Recent Advances in Nonlinear Optimization

Jorge Nocedal

Optimization Technology Center
Northwestern University

Fields Institute, Feb 7, 2006,

New Applications, New Algorithms, New Software

The general nonlinear programming formulation covers many interesting applications

Why discuss algorithms?

$$\min_{x} f(x)$$
s.t.
$$h_{i}(x) = 0, i \in E$$

$$g_{i}(x) \ge 0, i \in I$$

Active research area; significant algorithmic advances New applications Solve larger problems, more difficult (degenerate), noisy

Interior-point, Active-set: dominate; Penalty approaches

Outline

- Applications
- Software (KNITRO)
- New Optimization Methods
- Mathematical Foundations

Problem 1: Circuit simulation. Given a design of a computer chip (integrated circuit) find a way to resize elements to achieve optimal performance (power consumption)

Hundreds of thousands of elements. INTEL

Problem 2: Guess initial conditions of the atmosphere at 1 million locations so that predicted fluid flow matches observations during a 12-hour period. ECMWF

2 Cases: prototypical of many present/future applications

Mathematical model (circuit simulation)
Control it to produce the desired results

Cannot afford many attempts (20) Lower resolution models

Some current research areas

- Larger and larger problems
- Noisy functions
- Integer/continuous variables
- Games (Nash, Stackelberg,...)
- Real time (warm starts)
- Degenerate problems (deficient geometry)

General NLP techniques preferred over specialized algorithms

Challenging geometry of feasible region

Figure 9.1: Feasible regions for switch-off problems.

Mathematical Difficulties

Many new areas of application are modeled as:

s.t.
$$g(x) \ge 0$$

 $h(x) = 0$
 $x_1 x_2 = 0$
 $x_1, x_2 \ge 0$ } these constraints cause regularity to be lost

where does this occur? Optimality!

$$g(x)\lambda = 0$$
$$g(x) \ge 0, \quad \lambda \ge 0$$

Moral Hazard

Principal: Determines compensation scheme; can only observe outcome (not action)

c1, c2, . . . , cN

ß Compensation

q1, q2, . . . , qN

ß Outcome

Action à a1, ...,

Agent

Moral Hazard (cont...)

Maximize
$$_{c,a}$$
 $W(c,a) = \sum_{i=1}^{N} p(q_i \mid a) w(q_i - c_i)$ Subject to $U(c,a) = \sum_{i=1}^{N} p(q_i \mid a) u(c_i,a) \geq U_0$ $a \in \arg\max\{U(c,a) : a \in \{a_1,...,a_M\}\}$ $c = (c_1,...,c_N) \in \Re^N_+$

If a **mixed strategy** profile $(\delta_1,...,\delta_M)$ is introduced for the **agent's** action choice $(a_1,...,a_M)$, this can be **reformulated as an MPEC** by substituting the lower level problem by its optimality conditions (Judd-Su)

Frictional contact

• Tangential force only exists when bodies are in contact

Optimal control (trayectory) of robots with contact

Theoretical/Algorithmic Limits

$$\min f(x) \qquad \nabla f(x) - \nabla g(x)\lambda = 0$$

$$s.t \ g(x) \ge 0 \qquad g(x) \ge 0 \quad \lambda g(x) = 0$$

$$\lambda \ge 0$$
Feasible region

- Algorithms based on KKT conditions
- What to do? Perturbation

Equilibrium (Complementarity) Constraints

$$\min (x-1)^2 + (y-1)^2$$

$$x \ge 0, \quad y \ge 0$$

$$xy = 0$$

(disjunction)

Deficient geometry:

Minimal conditions for KKT conditions not satisfied

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} y \\ x \end{pmatrix}$$

- Moral Hazard (Judd-Lin)
- Switch-off constraints
- Interior-point methods fail
 - Intrinsic difficulty
- Active-set methods may or may not work

One Solution: L1-Penalty

L1-penalty relaxation of optimization problem with equilibrium constraints

s.t.
$$g(x) \ge 0$$

 $h(x) = 0$
 $x_1 x_2 = 0$
 $x_1, x_2 \ge 0$
 $\min f(x) + \pi x_1^T x_2$
s.t. $g(x) \ge 0$
 $h(x) = 0$
 $x_1 \ge 0, x_2 \ge 0$

Penalty problem always regular General technique?

Algorithms and Software

50 years of algorithmic work

Interior (barrier) Active set Active set SQP SLQP **Nonlinear Active set QP** quadratic **Linear simplex** Linear

Downward compatibility, Integration

- Applicable and robust for:
 - Unconstrained
 - Bound constrained
 - Equality constrained
 - Nonlinear systems of equations
 - Nonlinear least squares
 - Quadratic programming
 - Linear programming (in progress)
- Multiple derivative options
 - No derivatives
 - First derivatives only
 - First and second (others)

New: penalty formulation for degenerate constraints

Penalty Methods

- History
- Recent advances

Cutting-edge??

Gould, Orban, Toint 03

Fletcher and Chin 03

Chen and Goldfarb 04

Benson, Vanderbei, Shanno 04

Leyffer, Lopez, N. 04

Anitescu, 2000, 2004

Scholtes 2001

Hu and Ralph, 2002

Benson, Shanno 2005

One Solution: L1-Penalty

L1-penalty relaxation of optimization problem with equilibrium constraints

s.t.
$$g(x) \ge 0$$

 $h(x) = 0$
 $x_1 x_2 = 0$
 $x_1, x_2 \ge 0$
 $\min f(x) + \pi x_1^T x_2$
s.t. $g(x) \ge 0$
 $h(x) = 0$
 $x_1 \ge 0, x_2 \ge 0$

Penalty problem always regular General technique?

Theoretical Results

Algorithms

Solns of penalty problem à problem solutions Various stationarity concepts

Scholtes, Ralph, Anitescu, Pang, Luo

Active set methods

Fletcher-Leyffer, Scholtes, Ralph-Zhu, Anitescu

Relaxation (non-penalty):

Friedlander-DeMiguel-Scholtes

Interior-Point methods

Biegler-Ragunathan ,Leyffer-Lopez-N, Vanderbei-Shanno

Classical Unconstrained Formulation Courant 50s, Fiacco-McCormick 60s

$$\min_{x} f(x)$$
s.t.
$$h_{i}(x) = 0,$$

$$g_{i}(x) \ge 0,$$

$$\min_{x} \varphi_{\nu}(x) = f(x) + \nu \|h(x)\|_{2}^{2} + \nu \|g(x)^{-}\|_{2}^{2}$$

$$g(x)^{-} = \max\{0, -g(x)\}$$

Weaknesses:

- Complicating constraints;
- Infinite family of problems, $v \rightarrow \infty$
- Ill-conditioning: delicate solution. Need scale invariant method, warm start

Not competitive!

Nonsmooth penalty, L-1

$$\varphi_{v}(x) = f(x) + v \|h(x)\|_{1} + v \|g(x)^{-}\|_{1}$$

- One minimization for fixed ν
- Critical points of ϕ are KKT points or infeasible stationary points
- *Almost* parameter free
- Non-smooth, difficult minimization
 - Bundle methods, special techniques?
- Choice of penalty parameter?

Breakthrough: (Fletcher, 1980s)

As in unconstrained minimization:

Create a model of penalty function Compute steps *d* by minimizing the model

$$q(d) = \nabla f^{T} d + \frac{1}{2} d^{T} W d + v \| h + \nabla h^{T} d \|_{1} + v \| [g + \nabla g^{T} d]^{-} \|_{1}$$

Non-smooth, but can be reformulated as smooth problem Note: linear/quadratic -- not quadratic/quadratic

$$q(d) = \nabla f^{T} d + d^{T} W d + v \| h + \nabla h^{T} d \|_{1} + v \| [g + \nabla g^{T} d]^{-} \|_{1}$$

Remove non-smoothness: Linear/quadratic model Quadratic program

$$\min \nabla f^T d + d^T W d + v(u + w + t)$$
s.t.
$$h + \nabla h^T d = u - w$$

$$g + \nabla g^T d \ge -t, \quad u, w, t \ge 0$$

$$\parallel d \parallel \le \Delta \quad \text{(possibly)}$$

Similar to SQP \implies SL₁QP Fletcher

How is the penalty parameter chosen?

```
Choose v_0 and starting point x_0^s
For k=0,1,...
    Solve penalty problem (linearly cons)
    If ||feasibility|| < 10^{-6} \implies Stop
    Else
        Choose new penalty v_{k+1} > v_k
        Choose new starting point x_{k+1}^{s}
End
```

ADLITTLE LP: Fletcher 1992

- Want V small to avoid ill-conditioning
- It must be greater than unknown threshold (10⁵)
- Hope: if V is less than threshold, penalty problem infeasible; alerted to increase it
- If ν is about below $10^5/3$:
 - Penalty problem is unbounded
 - Inefficiencies
- Abandon penalty functions filters

$$\min x$$
 s.t. $x \ge 1$ $\Rightarrow \min x + v \max(0,1-x)$

Can you trust your surrogate....? Consider x=1/2

Only if the improvement in feasibility (to first order) is comparable to the best possible improvement

$$\min x^3 \qquad x \ge -1$$

 $x^*=-1$ is a local minimizer of ϕ if V > 3.

But ϕ is unbounded as $x \to -\infty$

For any value of V there is A starting point x0 s.t. there is no Decreasing path from x0 To x^*

This example shows that it is not possible to prescribe in advance a value of nu that is adequate t every iteration

• Uconstrained minimization: we control Newton step so that it decreases the objective to first order (descent direction)

$$(\nabla^2 f) p = -\nabla f$$
 pos. def. or trust region

- Similar goal is desirable with respect to the constraints, for constrained optimization...
- Generalize concept to feasibility:
 - Not immediate, requires computation!
 - Implementation in each context
 - It is not a switch but an integral part of the iteration

A Dynamic Strategy For Selecting the Penalty Parameter

Context: Successive Quadratic Programming

Method (Also: Knitro/Active)

Relaxation of quadratic program

$$\operatorname{QP'} \qquad \min \nabla f^{T} d + \nu(u + w + t)$$
s.t. $h + \nabla h^{T} d = u - w$ Always feasible
$$g + \nabla g^{T} d \ge -t, \quad u, w, t \ge 0$$

$$\|d\|_{\infty} \le \Delta$$

Motivation for new strategy

$$\min \nabla f^T d + \frac{1}{2} d^T W d + \nu (u + w + t)$$
s.t.
$$h + \nabla h^T d = u - w$$

$$g + \nabla g^T d \ge -t, \quad u, w, t \ge 0$$

$$\|d\|_{\infty} \le \Delta$$

Idea: if u, w, t can be zero, do so. Choose ν accordingly

min
$$(u+w+t)$$

s.t. $h+\nabla h^T d = u-w$
 $g+\nabla g^T d \ge -t$,
 $u,w,t \ge 0$
 $\|d\|_{\infty} \le \Delta$

Otherwise solve
Feasibility problem
With nu=infty
A linear program

Adaptive Strategy:

```
v: given
Compute d(v)
If u=w=t=0
accept v
```

min
$$\nabla f^T d + \frac{1}{2} d^T W d + v (u + v + t)$$

s.t. $h + \nabla h^T d = u - v$
 $g + \nabla g^T d \ge -t$,
 $u, v, t \ge 0$
 $\parallel d \parallel_{\infty} \le \Delta$

Else

$$v = \infty$$
 compute d^{∞}
 $m_{\infty} \equiv \|h + \nabla h^{T} d^{\infty}\| + \|[g + \nabla g^{T} d^{\infty}]^{-}\|$

End

Choose ν so that

$$m(0) - m(d^{\nu}) \ge 0.1[m(0) - m_{\infty}]$$

$$\min x \qquad \text{s.t.} \quad x \ge 1$$

$$\mathbf{m}_{\infty} \equiv \| h + \nabla h^T d^{\infty} \| + \| [g + \nabla g^T d^{\infty}]^{-} \|$$
$$\| d^{\infty} \| \leq \Delta$$

 $\min x^3 \qquad x \ge -1$

Our criterion: choose v > 15

We have expanded
The basin of attraction

Optimality + Feasibility

Improvement in feasibility is not enough. Let

$$l(d) = \nabla f^{T} d + \nu \| h + \nabla h^{T} d \|_{1} + \nu \| [g + \nabla g^{T} d]^{-} \|_{1}$$

After penalty parameter has been chosen, increase it if necessary s.t.

Promote acceptance of step

$$l(0) - l(d^{\nu}) \ge 0.1\nu[m(0) - m_{\infty}]$$

In trust region notation:

$$pred(d) \ge 0.1v[cred(d)]$$

Knitro-Interior Dennis, Vicente, Heinkenschloss, etc

Adopted in KNITRO/ACTIVE

ADLITTLE LP: Revisited Fletcher 1992

- Running knitro/active:
 - For small trust region radius:
 - Solves in 7 iterations,
 - Penalty from 10 to 10⁵ in first 4 iters
 - If trust region includes feasible points, correct adjustment after one LP

Crucial questions:

- Does it actually work in practice?
 - Yes, extensive testing
 Waltz
- Possibly solving several subpblems/iteration?
 - Negligible cost
- Can one prove global and local results?
 - Global convergence (Byrd, Gould, Nocedal, Waltz, 2004),
 - active set identification, to be done

The End