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PERCOLATION, SLE, AND RELATED TOPICS WORKSHOP

Thematic program

Renormalization & Universality

in Mathematics & Mathematical Physics

The Fields Institute, Toronto

September 20-24, 2005



Brownian Path & Frontier

Paul Lévy: conformal invariance
Mandelbrot conjecture (1982):
Frontier Hausdorff dimension D � 4

3, as a SAW
(Lawler, Schramm & Werner, 2001; L.-W.; B. D.,
1998)



Self-Avoiding Walk
SAW in plane - 1,000,000 steps

(Courtesy of T. Kennedy)

B. Nienhuis (1982): D � 4
3; J. Cardy (1984): x̃1

� 5
8

D. & Saleur (1986): Multiple SAWs



Percolation Hull & Frontier
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(J. Asikainen et al., 2003)

Cluster; Hull: DHull
� 7

4 (D. & Saleur, 1987; Smirnov, 2001;
Beffara, 2002); External Perimeter: DEP

� 4
3 (Aizenman, D.

& Aharony, 1999; LSW; Beffara)



SLEκ (Schramm, 1999)
SAW in half plane - 1,000,000 steps 

x1

x~1

x2

(G. Lawler, O. Schramm. & W. Werner; S. Rohde & O. S.;

S. Smirnov; M. Bauer & D. Bernard; J. Cardy; W. Kager & B. Nienhuis;

V. Beffara; N.-G. Kang, J. Dubédat; S. Sheffield; F. Camia & C. Newman)



2D QUANTUM GRAVITY



Statistical Mechanics on a Regular
Lattice

Random lines on the (dual of) a regular triangular lattice.



Randomly Triangulated Lattice

A random planar triangular lattice.



Statistical Mechanics on a Random
Lattice

Statistical model on a random planar triangular lattice.



Boundary Effects

Dirichlet boundary conditions on a random disk.



Partition Function on a Random Lattice

Statistical model M on random lattice G �

Z
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Z G: partition function of the statistical model M on G.

DOUBLE CRITICAL POINT of M & G
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The string susceptibility exponent γ depends on M through c



Double Critical Behavior
γstr

�

c
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Conformal Weights of a Random Path in or
SAW in half plane - 1,000,000 steps 
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Critical Behavior
Partition functions in or
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KPZ Knizhnik, Polyakov, Zamolodchikov (88)

A “conformal operator” O (e.g. creating a line extremity) has
conformal weight x � U

�

∆

�

in

�

(or x̃ � U

�

∆̃

�

in

�

)

where ∆ (or ∆̃) is the corresponding conformal weight in
quantum gravity (or boundary Q. G.)



KPZ: The fundamental quadratic relation exists

between the conformal dimensions ∆ on a random

planar surface and those x in or
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SLE & KPZ
Conformal dimensions ∆ in (boundary) QG and x
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Duality & KPZ
Dual conformal dimensions ∆, ∆

�

in QG
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SLE Duality

DEP κ � DH κ � κ 4

DEP κ � DH κ

�
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Life in QG is Easy



I � Bulk-Boundary Conformal Weights Relation
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II � QG Boundary Additivity & Mutual Avoidance
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SLE & Boundary QG
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Boundary Quantum Gravity is Additive
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Brownian Packet Conformal
Weight in
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Dirichlet boundary conformal weights in
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of a single
Brownian path (left), and of a packet of n independent

Brownian paths (right).



Brownian Packet Conformal
Weight in QG
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Left: Dirichlet boundary conformal weight n in
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of a
packet of n independent Brownian paths; right: its conformal
weight ∆̃ in boundary QG.



Brownian Packet in QG
Boundary conformal weight in of a packet of n

independent Brownian paths:
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In QG, by inverting KPZ
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The Brownian paths, independent in a fixed metric, are
strongly coupled by the metric fluctuations in quantum
gravity.



SLE Equivalence

R rR r

Total Number of Simple Paths: # � 2 L
n independent Brownian paths �� L mutually-avoiding
SLE paths:
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Brownian Hiding Exponents and
SLE 8 3
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Hiding Exponents
Combining conformal dimensions ∆̃ in boundary

QG and x̃ in
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SLE κ � ρ & QG
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and its counterpart of
n independent Brownian paths; right: the counterpart as L
equivalent SLE

�

κ
�

s from QG.



SLE κ 4 � ρ � κ � 4

ρSLE (  )
κ

SLE

ρL = =

SLE

/2 κ /2)(

κ
κ

n
U (

1
n)

Left: SLE

�

κ � ρ � κ � 4

�

conditioned to avoid

� �

; middle:

SLE

�

κ

�

and its counterpart of n � 0 Brownian paths; right:

the counterpart as L equivalent SLE

�

κ

�

s from QG

ρ � κU

� 1
κ

�

0
�

� U

� 1
κ

�

0

�

� θ

�

κ � 4

�

1 �

4
κ



Contact Exponents and QG
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Contact Exponents of SLE κ � ρ
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