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Presentation Outline

e What is system identification?

e “Plant-friendliness” in identification testing.

e Minimum crest factor multisine signals for strongly
Interactive processes - Aigh purity distillation.

e |dentification Test Monitoring.

e Summary and Conclusions
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System ldentification

“Identification is the determination, on the basis of input and
output, of a system within a specified class of systems, to
which the system under test is equivalent.”

- L. Zadeh, (1962)

i Disturbances

Inputs Outputs
> System >

System identification focuses on the modeling of
dynamical systems from experimental data
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Some General Facts Regarding
System ldentification

e System identification is not exclusive to control
system design, although it forms a significant
component of control system implementation.

e Often times, the system identification task is the
most expensive and time-consuming portion of
advanced control projects in industry.

e |t is a broadly-applicable area with applications in
many diverse fields.

Ay } " lra A.
Control Systems r
Qg CSE L Engineering Laboratory % F U L FON
school of angineering




Steps In System ldentification
e Experiment Design and Execution
e Data preprocessing
e Model structure selection
e Parameter Estimation

e Model Validation
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System Identification Loop (Ljung and Glad, 1994)
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System ldentification Loop - 2
(reprinted from Lindskog (1996), with permission)

Prior system knowledge: physics, linguistics, etc.
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An Industrial Process Control Problem
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Objective: Use fuel gas flow to keep outlet temperature under control, in spite of
occasional yet significant changes in the feed flowrate.
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The “Shower” Control Problem
Controlled: Disturbances:
Temperature, ////\ Inlet Water Flows,
Total Water Flow / Temperatures

The presence of delay or
“transportation lag”
makes this a difficult control

problem
Hot Cold
/ / Manipulated: Hot and Cold
A b Water Valve Positions
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From Open-Loop Operation to
Closed-Loop Control

20 ' ' ' Measured Output ' ' '
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Deviation |
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Variable) (Before Control)
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The transfer of variance from an expensive resource to a cheaper one is
one of the major benefits of engineering process control
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From Open-Loop Operation to
Closed-Loop Feedback Control
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Furnace example with PRBS input, PID with filter controller
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“Plant-Friendly” Identification Testing

e The term originates from the chemical process control community;
first used by Dupont control researchers and collaborators in the
early 90’s.

e Is principally motivated by the desire for informative identification
experiments while meeting the demands of industrial practice.

e Broadly speaking, a plant-friendly test yields data leading to a
suitable model within an acceptable time period, while keeping the
variation in both input and output signals within user-defined
constraints.
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“Plant-Friendly” Identification Testing
(Continued)

The ideal plant-friendly identification test should:

® be as short as possible,
e not take actuators to limits, or exceed move size restrictions,

e cause minimal disruption to the controlled variables (i.e., low
variance, small deviations from setpoint).

Note that theoretical requirements may strongly conflict
with "plant-friendly" operation!
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Motivation for Plant-Friendly Identification

e Plant operations desires plant-friendliness, but
classical identification theory is “plant-hostile”
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Reducing Variance Effects

Model Parameter Variance ~ L

~
> =B > 2 03
|

7

n A

7]

no. of model parameters

no. of data points (length of data set)
variance of the disturbance signal v
variance of the input signal u

iInput signal-to-noise ratio

Reducing the number of estimated model parameters,
Increasing the length of the data set, and increasing the
variance of the input signal all contribute to variance
reduction in system identification

Control Systems
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Motivation for Plant-Friendly Identification

e Plant operations desires plant-friendliness, but classical
identification theory is “plant-hostile”

e Identification testing is an expensive proposition, and improper
execution can endanger a project.

e There is an absence of fundamentally based, systematic guidelines
In the literature for problems of practical significance
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Process Testing Duration

(as reported by Mitsubishi Chemical engineers,
from guidelines presented by a major process control software vendor)

Suggested Test Duration =

(6...8)*(Estimated Settling Time Process)*(Number of
Independent Variables)

Example: Ethylene Fractionator:

6*6 (hrs)*17 = 612 (hrs) = 25.5 (days)
8*6 (hrs)*17 = 816 (hrs) = 34 (days)
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Incentives for “Fast” Identification Testing

Per Kothare and Mandler, Air Products & Chemicals, (presented at the 2003 AIChE Annual Mtg.)

Inputs ——

l— Outputs

Estimate for a large Air Separation Unit:
2 months at the plant 24 hrs/day!
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Typical Costs of Step Testing

(from Mathur and Conroy, “Multivariable Control without Plant
Tests” 2002 AIChE Annual Mtg.)

e Cut throughput, 5-10% for 6-8 weeks $ 50,000
e One off-grade excursion, 100% production loss $ 60,000
e Engineering (testing) 6-8 weeks, 24 hours/day $140,000

e Engineering (commissioning), 2 weeks, 24 hours/day $ 20,000

Total: $270,000
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Motivation for Plant-Friendly Identification

e Plant operations desires plant-friendliness, but classical
identification theory is “plant-hostile”

e |dentification testing is an expensive proposition, and improper
execution can endanger a project.

e There is an absence of fundamentally based, systematic
guidelines in the literature for problems of practical significance

e Some well-established identification topics (e.g., classical
optimal input design, control-relevant identification, closed-loop
identification) are helpful but do not address all the issues.
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Classical Optimal Input Signal Design

e Classical formulations (summarized in Chpt. 13 of Ljung’s
System Identification: Theory for the User) address minimizing
the constrained variance of the input and/or output signals

e The optimal experimental design depends on the (unknown)
true system and noise characteristics

e In practice, process control engineers tend to think more in
terms of keeping manipulated and controlled variables under
constraints and minimizing overall test duration than in
achieving constrained variance.
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A Benchmark Highly Interactive System:
High-Purity Distillation
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Fig. 2. Two-product distillation column.
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High-Purity Distillation Column per
Weischedel and McAvoy (1980) : a
classical example of a highly interactive
process system, and a challenging
problem for control system design
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Multisine Input Signals

A multisine input is a deterministic, periodic signal composed of a
harmonically related sum of sinusoids,

mo m(d+ns)
'U,] (k) — Z 5JL COS(C{)?;]CT + Qb(jz) + Z OKJZ COS(L&)@]CT -+ Qb'“)
1=1 1=mo+1
m(d+ns+ng)

+ Z aji cos(wikT + ¢%;), j=1,---,m
t=m(d+ns)+1

where T is sampling time, N is the sequence length, m is the number of channels,
d,ns,nq are the number of sinusoids per channel (m(d + ns + nq) = Ns/2),

¢, b, ¢7; are the phase angles, « ;; represents the Fourier coefficients defined by the

Jv
user, d;;, a;; are the “snow effect” Fourier coefficients
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“Zippered” Power Spectrum
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Modified Zippered Spectrum
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Crest Factor

The Crest Factor (CF) is defined as the ratio of {, (or Chebyshev)
norm and the ¢, norm

loo ()
Oy ()

CF(x) =

A low crest factor indicates that most elements in the signal are located
near the minimum and maximum values of the sequence.

e Seminal paper by Schroeder (1970) presents an analytical
formula for determining phases in multisine signals that leads to
near-optimal crest factors (for wide-band signals)

e Work by Guillaume et al. (1991) provides a very efficient
numerical technigue for computing minimum crest factor
multisine signals with arbitrary power spectral densities
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Crest Factor Signal Comparison

Two signals with identical spectra and different crest factors
can have markedly different “plant-friendliness” properties.

The Performance Index for
Perturbation Signals (PIPS) is a

practical alternative (Godfrey,
Barker, & Tucker, IEE Proc. Control

Theory Appl.,1999):

)
PIPS(%) = 200 Vs = U

Umax — Umin
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Problem Statement #1

min max CF(u;) 7=1,---,m

subject to maximum move size constraints on {u ;(k)}
|Auj (k)| < Au* VK, j

and high/low limits on {u (k) }

u;n,zn S ’U,J(k) S u;n,a,x \V/k’,j
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Problem Statement #2

min ~ max CF(y.)
{o2: 1, {05}, {Dji},{asi}, {bji} 7
j:1,---,m zzly"';Nouts
subject to constraints in input
|Aw,(k)| < Aul*® VYV k,j
u;?""i” <uj(k) <u* Vkj

J

and output Ay.(F)| < Ay™es K, -

tﬂ<yz( )<y;}‘1{1$ \gfk‘jz

This problem statement requires an a priori model to generate output predictions

" lra A.
Control Systems F
gg % CSE L Engineering Laboratory u LTON
school of an n

gineering




Other Problem Formulations

e Minimize worst-case of both input and output crest
factors

- min " _max{ CF(”j)ﬁ CF(y:)}
{lfj;]q{lf?;;}q{l?‘j'f}1{ﬁj'}'}1{bj'}'} J, =
j=lm  z=1, Nyys

e Incorporate controller equations in the optimization
problem for signal design under closed-loop conditions

e Examine alternative criteria (e.g., geometric
discrepancy via Weyl's Theorem) in lieu of crest factor.
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Constrained Solution Approach
Some aspects of our numerical solution approach:

 The problem is formulated in the modeling language AMPL, which
provides exact, automatic differentiation up to second derivatives.

A direct min-max solution is used where the nonsmoothness in
the problem is transferred to the constraints.

 The trust region, interior point method developed by Nocedal and
co-workers (Byrd, R., M.E. Hribar, and J. Nocedal. “An interior
point method for large scale nonlinear programming.” S/AM J.
Optim., 1999) is applied.
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Linear System Example

P(s) = 1 87.8 —86.4
" 75s+1 | 108.2 —109.6

e From Morari and Zafiriou, Robust Process Control (1988)

e Simplest meaningful highly interactive problem we could find...
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min CF Sighal Designs: power spectra

Standard Zippered Spectrum

Power Spectral Density

Modified Zippered Spectrum

Power Spectral Density
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min CF Signal Designs: time-domain

min CF(u), Standard Zippered

Standard Zippered (min CF(u))
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min CF Signal Designs :
State-Space Comparison

standard (+), modified
unconstrained (o), and
modified with
constraints (*)
zippered designs

State-space Analysis

y2
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A Benchmark Highly Interactive System:
High-Purity Distillation
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Fig. 2. Two-product distillation column.

Control Systems
Engineering Laboratory

y2

0.25

02

015}

01

005

High gain direction

-0.15 0.1 0.05 0 0.05 0.1 0.15 02
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High-Purity Distillation Column per
Weischedel and McAvoy (1980) : a
classical example of a highly interactive
process system, and a challenging
problem for control system design
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State-space Analysis

Input State-Space Output State-Space

Input State-Space Analysis Output State-Space Analysis
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Linear (ARX) Model Prediction vs. Plant Data

Output State-Space Analysis
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NARX Model Estimation

We rely on a NARX model to predict the system outputs during
optimization (Sriniwas et al., 1995)

ylk) = g(0) 4 Z Egl:'y[k— i) 4+ Z Hgg]u — 1)+ Z Z EEi} }*y Jy(k — 7)

= i=p i=1j=1
+Z Z o) sulle — d)u(k — ) + Zl > 65y (ke — dyu(k — 5) + ..
i= F'..T # i=1lij=p
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ARX vs. NARX Model Predictions
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Case Study I1- Nonlinear System

DuPont High-Purity Distillation Column
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Closed-loop Performance Comparison, MPC Setpoint Tracking:
Models obtained from noisy data
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Model Predictive
Control (MPC)
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Model-on-Demand Estimation
(Stenman, 1999)

* A modern data-centric approach developed at Linkoping University

« Identification signals geared for MoD estimation should consider the
geometrical distribution of data over the state-space.
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Some Pertinent Questions

e How does one build process knowledge relevant to
system identification in a systematic and (nearly)
automatic way, with little user intervention and
without demanding significant computational time
and effort?

e How is process knowledge systematically acquired in
the course of identification testing, for purposes of
Improving the identification test?
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|dentification Test Monitoring

e Relies on the use of periodic, deterministic inputs
(such as multisines or pseudo-random signals) to
define a natural window for analysis,

e Relies on concepts from signal processing, robust
control, and optimization to develop measures that
systematically acquire and apply process knowledge,
and use this knowledge to refine the design
parameters of the identification test
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ldentification Test Monitoring Scenario
(from Rivera et al., 2003)

Time Series Input Power Spectral Density
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Input signal evolves from cautious to more informative as process knowledge increases
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Summary and Conclusions

e “Plant-friendliness” in identification testing represents an
Important problem that despite advances in supporting topics
(e.g, optimal input signal design, control-relevant identification,
closed-loop identification) still merits focused research.

e Optimization-based design of multisine input signals can be
used to achieve plant-friendliness during experimental testing
for demanding process systems (such as high-purity distillation).

e [dentification Test Monitoring has been proposed as a
meaningful direction in the development of plant-friendly
system id.
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