A MODIFIED SCHMIDT GAME

AND A CONJECTURE OF MARGULIS

Dmitry Kleinbock, Brandeis University and

Barak Weiss, Ben Gurion University

1. General set-up.

Let (X, μ, F) be a dynamical system, where

- X is a metric space
- $F=\left\{g_{t}\right\}$ a (semi)group of maps $X \rightarrow X$
- μ a finite F-invariant measure

If μ is ergodic, almost all F-orbits are dense.
Specifically, for a subset Z of X, denote by $E(F, Z)$
the set of points of X with F-orbits avoiding Z, i.e.

$$
E(F, Z) \stackrel{\text { def }}{=}\{x \in X \mid \overline{F x} \cap Z=\varnothing\}
$$

Also, if X is noncompact, consider

$$
\begin{aligned}
& E(F, \infty) \stackrel{\text { def }}{=}\{x \in X \mid F x \text { is bounded }\} \\
& E(F, Z \cup \infty) \stackrel{\text { def }}{=} E(F, Z) \cap E(F, \infty)
\end{aligned}
$$

All of these are sets of measure zero.

Examples.

If g_{t} is an ergodic translation of a torus, then all orbits are dense $\Rightarrow E(F, Z)=\varnothing$ for all Z.

More generally, if $X=G / \Gamma$, where G is a Lie group and $\Gamma \subset G$ a lattice, and $F=\left\{g_{t}\right\} \subset G$ is unipotent, it follows from the work of Ratner and Dani-Margulis that the set

$$
\bigcup_{z \in X} E(F,\{z\})
$$

of all nondense orbits is a countable union of proper submanifolds of X (singular sets).

On the other hand, for partially hyperbolic flows the situation is different: the sets $E(F, Z)$ are very big (although still of measure zero). Say that $Y \subset X$ is thick if \forall open $U \subset X, \operatorname{dim}(U \cap Y)=\operatorname{dim}(U)$.
(dim $=$ Hausdorff dimension)
In what follows we will assume that g_{t} is partially hyperbolic and let $F=\left\{g_{t} \mid t \geq 0\right\} \subset G$.

Theorem 1.1. [K-Margulis 1996] Let G be a semisimple Lie group, Γ an irreducible lattice in G. Then the set $E(F, \infty) \subset X=G / \Gamma$ of bounded orbits is thick.

Theorem 1.2. [K 1997] Let G be a Lie group, Γ a lattice in G, Z finite (or, more generally, a compact submanifold of small enough dimension transversal to the flow direction). Then $E(F, Z)$ is thick.

Cf. similar results for expanding maps and Anosov diffeos/flows by Urbanski and Dolgopyat.

Theorems 1.1 and 1.2 were proved in response to conjectures made by Margulis at his Kyoto ICM address (1990):

Conjecture (A). [= Theorem 1] E(F, ∞) is thick.
Conjecture (B). [\supset Theorem 2] Z finite

$$
\Rightarrow E(F, Z \cup \infty) \text { is thick. }
$$

(i.e. there are many bounded orbits avoiding Z)

Unfortunately, the methods of proof of Theorems 1.1 and 1.2 are not helpful when it comes to intersecting the two thick sets $E(F, \infty)$ and $E(F, Z)$.

An important remark: in the proof of both theorems, as well as in our new results, all the work is done in the group

$$
H=\left\{h \in G \mid g_{-t} h g_{t} \rightarrow e \text { as } t \rightarrow+\infty\right\}
$$

called expanding horospherical with respect to F

$$
(H \text {-orbits }=\text { unstable leaves })
$$

That is, it is proved that for any $x \in X$, the sets

$$
\{h \in H \mid h x \in E(F, \infty)\} \quad \text { or } \ldots E(F, Z)\}
$$

are thick in H.

Sketch of proof of Theorem 1.2. Fix $z \in X$ and $T>0$; then $h x \in E(F,\{z\}) \Longleftrightarrow$ the trajectory

$$
\left\{\left(g_{T}\right)^{n} h x \mid n=1,2, \ldots\right\}
$$

stays away from the curve $Z_{T} \stackrel{\text { def }}{=}\left\{g_{t} z \mid-T \leq t \leq 0\right\}$.

Now one can choose a small enough ball $V \subset H$ such that for any $y \in X$, the intersection of $g_{T} V g_{-T} y$ with Z_{T} consists of at most one point.

Then inside V one can construct a Cantor subset of large dimension whose points will avoid a small neighborhood of Z_{T}.

Sketch of proof of Theorem 1.1. Instead of a neighborhood of a point, we need to avoid the complement of a big compact $K \subset X$.

Now if $T>0$ is fixed, $y \in K$, and a ball $V \subset H$ is not too small,
then mixing of the g_{t}-action on X will force most of $g_{T} V y$ to come back to K, and a similar Cantor set construction can be carried out.

Remark: the building blocks of Cantor sets in the above construction are preimages of balls (cubes) under contractions induced by the conjugation $h \mapsto g_{-t} h g_{t}$, and, unless the above contractions are conformal, will resemble narrow degenerate rectangles, such as e.g. in the self-affine set below:

2. The Schmidt game. [Wolfgang Schmidt, 1966]

B: picks an arbitrary closed ball B_{0} in E, $\mathbf{W}: W_{1} \subset B_{0}$ of radius α times the radius of B_{0},

B: $B_{1} \subset W_{1}$ of radius $\beta \times$ the radius of W_{0}, etc. W wins if the point of intersection

$$
\cap_{i=1}^{\infty} W_{i}=\cap_{i=0}^{\infty} B_{i}
$$

lies in $S . S$ is called (α, β)-winning if \mathbf{W} can win no matter how \mathbf{B} plays. S is called α-winning if it is (α, β)-winning for all $\beta>0$, and winning if it is α-winning for some $\alpha>0$.

The following was proved by Schmidt:
Theorem 2.1. $\left\{S_{k}\right\}_{k=1}^{\infty}$ is a sequence of α-winning sets for some $\alpha \Rightarrow \cap_{k=1}^{\infty} S_{k}$ is also an α-winning set.

Theorem 2.2. $E=\mathbb{R}^{n}, \alpha>0 \Rightarrow$ any α-winning subset $S \subset E$ is thick.

Theorem 2.3. The set $\mathcal{B A}$ of badly approximable matrices (systems of linear forms) $A \in M_{m \times n}(\mathbb{R})$ is α-winning for any $0<\alpha<1 / 2$.

Corollary 2.4. For any $\left\{A_{k}\right\}_{k=1}^{\infty} \subset M_{m \times n}(\mathbb{R})$, the set

$$
\cap_{k=1}^{\infty}\left(A_{k}+\mathcal{B A}\right)
$$

is thick.
(this generalized earlier work by Cassels-Davenport)

Then in 1985 S.G. Dani showed

Proposition 2.5. $A \in M_{m \times n}(\mathbb{R})$ is badly
approximable $\Longleftrightarrow\left\{g_{t} L_{A} x_{0}\right\}$ is bounded, where

- $G=\mathrm{SL}_{m+n}(\mathbb{R})$
- $\Gamma=\mathrm{SL}_{m+n}(\mathbb{Z})$
- $x_{0}=\Gamma \in X=G / \Gamma$
- $L_{A}=\left(\begin{array}{cc}I_{m} & A \\ 0 & I_{n}\end{array}\right)$
- $g_{t}=\operatorname{diag}\left(e^{t / m}, \ldots, e^{t / m}, e^{-t / n}, \ldots, e^{-t / n}\right)$.

By a lucky chance, $H=\left\{L_{A} \mid A \in M_{m \times n}(\mathbb{R})\right\}$ is exactly the expanding horospherical subgroup with respect to F; hence in this case the set $\left\{h \in H \mid h x_{0} \in E(F, \infty)\right\}$ happens to be winning, which gives rise to a possibility of intersecting it with other winning sets!

Moreover, in another paper written in 1985,
Dani showed that whenever G has \mathbb{R}-rank 1,
for any $x \in G / \Gamma$, the set
(*)

$$
\{h \in H \mid h x \in E(F, \infty)\} \text { is winning }
$$

This suggests the following nice way to attack Conjecture (B):

An Unfounded Claim. (*) always holds, as well as its counterpart with ∞ replaced by $\{z\}$.

If true, it would:

- imply a stronger form of Conjecture (B)
(with countable Z instead of finite, and winning, not just thick, exceptional sets)
- allow considering actions by different subgroups F simultaneously.

What we do not know:

- whether the sets $\{h \in H \mid F(h x)$ is bounded $\}$ are always winning (most likely not)

What we know:

- to make the above sets winning, the rules of the Schmidt game have to be modified (adjusted according to F).
[difficult, by using a precise description of compact subsets of G / Γ instead of mixing]
- the sets $\{h \in H \mid F(h x)$ stays away from $z\}$ are winning according to both original and modified rules
[not so difficult, by a modification of proof of Theorem 1.2]

3. A modified Schmidt game.

$\left\{D_{t} \mid t>0\right\}:$ nested closed subsets, $\operatorname{diam}\left(D_{t}\right) \rightarrow 0$ as $t \rightarrow \infty$

B: picks $B_{0}=$ a right-translate of $D_{t_{0}}$, $\mathbf{W}: W_{1} \subset B_{0}$ a right-translate of $D_{t_{0}+\boldsymbol{a}}$,

B: $B_{1} \subset W_{1}$ a right-translate of $D_{t_{0}+\boldsymbol{a}+\boldsymbol{b}}$, etc.
Again, \mathbf{W} wins if the point of intersection

$$
\cap_{i=1}^{\infty} W_{i}=\cap_{i=0}^{\infty} B_{i}
$$

lies in S.

As before, define $(\boldsymbol{a}, \boldsymbol{b})$-winning/a-winning/winning sets of a $\left\{D_{t}\right\}$-Modified Schmidt Game.

Theorem 3.1. $\left\{S_{k}\right\}_{k=1}^{\infty}$ is a sequence of \boldsymbol{a}-winning sets of $a\left\{D_{t}\right\}-M S G \Rightarrow$ so is $\cap_{k=1}^{\infty} S_{k}$.

Proof. Exactly the same as Schmidt's:

Theorem 3.2. Assume that:
(1) $m\left(D_{t}\right)=e^{-\delta t} m\left(D_{0}\right)$, some $\delta>0$
($m=$ Haar measure on H)
(2) $\operatorname{diam}\left(D_{t}\right) \leq$ const $\cdot e^{-\sigma t}$, some $\sigma>0$
(3) $\lim \sup _{t \rightarrow \infty} \frac{\log N(t)}{t}=\delta$, where
$N(t)=\max \left\{N \left\lvert\, \begin{array}{ll}\forall s>0 & \exists x_{1}, \ldots x_{N} \in H \\ \text { s. t. the sets } D_{t+s} x_{i} & \text { are } \\ \text { pairwise disjoint and } \subset D_{s}\end{array}\right.\right\}$.

Then any winning set of a $\left\{D_{t}\right\}-M S G$ is thick.

Proof. Not quite the same as Schmidt's - uses

Mass Distribution Principle to create a measure which bounds the Hausdorff dimension from below.

Back to the original set-up:

$$
\begin{aligned}
& G \text { a Lie group, } \Gamma \subset G \text { a lattice, } X=G / \Gamma \\
& F=\left\{g_{t} \mid t>0\right\} \subset G \text { partially hyperbolic } \\
& H=\text { expanding horospherical w.r.t. } F \\
& D_{0} \text { a neighborhood of } e \in H, D_{t}=g_{-t} D_{0} g_{t}
\end{aligned}
$$

Theorem 3.3. $\{h \in H \mid F(h x) \in E(F,\{z\})\}$ is a winning set of a $\left\{D_{t}\right\}-M S G$.

Theorem 3.4. G semisimple, Γ irreducible

$$
\Rightarrow\{h \in H \mid F(h x) \in E(F, \infty)\} \text { is too. }
$$

Corollary 3.5. Conjecture (B) of Margulis (with countable Z).

Sketch of proof of Theorem 3.3.
Pick a nice $D_{0} \subset H$ and
large enough \boldsymbol{a}
given \boldsymbol{b}, choose $T=\boldsymbol{a}+\boldsymbol{b}$,
and consider $Z_{T}=\left\{g_{t} z \mid 0 \leq t \leq T\right\}$.
choose $s>T$ such that $\forall y \in X$,
$D_{s} y \cap Z_{T}$ is at most one point.

WLOG can assume that $t_{0} \geq s+T$
(otherwise make random moves
until this is the case)
The winning strategy: for $k=0,1, \ldots$
choose W_{k+1} such that $g_{t_{0}-s+k T}$ does not bring it too close to $Z_{T} . \quad \square$

Sketch of proof of Theorem 3.4.
The case $\operatorname{rank}_{\mathbb{R}}(G)=1$ was settled by Dani; by Margulis' Arithmeticity, can assume that G is semisimple real algebraic $/ \mathbb{Q}$ and $\Gamma=G(\mathbb{Z})$.

The proof uses a compactness criterion
(description of bounded subsets of G / Γ) from a paper by Tomanov-Weiss:

Proposition 3.6. $K \subset X$ is precompact \Longleftrightarrow
\exists a neighborhood U of 0 in $\mathfrak{g}=\operatorname{Lie}(G)$ such that $\forall x \in K$, no subset of $U \cap \operatorname{Ad}(x)\left(\mathfrak{g}_{\mathbb{Z}}\right)$ spans a unipotent radical of a maximal \mathbb{Q}-parabolic subgroup.

Consequently, informally speaking, an excursion of $g_{t} h x$ outside of a compact subset of $G / \Gamma \longleftrightarrow$ a small value of some polynomial (in $h \in H$) from a fixed finite family \mathcal{P} (dependent on x and t).

The game: choose a nice D_{0}, and \boldsymbol{a} such that whenever a polynomial $f \in \mathcal{P}$ has a coefficient $\geq \varepsilon_{1}$, its values are $\geq \varepsilon_{2}$ on some translate of $D_{\boldsymbol{a}} \subset D_{0}$.
\mathbf{B} chooses $\boldsymbol{b}, T=\boldsymbol{a}+\boldsymbol{b}$,

Then choose K
(determined by $\left.\varepsilon_{1}, \varepsilon_{2}, t_{0}, T\right)$
such that as long as $x \in K$, every polynomial from that finite family has a coefficient $\geq \varepsilon_{1}$.

The winning strategy:
choose W_{k} such that $g_{t_{0}+k T}$
sends it to a translate of $D_{\boldsymbol{a}} \subset D_{0}$ as above. \square

