SLE & QUANTUM GRAVITY

Bertrand Duplantier

Service de Physique Théorique de Saclay

PERCOLATION, SLE, AND RELATED TOPICS WORKSHOP

Thematic program

Renormalization & Universality

in Mathematics & Mathematical Physics

The Fields Institute, Toronto

September 20-24, 2005

Brownian Path & Frontier

Paul Lévy: conformal invariance Mandelbrot conjecture (1982):

Frontier Hausdorff dimension $D = \frac{4}{3}$, as a SAW (Lawler, Schramm & Werner, 2001; L.-W.; B. D., 1998)

Self-Avoiding Walk

(Courtesy of T. Kennedy)

- B. Nienhuis (1982): $D = \frac{4}{3}$; J. Cardy (1984): $\tilde{x}_1 = \frac{5}{8}$
- D. & Saleur (1986): Multiple SAWs

Percolation Hull & Frontier

(J. Asikainen et al., 2003)

Cluster; Hull: $D_{\text{Hull}} = \frac{7}{4}$ (D. & Saleur, 1987; Smirnov, 2001; Beffara, 2002); External Perimeter: $D_{\text{EP}} = \frac{4}{3}$ (Aizenman, D. & Aharony, 1999; LSW; Beffara)

SLE_K (Schramm, 1999)

SAW in half plane - 1,000,000 steps

- (G. Lawler, O. Schramm. & W. Werner; S. Rohde & O. S.;
- S. Smirnov; M. Bauer & D. Bernard; J. Cardy; W. Kager & B. Nienhuis;
- V. Beffara; N.-G. Kang, J. Dubédat; S. Sheffield; F. Camia & C. Newman)

2D QUANTUM GRAVITY

Statistical Mechanics on a Regular Lattice

Random lines on the (dual of) a regular triangular lattice.

Randomly Triangulated Lattice

A random planar triangular lattice.

Statistical Mechanics on a Random Lattice

Statistical model on a random planar triangular lattice.

Boundary Effects

Dirichlet boundary conditions on a random disk.

Partition Function on a Random Lattice

Statistical model M on random lattice G.

$$Z(\beta) = \sum_{\text{planar } G} e^{-\beta |G|} Z_G$$

 \mathcal{Z}_G : partition function of the statistical model \mathcal{M} on G.

Double Critical Point of \mathcal{M} & G

$$Z(\beta) \sim (\beta - \beta_c)^{2-\gamma(c)}$$

The string susceptibility exponent γ depends on $\mathcal M$ through c

Double Critical Behavior

 $\gamma_{\rm str}(c) \equiv \gamma$ is related to the "central charge" c of the CFT describing the statistical model by

$$c = 1 - 6\gamma^2/(1 - \gamma), \ \gamma \leqslant 0$$

 $SLE_{\kappa}, 0 \leqslant \kappa \leqslant +\infty$

$$c = \frac{1}{4}(6 - \kappa) \left(6 - \frac{16}{\kappa}\right)$$

$$\gamma = 1 - \frac{4}{\kappa}, \ \kappa \leqslant 4, \quad \gamma = 1 - \frac{\kappa}{4}, \ 4 \leqslant \kappa$$

Symmetric under duality: $\kappa \rightarrow \kappa' = 16/\kappa$

Conformal Weights of a Random Path in $\mathbb C$ or $\mathbb H$

SAW in half plane - 1,000,000 steps

Critical Behavior

Partition functions in C or H

$$Z \propto \left(\frac{r}{R}\right)^{2x}, \quad \tilde{Z} \propto \left(\frac{r}{R}\right)^{\tilde{x}}$$

Partition functions in QG

$$Z \propto \langle |G| \rangle^{-\Delta}, \quad \tilde{Z} \propto \langle |\partial G| \rangle^{-\tilde{\Delta}}$$

Average lattice area $\langle |G| \rangle$, boundary length $\langle |\partial G| \rangle$:

$$\langle |G| \rangle \sim (\beta - \beta_c)^{-1}$$

•

KPZ Knizhnik, Polyakov, Zamolodchikov (88)

A "conformal operator" O (e.g. creating a line extremity) has conformal weight $x = U(\Delta)$ in \mathbb{C} (or $\tilde{x} = U(\tilde{\Delta})$ in \mathbb{H})

where Δ (or $\tilde{\Delta}$) is the corresponding conformal weight in quantum gravity (or boundary Q. G.)

KPZ: The fundamental quadratic relation exists between the conformal dimensions Δ on a random planar surface and those x in \mathbb{C} or \mathbb{H}

$$x = U(\Delta) = \Delta \frac{\Delta - \gamma}{1 - \gamma}$$

Inverse KPZ map

$$\Delta = U^{-1}(\mathbf{x}) = \frac{1}{2} \left(\sqrt{4(1-\gamma)\mathbf{x} + \gamma^2} + \gamma \right)$$

SLE & KPZ

Conformal dimensions Δ in (boundary) QG and x in $\mathbb{C}(\mathbb{H})$

$$x = U(\Delta) = \frac{1}{4}\Delta(\kappa\Delta + 4 - \kappa)$$

Inverse KPZ map

$$\Delta = U^{-1}(x) = \frac{1}{2\kappa} \left(\sqrt{16\kappa x + (\kappa - 4)^2 + \kappa - 4} \right)$$

(duality $\kappa \to 16/\kappa$)

Duality & KPZ

Dual conformal dimensions Δ , Δ' in QG

$$x = U_{\kappa}(\Delta) = \Delta \times \frac{1}{4} (\kappa \Delta + 4 - \kappa) = \Delta \times \Delta'$$

Inverse KPZ κ-map

$$U_{\kappa}^{-1}(x) = \frac{1}{2\kappa} \left(\sqrt{16\kappa x + (\kappa - 4)^2 + \kappa - 4} \right)$$
$$= \Delta \quad (\kappa \leqslant 4) \quad \text{or} \quad \Delta' \quad (\kappa \geqslant 4)$$
$$x = U_{\kappa}^{-1}(x) \times U_{16/\kappa}^{-1}(x)$$

SLE Duality

$$D_{\text{EP}}(\kappa) = D_{\text{H}}(\kappa), \ \kappa \leq 4$$

$$D_{\text{EP}}(\kappa) = D_{\text{H}}(\kappa' = 16/\kappa), \quad \kappa \geq 4$$

$$\frac{1}{4} = [D_{\text{EP}}(\kappa) - 1][D_{\text{H}}(\kappa) - 1]$$

Duality: the external perimeter of $SLE_{\kappa \geqslant 4}$ "is" the simple path of $SLE_{[(16/\kappa)\leqslant 4]}$

Life in QG is Easy

I • Bulk-Boundary Conformal Weights Relation

$$2\Delta_A - \gamma = \tilde{\Delta}_A$$

II • QG Boundary Additivity & Mutual Avoidance

 $A \wedge B$: random sets A & B avoid each other

$$2\Delta_{A\wedge B} - \gamma = \tilde{\Delta}_{A\wedge B} = \tilde{\Delta}_A + \tilde{\Delta}_B$$

SLE & Boundary QG

$$\widetilde{\Delta}_1 = \widetilde{U}(\widetilde{x}_1)$$
$$= \frac{1-\gamma}{2}$$

$$\tilde{\Delta}_1 = U_{\kappa}^{-1} \left(\tilde{x}_1 \right) = \frac{2}{\kappa}$$

Boundary Quantum Gravity is Additive

Brownian Packet Conformal Weight in H

Dirichlet boundary conformal weights in \mathbb{H} of a single Brownian path (left), and of a packet of n independent Brownian paths (right).

Brownian Packet Conformal Weight in QG

Left: Dirichlet boundary conformal weight n in \mathbb{H} of a packet of n independent Brownian paths; right: its conformal weight $\tilde{\Delta}$ in boundary QG.

Brownian Packet in QG

Boundary conformal weight in \mathbb{H} of a packet of n independent Brownian paths:

$$\tilde{\zeta}(n) = n$$

In QG, by inverting KPZ

$$\tilde{\Delta}(n) = U_{\kappa}^{-1}(n) = \frac{1}{2\kappa} \left(\sqrt{16\kappa n + (\kappa - 4)^2 + \kappa - 4} \right)$$

The Brownian paths, independent in a fixed metric, are strongly coupled by the metric fluctuations in quantum gravity.

SLE Equivalence

Total Number of Simple Paths: #=2+L

n independent Brownian paths \iff *L* mutually-avoiding SLE paths:

$$L = \frac{U_{\kappa}^{-1}(n)}{U_{\kappa}^{-1}(\tilde{x}_{1})} = \frac{\kappa}{2}U_{\kappa}^{-1}(n), \text{ from Additivity of Boundary QG}$$

Brownian Hiding Exponents and SLE(8/3)

Hiding Exponents

Combining conformal dimensions $\tilde{\Delta}$ in boundary QG and \tilde{x} in \mathbb{H}

$$\tilde{\mathbf{x}}_{m,n} = \mathbf{U} \left[\frac{3}{4} + U^{-1} \left[m + \mathbf{U} \left(U^{-1}(n) - \frac{3}{4} \right) \right] \right]$$

$$\tilde{x}_{m,n} = m + n + \frac{1}{4}\sqrt{24m + \left(\sqrt{1 + 24n} - 3\right)^2}$$
$$-\frac{1}{4}\left(\sqrt{1 + 24n} - 3\right)$$

$SLE(\kappa, \rho) \& QG$

Left: $SLE(\kappa, \rho)$ in \mathbb{H} ; middle: $SLE(\kappa)$ and its counterpart of n independent Brownian paths; right: the counterpart as L equivalent $SLE(\kappa)s$ from QG.

$SLE(\kappa \geqslant 4, \rho = \kappa - 4)$

Left: $SLE(\kappa, \rho = \kappa - 4)$ conditioned to avoid \mathbb{R}^- ; middle: $SLE(\kappa)$ and its counterpart of n = 0 Brownian paths; right: the counterpart as L equivalent $SLE(\kappa)s$ from QG

$$\rho = \kappa U_{\kappa}^{-1}(0), \quad U_{\kappa}^{-1}(0) = \theta(\kappa - 4) \left(1 - \frac{4}{\kappa}\right)$$

Contact Exponents and QG

Contact Exponents of SLE(κ, ρ)

$$\sigma = U^{-1}(m+n) \qquad - U^{-1}(n)$$