TOPICS IN AERODYNAMIC SHAPE
OPTIMIZATION

-

Professor David W. Zingg

Canada Research Chair in Computational Aerodynamics
2004 Guggenheim Fellow

&2 University of Toronto
%J Institute for Aerospace Studies

D.W. Zingg [http://goldfinger.utias.utoronto.ca/dwz]



BIG PICTURE

e GLOBAL WARMING

— Air travel is the fastest growing source of greenhouse gas emissions
— World passenger air traffic increased by about 14% in 2004

— The world aircraft fleet is expected to double by 2020
e A SOLUTION?

— Radical new ultra-low-drag aircraft concepts

— Active flow control

— Adaptive and morphing wings
e AERODYNAMIC SHAPE OPTIMIZATION

— Needed for development and evaluation of new concepts
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OUTLINE

e A NEWTON-KRYLOV APPROACH TO AERODYNAMIC OPTIMIZATION
— a brief description
e TOPIC 1: COMPARISON WITH A GENETIC ALGORITHM

— examine quantitatively the dependence of the relative speed of the two

algorithms on the degree of convergence needed and the number of design
variables

e TOPIC2: OPTIMIZATION UNDER VARIABLE OPERATING CONDITIONS

— issues in problem formulation

— an automated approach

D.W. Zingg [http://goldfinger.utias.utoronto.ca/dwz] 3



AERODYNAMIC SHAPE OPTIMIZATION

e much faster than traditional “cut”—and—try approach
e more likely to achieve a truly optimal design

e provides insight into the nature of the design space and the
trade-offs between various objectives and operating points

e requires that the design problem be completely and carefully
specified

e particularly beneficial for new configurations and concepts

e essential for rapid evaluation of competing concepts
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Optimization Problem

design variables X — shape of airfoil, o, gap, overlap . . .
state variables () — density, momentum, energy . . .

objective or cost functional 7 [ X, Q(X)]
— Iinverse design, drag, lift, moment, . . .

— multi-point and multi-objective design problems

constraints — geometry constraints, such as thickness or area
— flow equations and boundary conditions: R[X,Q(X)] =0
— flow constraints, such as C, and Ck

Minimize J, subject to satisfying R =0
and any other side constraints.
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e Gradient-based algorithms

various options: constrained/unconstrained, steepest descent, SQP, quasi-

Newton, BFGS update

line search along gradient direction

cost and difficulty of computing the gradient

x finite difference: one nonlinear solve per design variable per iteration

x flow sensitivities: one linear solve per design variable per iteration

x adjoint method: one linear solve per objective or constraint independent
of the number of design variables

adjoint approach is not a “black box": high development cost

local optimum

difficulties with topology changes, noisy design spaces, inaccurate gradients,

categorical variables

e Evolutionary (genetic) and search algorithms

global optimum

“black box": solver independent
slow to converge

convergence criteria?

aided by response surface/surrogate
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The Newton-Krylov Approach

e Newton-Krylov flow solver for the compressible Navier-Stokes
equations with a one-equation turbulence model

— Inexact-Newton strategy
— matrix-free Krylov method (GMRES)
— ILU(p) preconditioning based on reduced-storage Jacobian

e discrete adjoint gradient computation

— ILU-preconditioned Krylov method (matrix-free not possible)

e quasi-Newton method for unconstrained optimization

— constraints added to objective function as penalty terms
— BFGS update for approximate inverse Hessian
— line search based on cubic interpolation
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GEOMETRY PARAMETERIZATION

e cubic B-spline curves
e B-spline control points are the design variables

e angle of incidence provides an additional design variable

Example: 24 control points, 5 frozen: 19 design variables plus «
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GENETIC ALGORITHM

e Holst & Pulliam, NASA, 2001

e combination of ranking and selection techniques, mutations, and
perturbations

e several parameters: number of chromosomes in a generation
(population size), probabilities of selection, mutation, and cross-
over

e parallel implementation

e Pareto fronts computed either by the weighted-sum approach or
by the dominance Pareto front technique
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TOPIC I:
COMPARATIVE EVALUATION:
GRADIENT-BASED VS. GENETIC ALGORITHM

e identical flow solver and solver parameters

e identical geometry parameterization

e identical initial and modified meshes

e identical objective functions and geometric constraints
e identical design spaces

e cost measured in terms of (equivalent) objective function
evaluations, i.e. flow solutions
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COMPARATIVE EVALUATION:
GRADIENT-BASED VS. GENETIC ALGORITHM

e cost measured in terms of (equivalent) objective function
evaluations, i.e. flow solutions

— genetic algorithm cost roughly equal the product of the
population size and the number of generations

e one gradient computation = one flow solution

— Newton-Krylov algorithm cost equal to twice the number of
iterations

D.W. Zingg [http://goldfinger.utias.utoronto.ca/dwz] 11



Problems 1-3: Single-Point Optimization

e Objective: maximize lift-to-drag ratio

e Initial airfoil shape: NACA 0012

e Operating conditions: M., = 0.25, Re = 2.88 million

o Geometric constraints: six thickness constraints

e Design variables: angle of incidence plus 8/18/34 B-spline control

point locations

constraint number | 1 2 3 4 5 6
location (%c) 501 35.0]65.0[85.0]95.01]99.0
thickness (%c) |4.0|{11.0| 40 | 26 | 1.2 | 0.2
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Lift-to-Drag Ratio Maximization with 9 Design Variables
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Time required: about 45 minutes

Cost: 76 equivalent function evaluations
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Lift-to-Drag Ratio Maximization with 9 Design Variables

% | gradient-based | genetic | ratio
algorithm algorithm

90 32 440 14

95 44 051 22

98 50 2307 46

99 52 6190 119

Cost in Equivalent Function Evaluations
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Lift-to-Drag Ratio Maximization with 19 Design Variables
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Time required: about 100 minutes

Cost: 166 equivalent function evaluations
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Lift-to-Drag Ratio Maximization with 19 Design Variables

% | gradient-based | genetic | ratio
algorithm algorithm

90 52 3502 67

95 70 5555 79

98 32 7833 96

99 38 7077 777

Cost in Equivalent Function Evaluations
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Lift-to-Drag Ratio Maximization with 35 Design Variables
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Time required: about 210 minutes

Cost: 360 equivalent function evaluations
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Lift-to-Drag Ratio Maximization with 35 Design Variables

% | gradient-based | genetic | ratio
algorithm algorithm

90 100 7077 77

95 150 70707 77

98 202 7077 77

99 246 7077 707

Cost in Equivalent Function Evaluations
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Lift-Constrained Drag Minimization at Transonic Speed
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e Design Point: M., = 0.74, Re = 2.7 x 10°
e w, =10, wp =0.1, wp = 1.0, T. Cons. @ 0.35, 0.96, 0.99 %c
e Targets: C{ = 0.733, Cj = 0.013

e 19 Geometric Design Variables 4+ «
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Single-Point Lift-Constrained Drag Minimization
at Transonic Speed
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Four-Point Lift-Constrained Drag Minimization
at Transonic Speed
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GA Cost: > 300 generations, > 23, 000
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832 equivalent function evaluations
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Four-dimensional “Pareto Front”
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Multi-Objective Problems

e Competition among
objectives: = there is

0.012 no unique optimum
0.0115 e We seek a set of
non-inferior solutions:
0.011 = Pareto front
oﬂ
0.0105 e Define two objectives:
2
0.01 1. f1 = (1 — gg)
i 2
T B B S R SRR S 2 — ( - C_E:>
0.0095=—75 04 03 02 f2 Cr
-CL
Pareto Front o Weighted Sum Method:

o Useful for studying trade-offs T=(—w)fi+wLfs

D.W. Zingg [http://goldfinger.utias.utoronto.ca/dwz] 23



Comparison of Three Pareto Fronts
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Gradient-based: 2,438; Genetic (WOF): 70,000 equivalent function evaluations
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Convergence of DPF Approach
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Topic |: Conclusions

e gradient-based algorithm is from 14 to > 100 times faster than the GA
depending on the number of design variables and the degree of convergence

— gradient-based algorithm scales roughly linearly with the number of design
variables

— the GA'’s cost increases more rapidly as the number of design variables is
increased

— the relative cost of the GA increases substantially with tighter convergence
requirements

e the GA is more suited to preliminary design (low-fidelity models, low
convergence tolerance, trade-offs important)

e the gradient-based algorithm is more appropriate for detailed design (high-
fidelity simulations, tight convergence tolerance, heavily constrained)
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Topic ll:
Optimization Under Variable Operating Conditions

e issues in problem formulation

— can the optimization problem be posed a priori?

e an automated approach to the selection of weights and operating
points
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Issues in Problem Formulation

e \What is the objective?
— minmax?
— equal performance over the range of operating conditions?
— minimize weighted integral?
e Role of off-design requirements
— can dominate on-design performance

— can be selected quite arbitrarily

e Helpful to view the multi-point problem as a multi-objective
problem
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Two-Point Lift-Constrained Drag Minimization
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e Lift-constrained drag minimization, C; = 0.715

e Two operating points: M = 0.68, M = 0.75
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Two-Point Lift-Constrained Drag Minimization
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e Lift-constrained drag minimization, C; = 0.715

e Two operating points: M = 0.68, M = 0.75
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Four-dimensional “Pareto Front”
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Automated Approach

e automated weight specification

C'n; 1
W — w()ld 1 e ( Di )
‘ ! >V, Cpi N

— weights must be non-negative
— operating points can be dropped if the weight is zero

e automated selection of operating points

— periodically examine performance between operating points
— add new operating points at significant local maxima if they
exist
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Lift-Constrained Drag Minimization at Transonic Speed

e lift-constraint: C; = 0.715

e Mach number range from 0.68 to 0.76

e Reynolds number: 9 million

e initial airfoil: RAE 2822

e 23 design variables, including angle of incidence

e 4 thickness constraints

e initial operating points: M = 0.68, 0.70667, 0.73333, 0.76

e initial weights: 0.25, 0.25, 0.25, 0.25
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Lift-Constrained Drag Minimization over a Mach Number
Range
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Mach Number Contours at M = 0.76,C; = 0.733

D.W. Zingg [http://goldfinger.utias.utoronto.ca/dwz|

35



Drag Coefficients at Operating Points

Cp (C.=0.733)

0.68 0.70667  0.7333 0.752 0.76 St Dev

1| 0014176 0.014391  0.014521 0.015211 | 0.0004473
2 || 0.014254 0.014435  0.014586 0.014915 | 0.0002801
3 || 0.014351 0.014484  0.014576 0.014873 | 0.0002216
4 | 0.014683 0.014652  0.014611 0.014769 | 0.0000668
5 || 0.014720 0.014679  0.014632 0.014757 | 0.0000538
6 || 0.014779 0.014698  0.014649 0.014736 | 0.0000553
7 || 0.014750 0.014682  0.014642 0.014738 | 0.0000503
8 || 0.014634 0.014647  0.014681  0.015378  0.014740 | 0.0003169
9 || 0.015039 0.014897  0.014694  0.014918  0.014717 | 0.0001452
10 || 0.014745 0.014768  0.014718  0.014901  0.014756 | 0.0000713
11 || 0.014784 0.014800  0.014729  0.014847  0.014754 | 0.0000452
12 || 0.014781 0.014804  0.014751  0.014818  0.014755 | 0.0000294
13 || 0.014784 0.014798  0.014749  0.014806  0.014759 | 0.0000246
14 || 0.014782 0.014794  0.014757  0.014795  0.014760 | 0.0000182
15 || 0.014777 0.014787  0.014760  0.014794  0.014763 | 0.0000150
16 || 0.014770 0.014787 0.014762 0.014786 0.014764 | 0.0000119
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Evolution of Weights

Weights (Mach No.)

Iteration C 0.68 0.70667 0.73333 0.753 0.76
1 0.25000 0.25000  0.25000 0.25000
2 || 15 0.14736 0.20276  0.23624 0.41365
3| 15| 0.07167 0.17371  0.24624 0.50837
4 || 15 0.01497 0.15141 0.24749 0.58613
51 15 | 0.01598 0.14456  0.23031 0.60915
6 || 15 | 0.02188 0.13996  0.21372 0.62444
7| 15 0.03808 0.13543  0.19683 0.62966
8 || 15 | 0.04999 0.13010  0.18127  0.00000  0.63865
9| 15 | 0.01311 0.09592  0.15396  0.11384  0.62317

10 || 15 0.05062 0.10483  0.12189  0.12695  0.59571
11 || 15 | 0.04409 0.10294  0.10973  0.15193  0.59131
12 || 15 0.04441 0.10647  0.09879  0.16495  0.58539
13 || 15 | 0.04430 0.11093  0.09259  0.17228  0.57990
14 || 15 | 0.04529 0.11475  0.08648  0.17772  0.57576
15 || 15 | 0.04622 0.11815  0.08234  0.18116  0.57214
16 | 15 | 0.04637 0.12041 0.07901 0.18481 0.56940
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Optimization Under Variable Operating Conditions
Conclusions

e Can the optimization problem be posed a priori? = No,
some knowledge of trade-offs is essential for proper problem
specification

e properly chosen weights coupled with automatic introduction
of additional operating points at local maxima will minimize a
weighted integral

e if this leads to inadequate performance at some points, then the
weights must be modified

e desirable aerodynamic performance must be specified much more
precisely than previously
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Or ... Morphing Airfoils?

e Mullti Point Optimization
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Or ... Morphing Airfoils?
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