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New Applications, New Algorithms, New Software

The general nonlinear programming formulation covers

many interesting applications

min J(x)
s.t. h,(x)=0,ie E
Why discuss algorithms? g (x)20,ie I

Active research area; significant algorithmic advances
New applications

Solve larger problems, more difficult (degenerate), noisy
Interior-point, Active-set: dominate; Penalty approaches



e Applications
e Software (KNITRO)
 New Optimization Methods

e Mathematical Foundations



Problem 1: Circuit simulation. Given a design
of a computer chip (integrated circuit) find a
way to resize elements to achieve optimal
performance (power consumption)

Hundreds of thousands of elements. INTEL

Monday 23 May 2005 12UTC @ECMWF Forecast t+096 VT: Friday 27 May 2005 12UTC
Surface: Mean sea |evel pressure / 850-hPa wind speed
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Problem 2: Guess initial E“‘*&%{ H

conditions of the atmosphere at |~/ /&
1 million locations %
so that predicted fluid flow
matches observations during a
12-hour period. ECMWF
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2 Cases: prototypical of many present/future applications

Mathematical model (circuit stmulation)
Control it to produce the desired results
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model ..
dat (pred—dat)z‘ ﬁ

predl

Cannot afford many attempts (20)
Lower resolution models




Some current research areas

e Larger and larger problems

e Noisy functions

e Integer/continuous variables

e Games (Nash, Stackelberg,...)

 Real time (warm starts)

e Degenerate problems (deficient geometry)

General NLP techniques preferred over specialized
algorithms



Challenging geometry of feasible region

Figure 9.1: Feasible regions for switch-off problems.



Mathematical Difficulties

Many new areas of application are modeled as:

min  f (x)
st. g(x)=20
h(x) =20

X1 x, =0 these constraints cause
x,,x, 20 regularity to be lost

where does 8 (X)/1 =0

thiS.OCCl.Jr? g(x)>0, 1>0
Optimality!



Moral Hazard

%4 Principal: Determines compensation scheme;
can only observe outcome (not action)
cl,c2,...,cN Compensation
. ! 7 !
P |
rincipa ql, g2, ..., aN Outcome
Action al, ... , aM

Agent: Chooses action a;; outcome ¢; occurs
With probability p(q; | a;)




Moral Hazard (cont...)
Maximize ., W(c,a) = Zzl p(gq; layw(g, —c;)
Subject to U(c.a) :Z;p(% la)u(c,,a) = U,
ac argmaxiU(c,a):a€ {a,,...,a, }}

N
c=(c,...,Cy)E N,

If a mixed strategy profile (5,,...,0y) is introduced for the agent’s
action choice (a,,...,ay), this can be reformulated as an MPEC by
substituting the lower level problem by its optimality conditions (Judd-Su)
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Frictional contact

e Tangential force only exists when bodies are in
contact

gap between contact
bodies (d>0) @ (d=0)

no tangential
force (F=0) tangential
force arises
(F>0)

Optimal control (trayectory) of robots with contact
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Theoretical/Algorithmic Limits

min f(x) VFi(x)=Vg(x)A=0
st g(x)=0 2(x)20 Ag(x)=0
4120

_vf “ /easible region

. Algori"thms based on KKT conditions
e What to do? Perturbation
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Equilibrium (Complementarity) Constraints

min  (x =12+ (y = 1) v
x 20, y =20 c @
xy =0
(disjunction) T X

Deficient geometry:

Minimal conditions for
KK'T conditions not satisfied (lj (Oj [y j
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Moral Hazard (Judd-Lin)
Switch-off constraints

Interior-point methods fail

— Intrinsic difficulty
Active-set methods may

or may not work

v
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One Solution: L1-Penalty

L 1-penalty relaxation of optimization problem with
equilibrium constraints

min S (x) min f(x)+7 x x,
st. g(x)=220

hix) = 0 — s.t. g(x)=0

¥ x, = 0 h(x)=0

X, x, >0 x20,x 20

Penalty problem always regular
General technique?
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Algorithms and Software
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50 years of algorithmic work

Active set

Active set SQP

SLQP

Active set QP

Linear simplex

Interior (barrier)

Nonlinear

l

quadratic

Linear
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Byrd, Waltz, N.
2006

An integrated
package

SLQP

Crossover

Projected CG Augmented Sys LP-Projected CG
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Downward compatibility, Integration

e Applicable and robust for:

— Unconstrained

— Bound constrained

— Equality constrained New:

— Nonlinear systems of equations penalty formulation
— Nonlinear least squares for degenerate

— Quadratic programming constraints

— Linear programming (in progress)
e Multiple derivative options
— No derivatives

— First derivatives only
— First and second (others)
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Penalty Methods

e History
e Recent advances

Cutting-edge??

Gould, Orban, Toint 03
Fletcher and Chin 03

Chen and Goldfarb 04
Benson, Vanderbei, Shanno 04
Leyffer, Lopez, N. 04
Anitescu, 2000, 2004

Scholtes 2001
Hu and Ralph, 2002
Benson, Shanno 2005
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One Solution: L1-Penalty

L 1-penalty relaxation of optimization problem with
equilibrium constraints

min S (x) min f(x)+7 x x,
st. g(x)=220

hix) = 0 — s.t. g(x)=0

¥ x, = 0 h(x)=0

X, x, >0 x20,x 20

Penalty problem always regular
General technique?
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Theoretical Results Algorithms

Solns of penalty problem  problem solutions

Various stationarity concepts

Scholtes, Ralph, Anitescu, Pang, Luo

Active set methods
Fletcher-Leyffer, Scholtes , Ralph- Zhu, Anitescu

Relaxation (non-penalty):
Friedlander-DeMiguel-Scholtes

Interior-Point methods
Biegler-Ragunathan ,Leyffer-Lopez-N, Vanderbei-Shanno
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Classical Unconstrained Formulation
Courant 50s, Fiacco-McCormick 60s

min  f(x)
st.  h;(x)=0, |min @ (x) =fX)+VIAX)IE+v1gx) I
g, (x) =20,
g(x) =max{0,—g(x)}
Weaknesses:

Complicating constraints;
Infinite family of problems, v —c

IlI-conditioning: delicate solution. Need scale invariant

method, warm start o
Not competitive!
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Nonsmooth penalty, L-1

@, (x)=f(x)+vIlh(x) Il +vIilg(x) I

One minimization for fixed y

Critical points of ¢ are KKT points or infeasible
stationary points

Almost parameter free

Non-smooth, difficult minimization

— Bundle methods, special techniques?

Choice of penalty parameter?
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Breakthrough: (Fletcher, 1980s)

As 1n unconstrained minimization:
Create a model of penalty function
Compute steps d by minimizing the model

q(d)=Vf'd +%dTWd +VvIlh+Vh'dIl +vI[g+Vg'd] ||

Non-smooth, but can be reformulated as smooth problem
Note: linear/quadratic -- not quadratic/quadratic
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g(d)=VF'd+d"Wd+vIh+VH d Il +vIi[g+ Vg d] |

Remove non-smoothness: Linear/quadratic model
Quadratic program

min Vf'd +d"Wd +v(u+w+t)
st. h+Vh'd=u-w
g+VgTd >—t, u,w,t=0
Id <A  (possibly)

Similar to SQP == SL,QP Fletcher
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How 1s the penalty parameter chosen?

Choose v, and starting point x;
For k=0, 1,...
Solve penalty problem (linearly cons)
If llfeasibilityll< 10¢ ==) Stop
Else
Choose new penalty v,  >v,

Choose new starting point X+

End
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ADLITTLE LP: Fletcher 1992

Want V' small to avoid ill-conditioning
It must be greater than unknown threshold (10°)

Hope: if V 1s less than threshold, penalty problem
infeasible; alerted to increase it

If y is about below 10°/3:

— Penalty problem is unbounded
— Inefficiencies

Abandon penalty functions == filters
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min x

S.t.

x 21

v2>1

—>

— min x + vmax(0,l-x)

Can you trust your surrogate....? Consider x=1/2

Only if the improvement in feasibility (to first order)
is comparable to the best possible improvement
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minx® x>-1

x*=-1 1s a local minimizer of @
if v >3.

But ¢ is unbounded as
X —>'—o0

For any value of V there is

A starting point x0 s.t. there is no
Decreasing path from x0
To x*

This example shows that it 1s not possible to prescribe in advance a value
of nu that 1s adequate t every iteration

30



e Uconstrained minimization: we control Newton step so
that 1t decreases the objective to first order (descent
direction)

(V Ff)yp=-Vf pos. def. or trust region

* Similar goal is desirable with respect to the constraints, for
constrained optimization...

e (Generalize concept to feasibility:
— Not immediate, requires computation!
— Implementation in each context
— It is not a switch but an integral part of the iteration
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A Dynamic Strategy

For Selecting the Penalty Parameter

Context: Successive Quadratic Programming
Method (Also: Knitro/Active)
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min Vf'd+ %dTWd
QP st h+virTd=0
g+Vg'd >0
Hdil, <A
Relaxation of quadratic program

m=) Incompatible?

min Vf'd +v(u+w+t)
QP’ S.t. h+Vhlid =u—w Always feasible

g+Vg'd>—t, uw,t>0
dll_<A

33



Motivation for new strategy

minVf'd +%dTWd+V(u+w+t)

st.  h+Vh'd=u-w
g+Vg'd>—t, u,w,t>0
Idll <A

Idea: if uw,t
can be zero, do so.
Choose v accordingly

min (u+w+t)
st.  h+Vh'd=u-w
g+Vg'd >-t,
u,w,t =20
ldll_ <A

Otherwise solve
Feasibility problem
With nu=infty
A linear program
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Adaptive Strategy :
min Vf'd +%dTWd +v(u+v+t)
V:given st.  h+Vh'd=u-v
Compute d (V) g+Vg'd 2 -1,
If u=w=t=0 v, 120
accept v Id Il < A
Else

YV =c0 computed”
m_=llh+Vh'd” l+1l[g+Vg'd”T |l

End
Choose V so that

m(0)—m(d")=20.1[ m(0)—m_, ]
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min x s.t. x21

m_ =l h+ VA d= 1+ 1I[g+Vg'd™T |

ld” lI< A
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<
I

15

Our criterion: choose
v>15

We have expanded
The basin of attraction
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Optimality + Feasibility

Improvement in feasibility is not enough. Let

I(d)=Vf'd+vIh+Vh'd Il +vI[g+ Vg d] I

After penalty parameter has been chosen, increase it if

necessary s.t.
Promote acceptance of step

[(0)=1(d")=0.1v[m(0) —m_, ]

In trust region notation: . .
Knitro-Interior

pred (d) =2 0.1v|[cred (d)] Dennis, Vicente,

Heinkenschloss,

Adopted in KNITRO/ACTIVE etc
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ADLITTLE LP: Revisited Fletcher 1992

 Running knitro/active:
— For small trust region radius:
— Solves 1n 7 1terations,
— Penalty from 10 to 10° in first 4 iters

— If trust region includes feasible points, correct
adjustment after one LP
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Crucial questions:

* Does it actually work in practice?
— Yes, extensive testing  Waltz

e Possibly solving several subpblems/iteration?
— Negligible cost

e Can one prove global and local results?

— Global convergence (Byrd, Gould, Nocedal, Waltz,
2004),

— active set identification, to be done
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The End



