Existence of Hyperbolic Bernoulli Flows
H. HU, YA. PESIN, A. TALITSKAYA

Main Theorem
Given a compact smooth Riemannian manifold

M of dim M > 3, there exists a C™® flow f* s.t.
for t #& O,

1. ft preserves the Riemannian volume y;

2. ft has non-zero Lyapunov exponents (ex-
cept for the exponent along the flow direc-
tion) at a.e. point z € M,

3. ft is a Bernoulli diffeomorphism.



1. Anrosov Ltous ;

- Special Llws oven Anssou o&'{/@mzpﬁus
- §eodesce LGws on m;a{a‘ueé cunved
w ans fololA
2. A volume pUSV g non- Anoyou
flow on o 3- man bl with nowsezo
&t s2onends — a (bcaé% sbow~dlown
aloug izaJ‘ecpé&'es a{ an Anosov Léw,

3. ( Qa’;a,byd 3 P,) A volims ,ozesem‘tg;
C™ Beznouldy okiffeo morphisy weoih
nouzézo €xponents ou awy compacd
man;foled of olim > o9,



Let
13 8
+=(%3);
be a hyperbolic automorphism of the two-torus
T?. It has four fixed points
1 1 T

:003 =(5:0); :03_? S ks
g1 = (0,0), ¢ (2 ) a3 = ( 2)9'4 (22)
In a small neighborhood

D% = {(g1;82) : 53+ s3 < r}

of ¢;, the map A is the time-1 map of the flow

$1 = —(loga)sy, $2 = (loga)so,

where o > 1 is the larger eigenvalue of A and
{s1,s2} is the coordinate system in Df gener-
ated by the eigenvectors of A.
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$1 = —(log a)s19(s% + s3),

$2 = (log @) s (57 + s3)

in D!, and g; = A otherwise. Here ¢ is a
C® function except at 0 and s.t. (0) = 0,
¥(€) 20, for £ >0, P(¢) =1 for £ > r and
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g1 Is conjugate to A via a conjugacy ¢g (it
slows down the motion near ¢;).
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g1 preserves a measure dv = kg kdm, where
Ko = ng xdm is a "normalizing factor”, m is
area and the density s is a C°° function,

J"'i'r(Sl-.' 32) - ("p(slz T 522))—1: (81382) = D’?‘

and k(s1,s2) = 1 otherwise. Note that k is
infinite at g;.

Define the map ¢, by the formula

) a du e
%(81’82):\/@(/0 m) (51,82)

(a = s124552) near each g; and extend it to 72
s.t. ¢ is C® and satisfies (¢1)«v = m. Hence,
go = (10910 qbfl is a C*° area preserving map.
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Let ¢: T2 — 52 be a double branched covering
satisfying ¢2 0 J = ¢2, (¢1)sm = m, and ¢5 is
C'°° everywhere except for ¢;, where it branches
and near g;,

1
QSQ(SI: 52) = \/ 2(8% = S%: 25132)'
S
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The map g3 = ¢oo0ga0¢5" is a C® diffeo of
the sphere 2.

Let ¢3 be a C°° map that blows up the point
g4 into a circle and makes g = ¢30g30 ¢35 to
be the desired map of the disk.




Properties of the Map g

(1) g is C°°, preserves area, has non-zero Lya-
punov exponents a.e. and is a Bernoulli map.

(2) g is uniformly hyperbolic outside a small
neighborhood of the singularity set Q = 8D?U
{p1,p2,p3}, i.e., there exists A > 1, s.t.

1 L 1

ldglBg @)l < 5, g IE§ ()] < 5.
(3) g possesses two one-dimensional continu-
ous foliations which are extensions of the sta-
ble and unstable global foliations Wj(z) and
Wi (x); we will use the same notations for these

foliations.

(4) On the boundary of the disk g is the iden-
tity map and has all its derivatives zero: more-
over, there are neighborhoods U C Uy of 8D?
and a vector field V in U7 which generates an
area-preserving flow ¢t: U — D2, —2 < t < 2 for
which g|U = ¢1.



(5) g is diffeotopic to the identity map — there
exists a C*™ map G : D? x [0,1] — D? s.t.

1. G(-,0) =id and G(-,1) = g;

2. G(z,t) = g'(z) for x € U and t € [0, 1];

3. the map G(-,t) : D? — D? is area-preserving:
4. d*G(z,1) = d*G(g(z),0) for any k > 0.
Proof. Extend the vector field V to a smooth
vector field V on the whole D2, and let § be
the corresponding flow. Note that g|U = g|U.
Lemma (Smale) Let A be the space of C®
diffeo of the unit square (disk) which are the
identity in a neighborhood of the boundary.

Endow A with the C" topology, 1 < r < oo.
Then A is contractible to a point.



Applying this result to g o g1, which is the

identity on U, we obtain a homotopy
G : D? x [0,1] — D?
such that
G(-,0) =4d|D? and G(-,1) = gog 1.
Moreover, G is C® in (z,t), i.e., G is a dif-
feotopy in .A. Therefore, for t € [0, 1], thereis a
neighborhood U; of 8D? s.t. G(-,t)|U; = 4d|Us.
The set
U=unt ﬂ Ut
t€[0,1]
is not empty and is a neighborhood of 8D2. If
= G(-,t) then

Gl('a t) s §t o §t

satisfies Statements 1 and 2. We shall further
modify the diffeotopy G1(x,t), so it satisfies
Statements 3 and 4.



We need:

- Anssov
Lemma (Mofher—Katok) Let {O}} and {O}}
be two families of volume forms on D? that are
C* in (z,t). Assume that O}|U = OY|U for any
t and Of = O} for t € [0,e) U (1 —¢,1]. Then
there exists a map G : D? x [0, 1] — D? s.t.

1. G(z,t) is C®in (z,t) and G(-,0) = G(-,1) =
id;

3. for any t € [0,1] the map G(-,t) : D? — D2
is a diffeo with G(-,t)*0O} = Ok;

4. G(z,t) = z for any t € [0,1] and z in some
neighborhood U’ Cc U of 8D2.

Consider Op = dxy Adao and Of = (dgtdgt)* O},
Let g* = G(-,t). The map G(z,t) = gt o gt o gt
satisfies Statements 1 — 3. One can change
G(-,t) in a small neighborhood of the sets D2 x
0 and D2 x 1 so that it will satisfy Statement 4.
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Proof of the theorem: dimM > 5

Consider the map
R=gx A:D?xT" 3 5 D%xT1" 3,

where g is Katok's diffeo of the disk D? and A
a hyperbolic automorphism of the torus 773,
Consider the suspension flow t,otz over R with
the roof function H = 1 and the suspension
manifold K = D? x T" 3 x [0,1]/ ~, where ~
is the identification (z,y,1) = (g(z), A(y),0).
Here 7Z is the vector field of the suspension
flow and in the coordinate system (z,y,t) we
have Z = (0,0, 1).

The strategy:

The manifold K has a boundary and due to its
particular structure it can be embedded into
any manifold of dimension> 5 (Brin—Katok).
A vector field X on K can be carried over to
M provided it is identity on the boundary along
with all its derivatives. Starting with the vec-
tor field Z we will construct a desired vector
filed X,
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Step B. Consider a C* function a : D? — [0, 1]
S.L

1. « and all its partial derivatives of any order
are equal to zero on {:1D2;

2. a(z) > 0 outside 8D? and a(z) = 1 for
xz € D2\ U,

3. a(z)"1V(z) - 0 as z — 8D2.

Define the vector field X on N by
oG
X(G(m,t),y,t) - (—5;($,f),0,a(G($,t)))

Note that 9%(z,t) = V(G(x,t)) for = € U.
Therefore, for (z,y,t) € N with z € U,
X(z,y,t) = (V(),0,a(x)).

¢! = ok is the flow on N generated by the vec-
tor field X and it has all the desired properties.
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(%,4,1) ~ (3&), Ay, 0)
X (C G, 1), 4, 1) = X (Q(36), 0), Ay, 0)
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Stepll. At is the suspension flow over A with
the roof function H = 1 and L is the suspen-
sion manifold. h! preserves volume.

Set N = D? x L and write
N =D?x (T" 3 x[0,1]/ ~)
where ~ is the identification (y,1) = (A(y),0),
y € T"3. Consider F: K — N
F(;‘B’yﬂ t) = (G(:ﬂ,t), y? t)!
where G : D? x [0,1] — D? is the diffeotopy
constructed above. We have

F(z,y,1) = (9(x),y, 1)

= (g(x), A(y),0) = F(g(z), A(y),0).

Therefore, F' is well-defined:; it preserves vol-
ume, is one-to-one and continuous. Hence, it
is @ homeo. One can show that F is a C*®
diffeo.

12



Lemma 1. The vector filed X is divergence
free and ¢® is volume-preserving.

Proof. F:K — N, F(z,y,t) = (G(z,t), y, t).
Consider the vector field Y = dFZ on N and
let -:ptY be the corresponding flow. In the coor-
dinate system (z,y,t), we have

V(6,30 = (5 (2,1),0,1), (z,3,8) € K.

The vector field Y is divergence free since it
is the image of the divergence free vector field
Z under the volume-preserving map F and the
result follows.
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Lemma 2. All but one Lyapunov exponents
of the flow ¢t are non-zero a.e.

Proof. Consider the map ¢* : D? — D? s.t.
gt = g on D2\ U and g* is the time-1 map
of the flow (g*)* generated by the vector field
V*(z) = o 1(2)V(z), = € U. The map g* is
a diffeo and preserves a measure p* which is
absolutely continuous w.r.t. area with posi-
tive density; the latter is unbounded as = ap-
proaches 8D2.

We proceed as before replacing g by g*. De-
fine G* : D2 x [0,1] — D? by G*(z,t) = G(z,t)
if z € D?\ U, and G*(z,t) = (g*)!(z) other-
wise. Let ¢4, be the suspension flow over
g* x A with the suspension manifold K* = D2 x
T"=3 x [0,1]/ ~, where ~ is the identification
(z,y,1) = (g*(z), A(y),0) and Z* is the vector
field of the suspension flow. Define the map
F*: K* - N by

File,ut) =(G" (e, t) 9. t)-
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Define the vector field Z on K* by

Z(z,y,t) = (dF*) "X (F*(z,y,t)).

We have ¢% = F* o ¢k o (F*)~1. 1t suffices to
show that the flow qﬁ% has non-zero Lyapunov
exponents a.e.

A direct calculation shows that

Z(z,y,t) = oz, y£)Z*(z,y,1), (z,y,t) € K*.

Hence, the flows (,o% and ¢k, have the same
orbits and the flow-stable and flow-unstable
invariant subspaces E%,(z,y,t) and E¥(=,y,t)
are also invariant under the flow gbfz. Note
that the flow ¢%, has non-zero Lyapunov ex-
ponents a.e. Chose a point (zg,yo,tg) € K and
a vector v € EZ.(z0,y0,tp). Note that for a.e.
(z0,y0,t0) (with respect to volume) the pro-
portion of time the trajectory {¢%(zo,v0,t0)}
spends in the set {(z,y,t):z ¢ UZ} is strictly
positive. It follows that the Lyapunov expo-
nent at (zg, yo,tg) with respect to the flow qﬁ%
is positive.
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The map f = ¢l is partially hyperbolic. Two
points z, 2/ € N are accessible if there are points

2= 2Ry s Zhqn 2 = 2,2 € N s8t. z €
W¥(z;—1) or z; € W{(z—1) for ¢ = 1,...,¢
The collection of points [z, 2'] = [z20,21,...,2/]

is called a path connecting z and z’. Accessibil-
ity is an equivalence relation. The map f has
accessibility property if the partition into ac-
cessibility classes is trivial (i.e. any two points
z,7z' are accessible) and has essential accessi-
bility property if the partition into accessibility
classes is ergodic (i.e. a measurable union of
equivalence classes has zero or full measure).

Lemma 3. (1) For every t the time-t map of
the flow % has essential accessibility property.
Moreover, for any set E of zero measure and
almost any two points z,2’ ¢ E one can find a
path [z,2'] = [20,21,...,%] s.t. each z; ¢ E.

(2) The flow @& is Bernoulli.
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By identifying some boundary points, one can
show that the manifold N can be mapped onto
the n-dimensional disc B™ via a map ¢ : N —
B"™ s.t. ¢(N) = B™ and ¢|int(N) is a diffeo
(Brin). Since X|0N = 0, we have that d¢(X) is
smooth on B™. There is also an embedding 1 :
B™ — M (Katok), and the vector field diyd¢(X)
generates the flow with the desired properties.
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Proof of the theorem: dmM = 3

Consider the suspension flow over g with the
roof function H = 1. The suspension manifold
K is diffeomorphic to N = D2 x S! and the
vector field of the suspension flow Z = (0,1).

Let FF: K — N begiven by F(x,t) = (G(z,t),t).
Define the vector field X on N by

X(G(@,0),0) = (5@, 1),a(G(1))

where a(x) is a C* function satisfying (A1)
— (A3). The vector field X is divergence-free
and the flow ¢% has all the desired properties.
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Proof of the theorem: dimM = 4

We begin with a Bernoulli map with non-zero
Lyapunov exponents on a 3-manifold. Let

T(z,y) =(a(2), Tyy) - D® % 81 — D? x &,

where T .y is rotation by v(z) and v is a non-
negative C'*° function, which is zero in a small
neighborhood of the discontinuity set

Q = {915QQ:Q358D2} X Sl

and is positive elsewhere,

One can choose v s.t. T is robustly accessible,
i.e., any Cl perturbation R of T is accessible
provided R coincides with T in a small neigh-
borhood of Q. There is a perturbation R of T
with nonzero Lyapunov exponents.
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Set

H={(z;y,t) iz E DQ,y e Sl,t € [0,1]}/ ~1q
with the identification

~1: (2,9,1) = (T'(=,y),0)
and

K={(z,y,t):x € D% ye8,¢t€[0,1]}/ ~
with the identification

&5s (miy‘! 1) — (R(a:?y), 0)
Let S = g x id and K’ the suspension manifold
of the suspension flow over S. The manifold
K' is diffeomorphic to N = D? x S1 x s and
there is a diffeo F: H — N.

Let Z = (0,0, 1) be the vector field on H of the
suspension flow over R; it is divergence free.
The vector field X on N, given by

X = (?g(m,t), 0, a(:r)) ;

Is divergence free and the flow generated by X
has all the desired properties.
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