A MODIFIED SCHMIDT GAME

AND A CONJECTURE OF MARGULIS

DMITRY KLEINBOCK, BRANDEIS UNIVERSITY

and

BARAK WEISS, BEN GURION UNIVERSITY

1. General set-up.

Let (X, μ, F) be a dynamical system, where

- X is a metric space
- $F = \{g_t\}$ a (semi)group of maps $X \to X$
- μ a finite F-invariant measure

If μ is ergodic, almost all F-orbits are dense.

Specifically, for a subset Z of X, denote by E(F, Z) the set of points of X with F-orbits avoiding Z, i.e.

$$E(F,Z) \stackrel{\mathrm{def}}{=} \{x \in X \mid \overline{Fx} \cap Z = \emptyset\}.$$

Also, if X is noncompact, consider

$$E(F, \infty) \stackrel{\text{def}}{=} \{x \in X \mid Fx \text{ is bounded}\},$$

 $E(F, Z \cup \infty) \stackrel{\text{def}}{=} E(F, Z) \cap E(F, \infty).$

All of these are sets of measure zero.

Examples.

If g_t is an ergodic translation of a torus, then all orbits are dense $\Rightarrow E(F, Z) = \emptyset$ for all Z.

More generally, if $X = G/\Gamma$, where G is a Lie group and $\Gamma \subset G$ a lattice, and $F = \{g_t\} \subset G$ is unipotent, it follows from the work of Ratner and Dani-Margulis that the set

$$\bigcup_{z \in X} E(F, \{z\})$$

of all nondense orbits is a countable union of proper submanifolds of X (singular sets).

On the other hand, for partially hyperbolic flows the situation is different: the sets E(F,Z) are very big (although still of measure zero). Say that $Y \subset X$ is thick if \forall open $U \subset X$, $\dim(U \cap Y) = \dim(U)$.

 $(\dim = Hausdorff dimension)$

In what follows we will assume that g_t is partially hyperbolic and let $F = \{g_t \mid t \geq 0\} \subset G$.

Theorem 1.1. [K-Margulis 1996] Let G be a semisimple Lie group, Γ an irreducible lattice in G. Then the set $E(F, \infty) \subset X = G/\Gamma$ of bounded orbits is thick.

Theorem 1.2. [K 1997] Let G be a Lie group, Γ a lattice in G, Z finite (or, more generally, a compact submanifold of small enough dimension transversal to the flow direction). Then E(F, Z) is thick.

Cf. similar results for expanding maps and Anosov diffeos/flows by Urbanski and Dolgopyat.

Theorems 1.1 and 1.2 were proved in response to conjectures made by Margulis at his Kyoto ICM address (1990):

Conjecture (A). [= Theorem 1] $E(F, \infty)$ is thick.

Conjecture (B). [
$$\supset$$
 Theorem 2] Z finite $\Rightarrow E(F, Z \cup \infty)$ is thick.

(i.e. there are many bounded orbits avoiding Z)

Unfortunately, the methods of proof of Theorems 1.1 and 1.2 are not helpful when it comes to intersecting the two thick sets $E(F, \infty)$ and E(F, Z).

An important remark: in the proof of both theorems, as well as in our new results, all the work is done in the group

$$H = \{ h \in G \mid g_{-t}hg_t \to e \text{ as } t \to +\infty \},$$

called expanding horospherical with respect to F

$$(H\text{-orbits} = \text{unstable leaves})$$

That is, it is proved that for any $x \in X$, the sets

$$\{h \in H \mid hx \in E(F, \infty)\}$$
 or ... $E(F, Z)\}$

are thick in H.

Sketch of proof of Theorem 1.2. Fix $z \in X$ and T > 0; then $hx \in E(F, \{z\}) \iff$ the trajectory

$$\{(g_T)^n hx \mid n = 1, 2, \dots\}$$

stays away from the curve $Z_T \stackrel{\text{def}}{=} \{g_t z \mid -T \leq t \leq 0\}.$

Now one can choose a small enough ball $V \subset H$ such that for any $y \in X$, the intersection of $g_T V g_{-T} y$ with Z_T consists of at most one point.

Then inside V one can construct a Cantor subset of large dimension whose points will avoid a small neighborhood of Z_T . \square

Sketch of proof of Theorem 1.1. Instead of a neighborhood of a point, we need to avoid the complement of a big compact $K \subset X$.

Now if T > 0 is fixed, $y \in K$, and a ball $V \subset H$ is <u>not too small</u>,

then mixing of the g_t -action on X will force most of $g_T V y$ to come back to K, and a similar Cantor set construction can be carried out. \square

Remark: the building blocks of Cantor sets in the above construction are preimages of balls (cubes) under contractions induced by the conjugation $h \mapsto g_{-t}hg_t$, and, unless the above contractions are conformal, will resemble narrow degenerate rectangles, such as e.g. in the self-affine set below:

2. The Schmidt game. [Wolfgang Schmidt, 1966]

B: picks an arbitrary closed ball B_0 in E,

W: $W_1 \subset B_0$ of radius α times the radius of B_0 ,

B: $B_1 \subset W_1$ of radius $\beta \times$ the radius of W_0 , etc.

W wins if the point of intersection

$$\bigcap_{i=1}^{\infty} W_i = \bigcap_{i=0}^{\infty} B_i$$

lies in S. S is called (α, β) -winning if \mathbf{W} can win no matter how \mathbf{B} plays. S is called α -winning if it is (α, β) -winning for all $\beta > 0$, and winning if it is α -winning for some $\alpha > 0$.

The following was proved by Schmidt:

Theorem 2.1. $\{S_k\}_{k=1}^{\infty}$ is a sequence of α -winning sets for some $\alpha \Rightarrow \bigcap_{k=1}^{\infty} S_k$ is also an α -winning set.

Theorem 2.2. $E = \mathbb{R}^n$, $\alpha > 0 \Rightarrow$ any α -winning subset $S \subset E$ is thick.

Theorem 2.3. The set \mathcal{BA} of <u>badly approximable</u> matrices (systems of linear forms) $A \in M_{m \times n}(\mathbb{R})$ is α -winning for any $0 < \alpha < 1/2$.

Corollary 2.4. For any $\{A_k\}_{k=1}^{\infty} \subset M_{m \times n}(\mathbb{R})$, the set

$$\cap_{k=1}^{\infty} (A_k + \mathcal{B}\mathcal{A})$$

is thick.

(this generalized earlier work by Cassels–Davenport)

Then in 1985 S.G. Dani showed

Proposition 2.5. $A \in M_{m \times n}(\mathbb{R})$ is badly approximable $\iff \{g_t L_A x_0\}$ is bounded, where

- $G = \mathrm{SL}_{m+n}(\mathbb{R})$
- $\Gamma = \mathrm{SL}_{m+n}(\mathbb{Z})$
- $x_0 = \Gamma \in X = G/\Gamma$
- $\bullet \ L_A = \begin{pmatrix} I_m & A \\ 0 & I_n \end{pmatrix}$
- $g_t = \operatorname{diag}(e^{t/m}, \dots, e^{t/m}, e^{-t/n}, \dots, e^{-t/n}).$

By a lucky chance, $H = \{L_A \mid A \in M_{m \times n}(\mathbb{R})\}$ is exactly the expanding horospherical subgroup with respect to F; hence in this case the set $\{h \in H \mid hx_0 \in E(F, \infty)\}$ happens to be winning, which gives rise to a possibility of intersecting it with other winning sets!

Moreover, in another paper written in 1985, Dani showed that whenever G has \mathbb{R} -rank 1,

for any
$$x \in G/\Gamma$$
, the set
 $\{h \in H \mid hx \in E(F, \infty)\}$ is winning

This suggests the following nice way to attack Conjecture (B):

An Unfounded Claim. (*) always holds, as well as its counterpart with ∞ replaced by $\{z\}$.

If true, it would:

- imply a stronger form of Conjecture (B) (with countable Z instead of finite, and winning, not just thick, exceptional sets)
- allow considering actions by different subgroups F simultaneously.

What we do not know:

• whether the sets $\{h \in H \mid F(hx) \text{ is bounded}\}$ are always winning (most likely not)

What we know:

• to make the above sets winning, the rules of the Schmidt game have to be modified (adjusted according to F).

[difficult, by using a precise description of compact subsets of G/Γ instead of mixing]

• the sets $\{h \in H \mid F(hx) \text{ stays away from } z\}$ are winning according to both original and modified rules

[not so difficult, by a modification of proof of Theorem 1.2]

3. A modified Schmidt game.

 $\{D_t \mid t > 0\}$: nested closed subsets, $\operatorname{diam}(D_t) \to 0 \text{ as } t \to \infty$

B: picks B_0 = a right-translate of D_{t_0} ,

W: $W_1 \subset B_0$ a right-translate of $D_{t_0+\boldsymbol{a}}$,

B: $B_1 \subset W_1$ a right-translate of $D_{t_0+\boldsymbol{a}+\boldsymbol{b}}$, etc.

Again, \mathbf{W} wins if the point of intersection

$$\bigcap_{i=1}^{\infty} W_i = \bigcap_{i=0}^{\infty} B_i$$

lies in S.

As before, define $(\boldsymbol{a}, \boldsymbol{b})$ -winning/ \boldsymbol{a} -winning/winning sets of a $\{D_t\}$ -Modified Schmidt Game.

Theorem 3.1. $\{S_k\}_{k=1}^{\infty}$ is a sequence of **a**-winning sets of a $\{D_t\}$ -MSG \Rightarrow so is $\bigcap_{k=1}^{\infty} S_k$.

Proof. Exactly the same as Schmidt's:

Theorem 3.2. Assume that:

(1)
$$m(D_t) = e^{-\delta t} m(D_0)$$
, some $\delta > 0$

(m = Haar measure on H)

- (2) $\operatorname{diam}(D_t) \leq \operatorname{const} \cdot e^{-\sigma t}, some \ \sigma > 0$
- (3) $\limsup_{t\to\infty} \frac{\log N(t)}{t} = \delta$, where

$$N(t) = \max \left\{ N \middle| \begin{array}{l} \forall s > 0 \quad \exists \ x_1, \dots x_N \in H \\ s. \ t. \ the \ sets \ D_{t+s} x_i \ are \\ pairwise \ disjoint \ and \ \subset D_s \end{array} \right\}.$$

Then any winning set of a $\{D_t\}$ -MSG is thick.

Proof. Not quite the same as Schmidt's – uses

Mass Distribution Principle to create a measure which
bounds the Hausdorff dimension from below.

Back to the original set-up:

G a Lie group, $\Gamma \subset G$ a lattice, $X = G/\Gamma$; $F = \{g_t \mid t > 0\} \subset G$ partially hyperbolic; H = expanding horospherical w.r.t. F; D_0 a neighborhood of $e \in H$, $D_t = g_{-t}D_0g_t$.

Theorem 3.3. $\{h \in H \mid F(hx) \in E(F, \{z\})\}$ is a winning set of a $\{D_t\}$ -MSG.

Theorem 3.4. G semisimple, Γ irreducible $\Rightarrow \{h \in H \mid F(hx) \in E(F, \infty)\}$ is too.

Corollary 3.5. Conjecture (B) of Margulis (with countable Z).

Sketch of proof of Theorem 3.3.

Pick a nice $D_0 \subset H$ and large enough \boldsymbol{a}

given \boldsymbol{b} , choose $T = \boldsymbol{a} + \boldsymbol{b}$, and consider $Z_T = \{g_t z \mid 0 \le t \le T\}$.

choose s > T such that $\forall y \in X$, $D_s y \cap Z_T$ is at most one point.

WLOG can assume that $t_0 \ge s + T$ (otherwise make random moves until this is the case)

The winning strategy: for k = 0, 1, ... choose W_{k+1} such that g_{t_0-s+kT} does not bring it too close to Z_T . \square

Sketch of proof of Theorem 3.4.

The case $\operatorname{rank}_{\mathbb{R}}(G)=1$ was settled by Dani; by Margulis' Arithmeticity, can assume that G is semisimple real algebraic/ \mathbb{Q} and $\Gamma=G(\mathbb{Z})$.

The proof uses a compactness criterion (description of bounded subsets of G/Γ) from a paper by Tomanov–Weiss:

Proposition 3.6. $K \subset X$ is precompact \iff \exists a neighborhood U of 0 in $\mathfrak{g} = \text{Lie}(G)$ such that $\forall x \in K$, no subset of $U \cap \text{Ad}(x)(\mathfrak{g}_{\mathbb{Z}})$ spans a unipotent radical of a maximal \mathbb{Q} -parabolic subgroup.

Consequently, informally speaking, an excursion of $g_t h x$ outside of a compact subset of $G/\Gamma \longleftrightarrow$ a small value of some polynomial (in $h \in H$) from a fixed <u>finite</u> family \mathcal{P} (dependent on x and t).

The game: choose a nice D_0 , and \boldsymbol{a} such that whenever a polynomial $f \in \mathcal{P}$ has a coefficient $\geq \varepsilon_1$, its values are $\geq \varepsilon_2$ on some translate of $D_{\boldsymbol{a}} \subset D_0$.

B chooses \boldsymbol{b} , $T = \boldsymbol{a} + \boldsymbol{b}$,

Then choose K (determined by $\varepsilon_1, \varepsilon_2, t_0, T$) such that as long as $x \in K$, every polynomial from that finite family has a coefficient $\geq \varepsilon_1$.

The winning strategy:

choose W_k such that g_{t_0+kT} sends it to a translate of $D_{\mathfrak{a}} \subset D_0$ as above. \square