middle: $S L E(\kappa)$ and its counterpart of $n=0$ Brownian paths; right: the counterpart as L equivalent $\operatorname{SLE}(\kappa)$ s from $Q G$

$$
\rho=\kappa U_{\kappa}^{-1}(0), \quad U_{\kappa}^{-1}(0)=\theta(\kappa-4)\left(1-\frac{4}{\kappa}\right)
$$

Contact Exponents and QG

Contact Exponents of SLE (κ, ρ)

$\sigma=\mathrm{U}^{-1}(m+n)$

