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Moduli spaces

Ag = moduli space of Abelian differentials (holomorphic
complex 1-forms) on Riemman surfaces of genus g ≥ 2

a complex orbifold of dimension dimC Ag = 4g − 3

a fiber bundle over the moduli space Mg of Riemann
surfaces of genus g ≥ 2
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Moduli spaces

Ag = moduli space of Abelian differentials (holomorphic
complex 1-forms) on Riemman surfaces of genus g ≥ 2

a complex orbifold of dimension dimC Ag = 4g − 3

a fiber bundle over the moduli space Mg of Riemann
surfaces of genus g ≥ 2

Ag(m1, . . . ,mσ) = stratum of Abelian differentials having σ
zeroes, with multiplicities m1, . . . ,mσ

σ
∑

i=1

mi = 2g − 2

complex orbifold of dimC Ag(m1, . . . ,mσ) = 2g + σ − 1
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Teichmüller flow

The Teichmüller flow is the natural action T t on the fiber
bundle Ag by the diagonal subgroup of SL(2, R):

T t(ω)z = et
(

ℜωz

)

+ ie−t
(

ℑωz

)

Geometrically:

T t
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Teichmüller flow

The Teichmüller flow is the natural action T t on the fiber
bundle Ag by the diagonal subgroup of SL(2, R):

T t(ω)z = et
(

ℜωz

)

+ ie−t
(

ℑωz

)

Geometrically:

T t

This flow preserves the area of the translation surface
defined by the Abelian differential. In what follows we
normalize the area.
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Ergodicity

Masur, Veech:

Each stratum of Ag carries a canonical volume measure.
This measure is finite and invariant under the Teichmüller
flow.

The Teichmüller flow T t, restricted to any hypersurface of
constant area, is ergodic on any connected component of
every stratum.

Kontsevich-Zorich:

Each stratum has up to 3 connected components.
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Lyapunov exponents

Fix a connected component of a stratum. The Lyapunov
spectrum of the Teichmüller flow has the form

2 ≥ 1 + ν2 ≥ · · · ≥ 1 + νg ≥ 1 = · · · = 1 ≥ 1 − νg ≥ · · · ≥ 1 − ν2 ≥ 0

≥ −1 + ν2 ≥ · · · ≥ −1 + νg ≥ −1 = · · · = −1 ≥ −1 − νg ≥ · · · ≥ −1 − ν2 ≥ −2

Veech: proved ν2 < 1 (flow is non-uniformly hyperbolic)

Forni: proved νg > 0 (exactly 2(σ − 1) trivial exponents)
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Lyapunov exponents

Fix a connected component of a stratum. The Lyapunov
spectrum of the Teichmüller flow has the form

2 ≥ 1 + ν2 ≥ · · · ≥ 1 + νg ≥ 1 = · · · = 1 ≥ 1 − νg ≥ · · · ≥ 1 − ν2 ≥ 0

≥ −1 + ν2 ≥ · · · ≥ −1 + νg ≥ −1 = · · · = −1 ≥ −1 − νg ≥ · · · ≥ −1 − ν2 ≥ −2

Veech: proved ν2 < 1 (flow is non-uniformly hyperbolic)

Forni: proved νg > 0 (exactly 2(σ − 1) trivial exponents)

Theorem (Avila, Viana). 1 > ν2 > · · · > νg > 0
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Asymptotic cycles

Given any long geodesic segment γ in a given direction,
“close” it to get an element h(γ) of H1(S, Z):

Kerckhoff, Masur, Smillie: For almost any direction the
geodesic flow is uniquely ergodic.

Then, h(γ)/|γ| converges uniformly to some c1 ∈ H1(S, R)
when the length |γ| goes to infinity, where the asymptotic
cycle c1 depends only the surface and the direction.
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Asymptotic flag in homology

Corollary (Zorich). There are subspaces L1 ⊂ L2 ⊂ · · · ⊂ Lg of

H1(S, R) with dim Li = i for every i, such that

the deviation of h(γ) from Li has amplitude |γ|νi+1 for all i < g:

lim sup
|γ|→∞

log dist(h(γ), Li)

log |γ|
= νi+1

the deviation of h(γ) from Lg is bounded (g = genus).
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Zippered rectangles

Almost every translation surface may be represented in the
form of zippered rectangles (minimal number of rectangles
is d = 2g − σ − 1):

A

B
C

D

A

B
C

D
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Coordinates in the stratum

This defines local coordinates (π, λ, τ, h) in the stratum:

π =

(

A B C D

D C B A

)

describes the combinatorics of

the associated interval exchange map

λ = (λA, λB, λC , λD) are the horizontal coordinates of
the saddle-connections (= widths of the rectangles)

τ = (τA, τB, τC , τD) are the vertical components of the
saddle-connections

The heights h = (hA, λB, λC , hD) of the rectangles are
linear functions of τ .
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Poincaré return map

We consider the return map to the cross section
∑

α λα = 1.
First step:

A

B
C

D

A

B
C

D
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Poincaré return map

We consider the return map to the cross section
∑

α λα = 1.
First step:

A

B
C

D
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B
C
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Poincaré return map

We consider the return map to the cross section
∑

α λα = 1.
First step:

A B
C

D

A B
C

D
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Poincaré return map

In this first step (π, λ, τ, h) 7→ (π′, λ′, τ ′, h′), where

π′ =

(

A B C D

D A C B

)

(top case)

λ′
α = λα except λ′

D = λD − λA

same for τ

h′
α = hα except h′

A = hA + hD

Write h′ = Θ(h) where Θ is the linear operator thus defined.
Notice that it has nonnegative coefficients.

Then λ′ = Θ−1∗(λ) and analogously for τ .
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Poincaré return map

We consider the return map to the cross section
∑

α λα = 1.
Second step:

A B
C

D

A B
C

D
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Poincaré return map

We consider the return map to the cross section
∑

α λα = 1.
Second step:

A B
C

D

A B
C

D

Now (π′, λ′, τ ′, h′) 7→ (π′′, λ′′, τ ′′, h′′), with π′′ = π′ and λ′′ = cλ′

and τ ′′ = c−1τ ′, where c = c(λ′) is the normalizing factor.
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Rauzy-Veech cocycle

This Poincaré return map R : (π, λ, τ) 7→ (π′′, λ′′, τ ′′) is called
(invertible) Rauzy-Veech renormalization.

We consider the linear cocycle over the map R defined by

FR : (π, λ, τ, h) 7→ (R(π, λ, τ),Θ(h))
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Rauzy-Veech cocycle

This Poincaré return map R : (π, λ, τ) 7→ (π′′, λ′′, τ ′′) is called
(invertible) Rauzy-Veech renormalization.

We consider the linear cocycle over the map R defined by

FR : (π, λ, τ, h) 7→ (R(π, λ, τ),Θ(h))

The strategy is to try

to relate the Lyapunov exponents of the Teichmüller
flow to the Lyapunov exponents of FR

and to analyze the latter through general methods of
linear cocycles

(there is a technical difficulty, as we shall see in a while).
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Rauzy cocycle and long geodesics

The Rauzy-Veech cocycle gives a way to construct long
geodesics:

A

B
C

D

Consider a geodesic segment that crosses each rectangle
α vertically. “Close” it by joining the endpoints to some base
point in the cross-section. This defines some vα ∈ H1(S, Z).
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Rauzy cocycle and long geodesics

The Rauzy-Veech cocycle gives a way to construct long
geodesics:

A B
C

D

We get v′A = vA + vD v′B = vB v′C = vC v′D = vD.

In other words, v′ = Θ(v).
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Zorich cocycle

The Rauzy-Veech renormalization R has an invariant
volume measure (for each choice of the stratum), related to
the invariant volume of the Teichmuller flow. However, this
measure is infinite.
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Zorich cocycle

The Rauzy-Veech renormalization R has an invariant
volume measure (for each choice of the stratum), related to
the invariant volume of the Teichmuller flow. However, this
measure is infinite.

Zorich introduced an accelerated renormalization and an
accelerated cocycle

Z(π, λ, τ) = Rn(π, λ, τ) and FZ(π, λ, τ, h) = Fn
R(π, λ, τ, h),

where n = n(π, λ) is smallest such that the Rauzy iteration
changes from “top” to “bottom” or vice-versa.
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Zorich cocycle

The Rauzy-Veech renormalization R has an invariant
volume measure (for each choice of the stratum), related to
the invariant volume of the Teichmuller flow. However, this
measure is infinite.

Zorich introduced an accelerated renormalization and an
accelerated cocycle

Z(π, λ, τ) = Rn(π, λ, τ) and FZ(π, λ, τ, h) = Fn
R(π, λ, τ, h),

where n = n(π, λ) is smallest such that the Rauzy iteration
changes from “top” to “bottom” or vice-versa.

This map Z has a natural invariant volume probability (for
each choice of the stratum) and this probability is ergodic.
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Zorich cocycle

The Lyapunov spectrum of the Zorich cocycle FZ has the
form

θ1 ≥ · · · ≥ θg ≥ 0 = · · · = 0 ≥ −θg ≥ · · · ≥ −θ1

and is related to the spectrum of the Teichmüller flow by

νi =
θi

θ1

i = 2, . . . , g.
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Zorich cocycle

The Lyapunov spectrum of the Zorich cocycle FZ has the
form

θ1 ≥ · · · ≥ θg ≥ 0 = · · · = 0 ≥ −θg ≥ · · · ≥ −θ1

and is related to the spectrum of the Teichmüller flow by

νi =
θi

θ1

i = 2, . . . , g.

One may find an explicit subbundle with dimension 2g that
avoids the trivial exponents. Moreover, restricted to this
subbundle the cocycle FZ is symplectic.
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Main result

Theorem (Avila, Viana). The Lyapunov spectrum of the (restricted)
Zorich cocycle is simple: θ1 > θ2 > · · · > θg > 0.

The proof has two main steps:

(1) A sufficient condition for the Lyapunov spectrum of a
very general linear cocycle to be simple.

(2) To prove that this criterium is satisfied by the Zorich
cocycle, for every stratum.
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Simplicity criterium

Let f : M → M be a finite or countable shift map,

F : M × R
d → M × R

d be a locally constant linear cocycle
over f ,

and µ be an f -invariant probability with continuous local
product structure:

µ = ρ(µ+ × µ−)

where log ρ is continuous and locally bounded.

(there is an extension to non-locally constant cocycles)
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Simplicity criterium

The linear cocycle F is called simple if it is

pinching: there is some periodic point p of f (let κ = period)
such that all the eigenvalues of F κ

p have distinct norms;
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Simplicity criterium

The linear cocycle F is called simple if it is

pinching: there is some periodic point p of f (let κ = period)
such that all the eigenvalues of F κ

p have distinct norms;

twisting: there is some point z homoclinic to p such that, for
all F κ

p -invariant subspaces V1, V2 with dim V1 + dim V2 ≤ d,

(F lκ
z )(V1) ∩ V2 = {0}.

p = (. . . , p−1, p0, p1, . . . , plκ, plκ+1, · · · )

z = (. . . , p−1, p0, z1, . . . , zlκ, plκ+1, · · · )
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Simplicity criterium

Theorem 1. If F is simple then all its Lyapunov exponents have
multiplicity 1.

This improves a criterium of Bonatti-Viana, based on
Guivarch-Raugi and Goldsheid-Margulis.
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Checking the Criterium

Theorem 2. Every Zorich cocycle is simple.

0� 1A

0� 1A
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Checking the Criterium

Theorem 3. Every Zorich cocycle is simple.

The proof is by induction on the number of intervals. We
consider combinatorial operations of reduction/extension:

π =

0� a1 · · · ai−1 c ai+1 · · · · · · · · · ad

b1 · · · · · · · · · bj−1 c bj+1 · · · bd

1A

l

π
′
=

0� a1 · · · ai−1 ai+1 · · · · · · ad

b1 · · · · · · bj−1 bj+1 · · · bd

1A

In terms of the corresponding translation surfaces this may
correspond to collapsing singularities or even changing the
genus.
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Checking the Criterium

Given π with d symbols, there exists π′ with d − 1 symbols
such that π is an extension of π′. Then, either g(π) = g(π′)
or g(π) = g(π′) + 1.

1. If g(π) = g(π′) then the corresponding Zorich actions are
(symplectically) conjugate.
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Checking the Criterium

Given π with d symbols, there exists π′ with d − 1 symbols
such that π is an extension of π′. Then, either g(π) = g(π′)
or g(π) = g(π′) + 1.

1. If g(π) = g(π′) then the corresponding Zorich actions are
(symplectically) conjugate.

2. If g(π) = g(π′) + 1 then H1(S(π′), R) may be seen as a
symplectic reduction of H1(S(π), R)

= symplectic orthogonal of vc inside H1(S(π), R)/vc

and the Zorich action on H1(S(π′), R) is conjugate to the
natural action on the symplectic reduction.
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Checking the Criterium

Given π with d symbols, there exists π′ with d − 1 symbols
such that π is an extension of π′. Then, either g(π) = g(π′)
or g(π) = g(π′) + 1.

1. If g(π) = g(π′) then the corresponding Zorich actions are
(symplectically) conjugate.

2. If g(π) = g(π′) + 1 then H1(S(π′), R) may be seen as a
symplectic reduction of H1(S(π), R)

= symplectic orthogonal of vc inside H1(S(π), R)/vc

and the Zorich action on H1(S(π′), R) is conjugate to the
natural action on the symplectic reduction.

In this way one can prove twisting for π from twisting for π′.
Pinching also requires a careful combinatorial analysis.
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