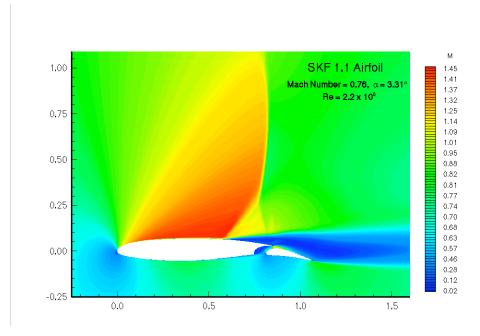
TOPICS IN AERODYNAMIC SHAPE OPTIMIZATION



Professor David W. Zingg Canada Research Chair in Computational Aerodynamics 2004 Guggenheim Fellow

University of Toronto Institute for Aerospace Studies

BIG PICTURE

• GLOBAL WARMING

- Air travel is the fastest growing source of greenhouse gas emissions
- World passenger air traffic increased by about 14% in 2004
- The world aircraft fleet is expected to double by 2020

A SOLUTION?

- Radical new ultra-low-drag aircraft concepts
- Active flow control
- Adaptive and morphing wings

AERODYNAMIC SHAPE OPTIMIZATION

Needed for development and evaluation of new concepts

OUTLINE

- A NEWTON-KRYLOV APPROACH TO AERODYNAMIC OPTIMIZATION
 - a brief description
- TOPIC 1: COMPARISON WITH A GENETIC ALGORITHM
 - examine quantitatively the dependence of the relative speed of the two algorithms on the degree of convergence needed and the number of design variables
- TOPIC 2: OPTIMIZATION UNDER VARIABLE OPERATING CONDITIONS
 - issues in problem formulation
 - an automated approach

AERODYNAMIC SHAPE OPTIMIZATION

- much faster than traditional "cut"—and—try approach
- more likely to achieve a truly optimal design
- provides insight into the nature of the design space and the trade-offs between various objectives and operating points
- requires that the design problem be completely and carefully specified
- particularly beneficial for new configurations and concepts
- essential for rapid evaluation of competing concepts

Optimization Problem

design variables $X \to \text{shape of airfoil, } \alpha$, gap, overlap . . .

state variables $Q \rightarrow$ density, momentum, energy . . .

objective or cost functional $\mathcal{J}[X,Q(X)]$

- → inverse design, drag, lift, moment, . . .
- → multi-point and multi-objective design problems

constraints → geometry constraints, such as thickness or area

- \rightarrow flow equations and boundary conditions: R[X,Q(X)]=0
- \rightarrow flow constraints, such as $C_{\rm p}$ and $C_{\rm f}$

Minimize \mathcal{J} , subject to satisfying R=0 and any other side constraints.

Gradient-based algorithms

- various options: constrained/unconstrained, steepest descent, SQP, quasi-Newton, BFGS update
- line search along gradient direction
- cost and difficulty of computing the gradient
 - * finite difference: one nonlinear solve per design variable per iteration
 - * flow sensitivities: one linear solve per design variable per iteration
 - * adjoint method: one linear solve per objective or constraint *independent* of the number of design variables
- adjoint approach is not a "black box": high development cost
- local optimum
- difficulties with topology changes, noisy design spaces, inaccurate gradients, categorical variables

• Evolutionary (genetic) and search algorithms

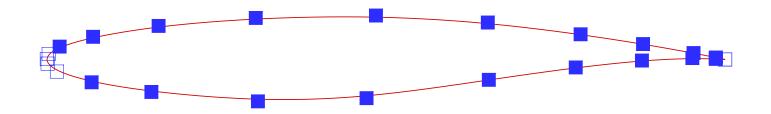
- global optimum
- "black box": solver independent
- slow to converge
- convergence criteria?
- aided by response surface/surrogate

The Newton-Krylov Approach

- Newton-Krylov flow solver for the compressible Navier-Stokes equations with a one-equation turbulence model
 - inexact-Newton strategy
 - matrix-free Krylov method (GMRES)
 - ILU(p) preconditioning based on reduced-storage Jacobian
- discrete adjoint gradient computation
 - ILU-preconditioned Krylov method (matrix-free not possible)
- quasi-Newton method for unconstrained optimization
 - constraints added to objective function as penalty terms
 - BFGS update for approximate inverse Hessian
 - line search based on cubic interpolation

GEOMETRY PARAMETERIZATION

- cubic B-spline curves
- B-spline control points are the design variables
- angle of incidence provides an additional design variable



Example: 24 control points, 5 frozen: 19 design variables plus α

GENETIC ALGORITHM

- Holst & Pulliam, NASA, 2001
- combination of ranking and selection techniques, mutations, and perturbations
- several parameters: number of chromosomes in a generation (population size), probabilities of selection, mutation, and crossover
- parallel implementation
- Pareto fronts computed either by the weighted-sum approach or by the dominance Pareto front technique

TOPIC I: COMPARATIVE EVALUATION: GRADIENT-BASED VS. GENETIC ALGORITHM

- identical flow solver and solver parameters
- identical geometry parameterization
- identical initial and modified meshes
- identical objective functions and geometric constraints
- identical design spaces
- cost measured in terms of (equivalent) objective function evaluations, i.e. flow solutions

COMPARATIVE EVALUATION: GRADIENT-BASED VS. GENETIC ALGORITHM

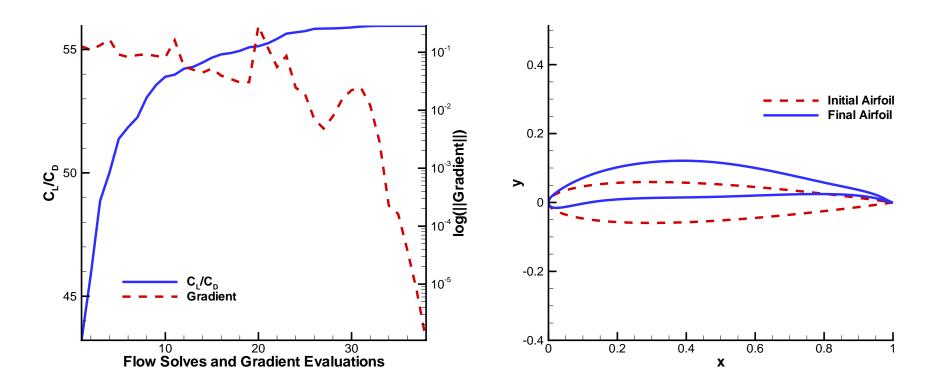
- cost measured in terms of (equivalent) objective function evaluations, i.e. flow solutions
 - genetic algorithm cost roughly equal the product of the population size and the number of generations
- one gradient computation = one flow solution
 - Newton-Krylov algorithm cost equal to twice the number of iterations

Problems 1–3: Single-Point Optimization

- Objective: maximize lift-to-drag ratio
- Initial airfoil shape: NACA 0012
- Operating conditions: $M_{\infty} = 0.25$, $\mathrm{Re} = 2.88$ million
- Geometric constraints: six thickness constraints
- Design variables: angle of incidence plus 8/18/34 B-spline control point locations

constraint number	1	2	3	4	5	6
location $(\%c)$	5.0	35.0	65.0	85.0	95.0	99.0
thickness $(\%c)$	4.0	11.0	4.0	2.6	1.2	0.2

Lift-to-Drag Ratio Maximization with 9 Design Variables



Time required: about 45 minutes

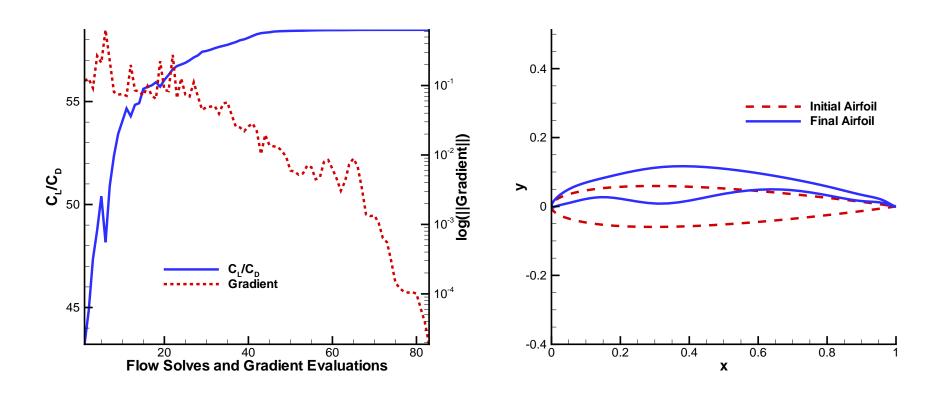
Cost: 76 equivalent function evaluations

Lift-to-Drag Ratio Maximization with 9 Design Variables

%	gradient-based	genetic	ratio
	algorithm	algorithm	
90	32	440	14
95	44	951	22
98	50	2307	46
99	52	6190	119

Cost in Equivalent Function Evaluations

Lift-to-Drag Ratio Maximization with 19 Design Variables



Time required: about 100 minutes

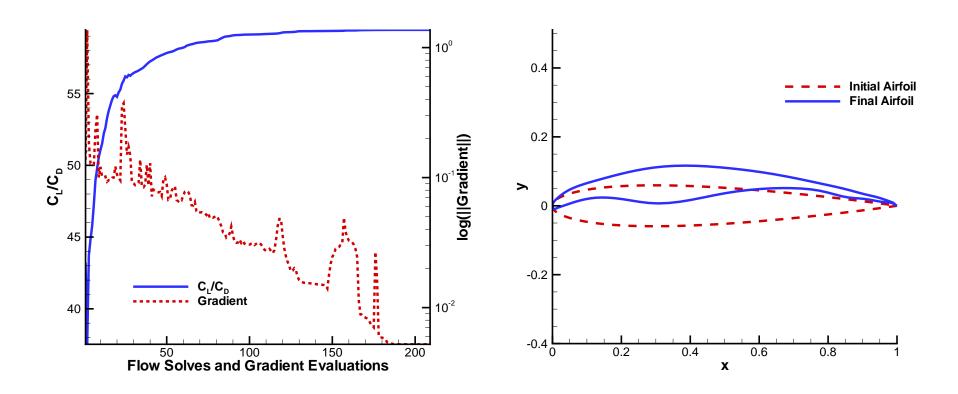
Cost: 166 equivalent function evaluations

Lift-to-Drag Ratio Maximization with 19 Design Variables

%	gradient-based	genetic	ratio
	algorithm	algorithm	
90	52	3502	67
95	70	5555	79
98	82	7833	96
99	88	????	???

Cost in Equivalent Function Evaluations

Lift-to-Drag Ratio Maximization with 35 Design Variables



Time required: about 210 minutes

Cost: 360 equivalent function evaluations

Lift-to-Drag Ratio Maximization with 35 Design Variables

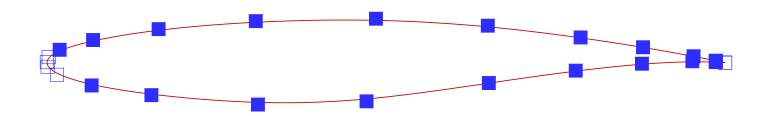
%	gradient-based	genetic	ratio
	algorithm	algorithm	
90	100	????	??
95	150	????	??
98	202	????	??
99	246	????	???

Cost in Equivalent Function Evaluations

Lift-Constrained Drag Minimization at Transonic Speed

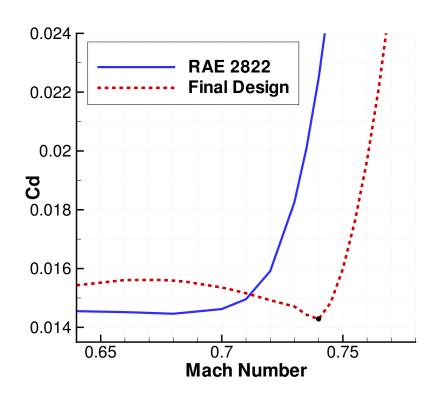
$$\mathcal{J} = \omega_{\mathrm{L}} \left(1 - \frac{C_{\mathrm{L}}}{C_{\mathrm{L}}^*} \right)^2 + \omega_{\mathrm{D}} \left(1 - \frac{C_{\mathrm{D}}}{C_{\mathrm{D}}^*} \right)^2 + \mathrm{T.C.}$$

- Design Point: $M_{\infty}=0.74$, $\mathrm{Re}=2.7\times10^6$
- $\omega_{
 m L}=1.0$, $\omega_{
 m D}=0.1$, $\omega_{
 m T}=1.0$, T. Cons. @ 0.35, 0.96, 0.99 %c
- Targets: $C_{\rm L}^* = 0.733$, $C_{\rm D}^* = 0.013$
- 19 Geometric Design Variables $+ \alpha$

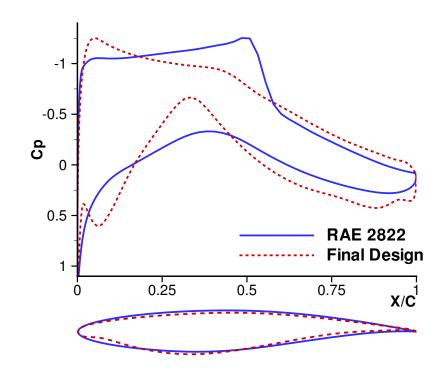


Single-Point Lift-Constrained Drag Minimization at Transonic Speed

$$\mathcal{J} = \omega_{\mathrm{L}} \left(1 - \frac{C_{\mathrm{L}}}{C_{\mathrm{L}}^*} \right)^2 + \omega_{\mathrm{D}} \left(1 - \frac{C_{\mathrm{D}}}{C_{\mathrm{D}}^*} \right)^2 + \mathrm{T.C.}$$



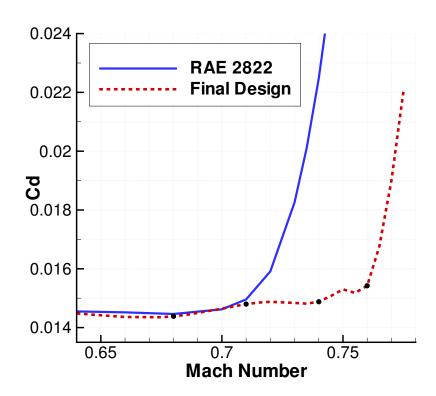
Drag Reduction 36.4 %



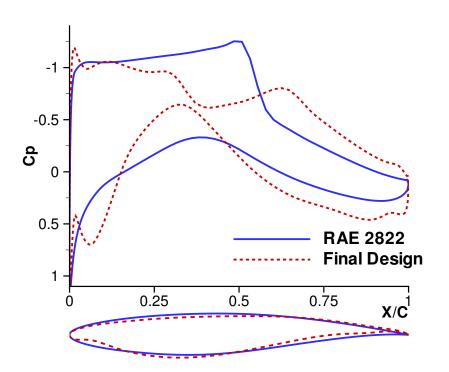
$$M=0.74$$
 Final Design

Four-Point Lift-Constrained Drag Minimization at Transonic Speed

$$\mathcal{J}_{\text{MP}} = \frac{1}{7} \mathcal{J} \left(M = 0.68 \right) + \frac{1}{7} \mathcal{J} \left(M = 0.71 \right) + \frac{2}{7} \mathcal{J} \left(M = 0.74 \right) + \frac{3}{7} \mathcal{J} \left(M = 0.76 \right)$$

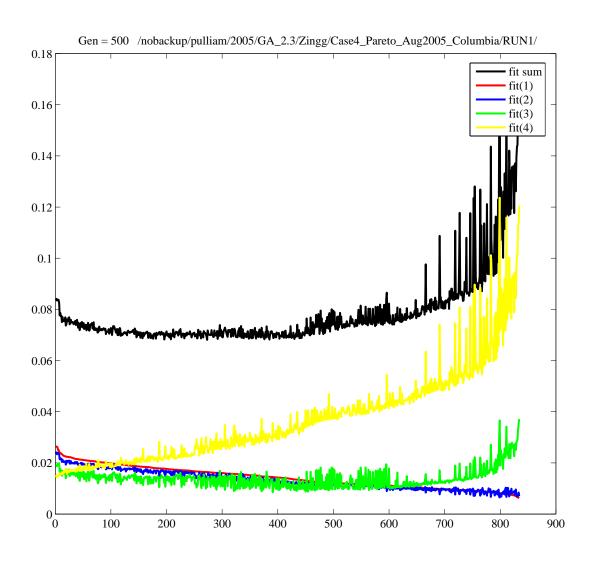


Gradient-based cost: 104 iterations, 832 equivalent function evaluations

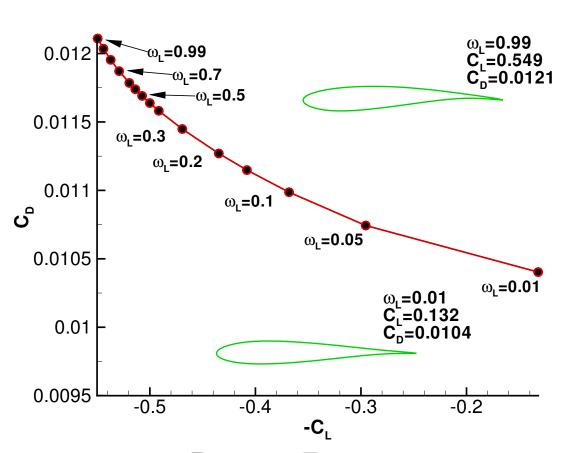


GA Cost: > 300 generations, > 23,000 function evaluations

Four-dimensional "Pareto Front"



Multi-Objective Problems



Pareto Front

Useful for studying trade-offs

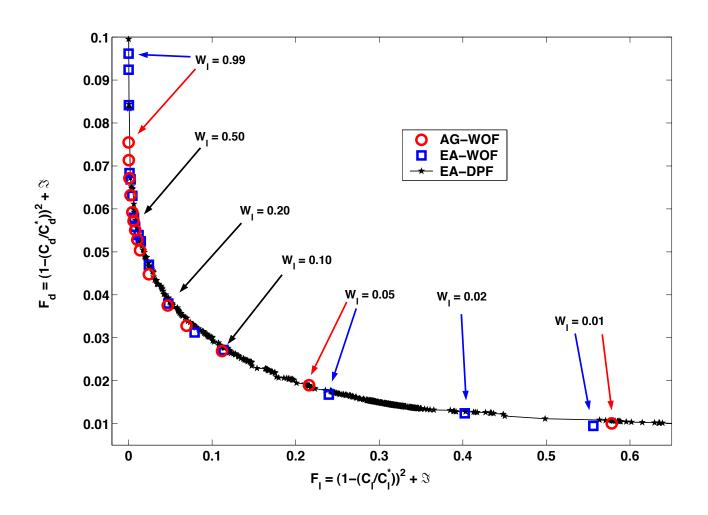
- Competition among objectives: ⇒ there is no unique optimum
- We seek a set of non-inferior solutions:
 ⇒ Pareto front
- Define two objectives:

1.
$$f_1 = \left(1 - \frac{C_D}{C_D^*}\right)^2$$
2. $f_2 = \left(1 - \frac{C_L}{C_L^*}\right)^2$

• Weighted Sum Method:

$$\mathcal{J} = (1 - \omega_{\mathrm{L}}) f_1 + \omega_{\mathrm{L}} f_2$$

Comparison of Three Pareto Fronts



Algorithm costs

Gradient-based: 2,438; Genetic (WOF): 70,000 equivalent function evaluations

Convergence of DPF Approach

DPF Costs

5 generations: 105 FE's

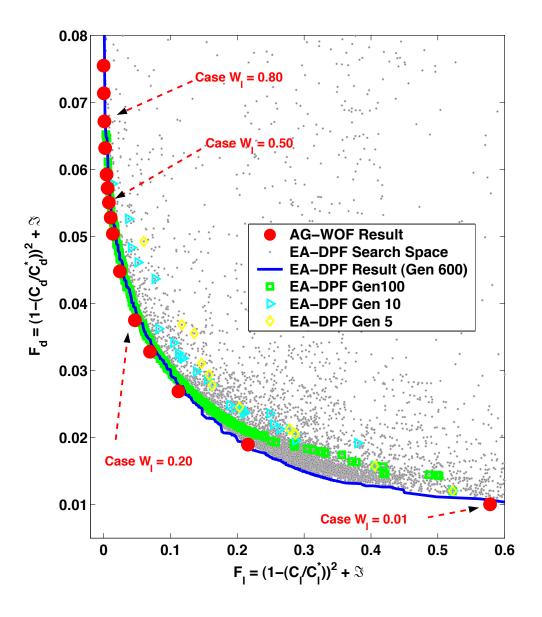
10 generations: 205 FE's

100 generations: 1999

FE's

600 generations: 12,000

FE's



Topic I: Conclusions

- ullet gradient-based algorithm is from 14 to >100 times faster than the GA depending on the number of design variables and the degree of convergence
 - gradient-based algorithm scales roughly linearly with the number of design variables
 - the GA's cost increases more rapidly as the number of design variables is increased
 - the relative cost of the GA increases substantially with tighter convergence requirements
- the GA is more suited to preliminary design (low-fidelity models, low convergence tolerance, trade-offs important)
- the gradient-based algorithm is more appropriate for detailed design (high-fidelity simulations, tight convergence tolerance, heavily constrained)

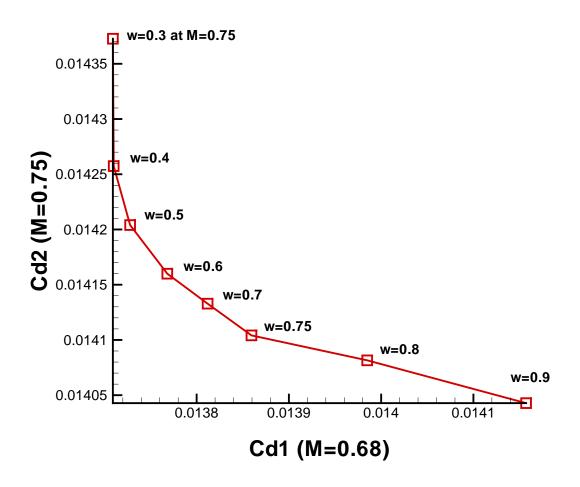
Topic II: Optimization Under Variable Operating Conditions

- issues in problem formulation
 - can the optimization problem be posed a priori?
- an automated approach to the selection of weights and operating points

Issues in Problem Formulation

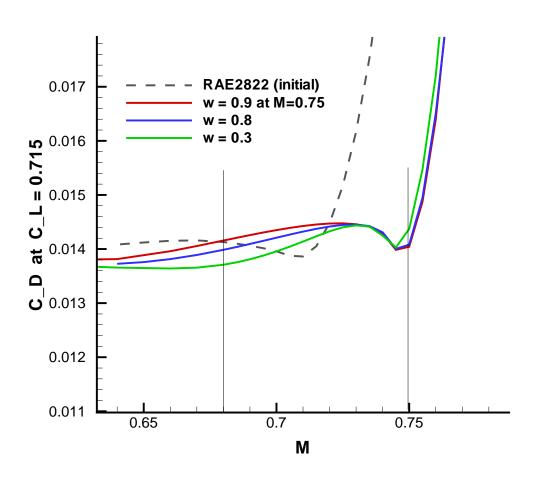
- What is the objective?
 - minmax?
 - equal performance over the range of operating conditions?
 - minimize weighted integral?
- Role of off-design requirements
 - can dominate on-design performance
 - can be selected quite arbitrarily
- Helpful to view the multi-point problem as a multi-objective problem

Two-Point Lift-Constrained Drag Minimization



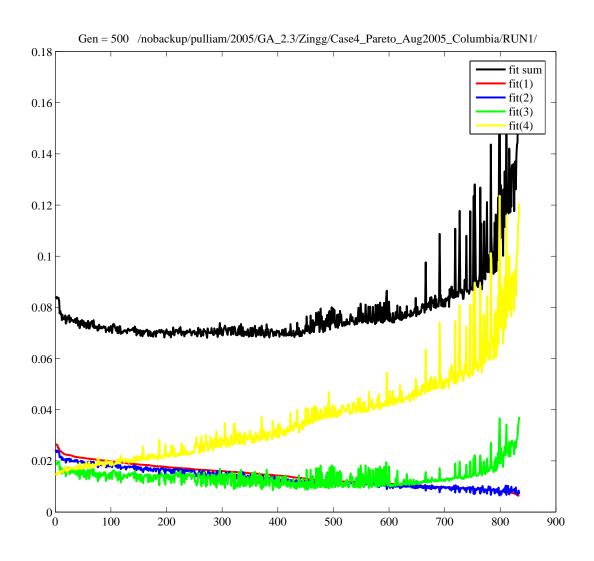
- \bullet Lift-constrained drag minimization, $C_l=0.715$
- Two operating points: M=0.68, M=0.75

Two-Point Lift-Constrained Drag Minimization



- Lift-constrained drag minimization, $C_l = 0.715$
- Two operating points: M=0.68, M=0.75

Four-dimensional "Pareto Front"



Automated Approach

automated weight specification

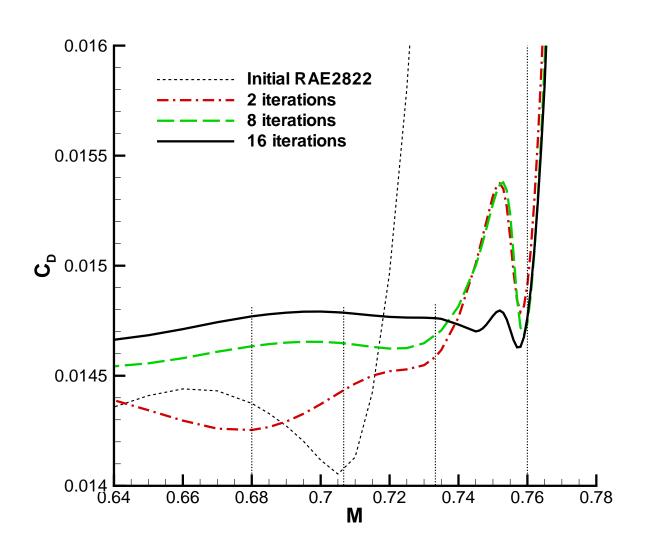
$$w_i^{new} = w_i^{old} + c \left(\frac{C_{Di}}{\sum_{i=1}^{N} C_{Di}} - \frac{1}{N} \right)$$

- weights must be non-negative
- operating points can be dropped if the weight is zero
- automated selection of operating points
 - periodically examine performance between operating points
 - add new operating points at significant local maxima if they exist

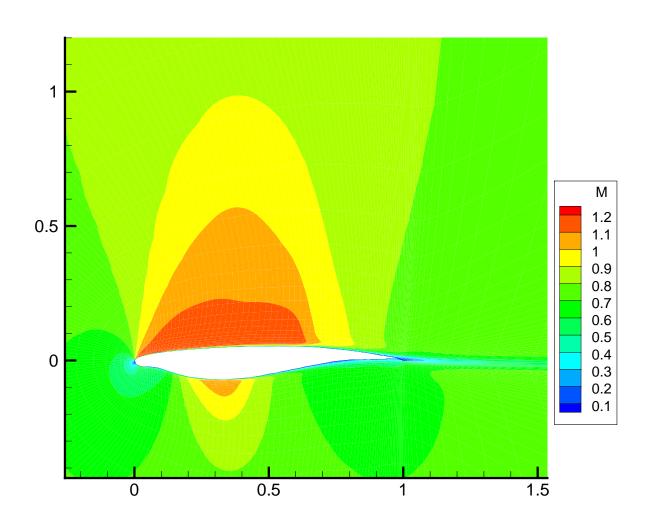
Lift-Constrained Drag Minimization at Transonic Speed

- lift-constraint: $C_l = 0.715$
- Mach number range from 0.68 to 0.76
- Reynolds number: 9 million
- initial airfoil: RAE 2822
- 23 design variables, including angle of incidence
- 4 thickness constraints
- initial operating points: M = 0.68, 0.70667, 0.73333, 0.76
- initial weights: 0.25, 0.25, 0.25, 0.25

Lift-Constrained Drag Minimization over a Mach Number Range



Mach Number Contours at $M=0.76, C_l=0.733$



Drag Coefficients at Operating Points

	C_D	$(C_L = 0.733)$				
	0.68	0.70667	0.7333	0.752	0.76	St Dev
1	0.014176	0.014391	0.014521		0.015211	0.0004473
2	0.014254	0.014435	0.014586		0.014915	0.0002801
3	0.014351	0.014484	0.014576		0.014873	0.0002216
4	0.014683	0.014652	0.014611		0.014769	0.0000668
5	0.014720	0.014679	0.014632		0.014757	0.0000538
6	0.014779	0.014698	0.014649		0.014736	0.0000553
7	0.014750	0.014682	0.014642		0.014738	0.0000503
8	0.014634	0.014647	0.014681	0.015378	0.014740	0.0003169
9	0.015039	0.014897	0.014694	0.014918	0.014717	0.0001452
10	0.014745	0.014768	0.014718	0.014901	0.014756	0.0000713
11	0.014784	0.014800	0.014729	0.014847	0.014754	0.0000452
12	0.014781	0.014804	0.014751	0.014818	0.014755	0.0000294
13	0.014784	0.014798	0.014749	0.014806	0.014759	0.0000246
14	0.014782	0.014794	0.014757	0.014795	0.014760	0.0000182
15	0.014777	0.014787	0.014760	0.014794	0.014763	0.0000150
16	0.014770	0.014787	0.014762	0.014786	0.014764	0.0000119

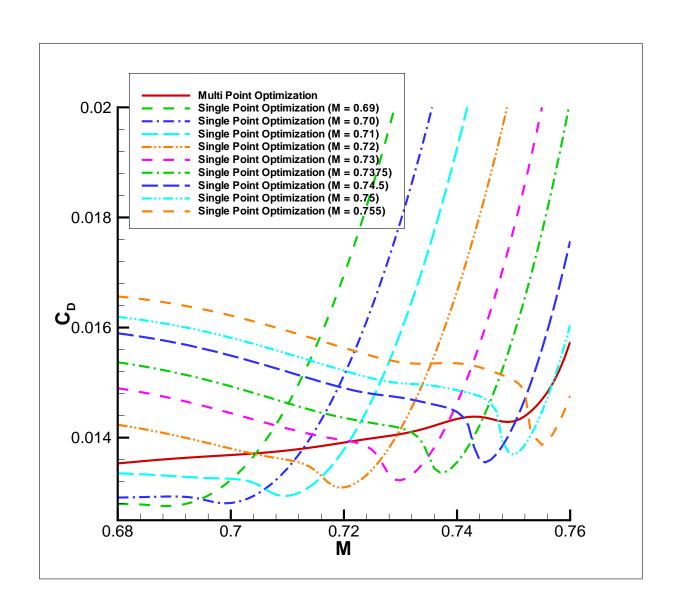
Evolution of Weights

		Weights	(Mach No.)			
Iteration	С	0.68	0.70667	0.73333	0.753	0.76
1		0.25000	0.25000	0.25000		0.25000
2	15	0.14736	0.20276	0.23624		0.41365
3	15	0.07167	0.17371	0.24624		0.50837
4	15	0.01497	0.15141	0.24749		0.58613
5	15	0.01598	0.14456	0.23031		0.60915
6	15	0.02188	0.13996	0.21372		0.62444
7	15	0.03808	0.13543	0.19683		0.62966
8	15	0.04999	0.13010	0.18127	0.00000	0.63865
9	15	0.01311	0.09592	0.15396	0.11384	0.62317
10	15	0.05062	0.10483	0.12189	0.12695	0.59571
11	15	0.04409	0.10294	0.10973	0.15193	0.59131
12	15	0.04441	0.10647	0.09879	0.16495	0.58539
13	15	0.04430	0.11093	0.09259	0.17228	0.57990
14	15	0.04529	0.11475	0.08648	0.17772	0.57576
15	15	0.04622	0.11815	0.08234	0.18116	0.57214
16	15	0.04637	0.12041	0.07901	0.18481	0.56940

Optimization Under Variable Operating Conditions Conclusions

- ullet Can the optimization problem be posed a priori? \Rightarrow No, some knowledge of trade-offs is essential for proper problem specification
- properly chosen weights coupled with automatic introduction of additional operating points at local maxima will minimize a weighted integral
- if this leads to inadequate performance at some points, then the weights must be modified
- desirable aerodynamic performance must be specified much more precisely than previously

Or ... Morphing Airfoils?



Or ... Morphing Airfoils?

