Robust Airline Fleet Assignment

Ellis L. Johnson Georgia Tech ISyE

Barry Smith Sabre Research Group

> Fields Institute Oct 4, 2005

Agenda

- Fleet Assignment Model
- Robustness
- Spoke Purity
- Station Decomposition (SDM)
- Convex combinations of duals
 - A dual ascent version of D-W decomp
 - Second stage master
- Integer Answers
- The (more real) bottom line

Fleet Assignment Model (FAM)

- FAM assigns aircraft types to an airline timetable in order to maximize profit
- · Widely used in the airline industry
 - AA and DL reported 1% profit from FAM
 - FAM was originally deployed in the 1980s
- Environment for fleet assignment has evolved
 - Hub and spoke schedule structure
 - Impact on planning, marketing and operations
 - Crew and maintenance planning and ops

Airline Planning Integration

- Enterprise Planning
 - Labor planning
 - Markets
 - Fleets
- Product Planning
 - Sched & price
- Tactics and Operations
 - Crew and plane planning
 - Capacity, price, availability optimization

FAM Background

- Given a flight schedule and available fleet of aircraft, FAM maximizes operating profit subject to operational constraints
- The basic FAM constraints include:
 - Cover: Each flight in the schedule must be assigned exactly one aircraft type
 - Plane Count: The total number of aircraft assigned cannot exceed the number available in the fleet
 - Balance: Aircraft cannot appear or disappear from the network

2.1.1 Sets

- A: set of airports indexed by a.
- L: set of flight legs, indexed by i.
- F: set of fleet types, indexed by f.
- T: set of all departure and arrival events, indexed by t.
- N: set of timeline nodes, indexed by $\{f, a, t\}$.
- CL(f): set of flight legs crossing the counting line flow by fleet f.
- I(f,a,t): set of flight legs inbound to $\{f,a,t\}$.
- O(f, a, t): set of flight legs outbound from $\{f, a, t\}$.

2.1.2 Decision Variables

- $x_{f,i} = \begin{cases} 1 \text{ if fleet } f \in F \text{ is assigned to flight leg } i \in L \\ 0 \text{ otherwise} \end{cases}$
- y_{f,a,t_j^+} : the number of aircraft on the ground for fleet type $f \in F$,

at airport $a \in A$, on the ground arc just following time $t_j \in T$.

 y_{f,a,t_j^-} : the number of aircraft on the ground for fleet type $f \in F$, at airport $a \in A$, on the ground arc just prior to time $t_j \in T$.

2.1.3 Parameters

 N_f : the number of aircraft available of fleet type $f \in F$.

- Cap_f : the seating capacity of fleet type $f \in F$.
- $C_{f,i}$: operating cost of assigning fleet $f \in F$ to flight leg $i \in L$.

 $R_{f,i}$: revenue produced by assigning fleet $f \in F$ to flight leg $i \in L$.

FAM Notation

FAM Formulation

Maximize:

$$\sum_{f \in F} \sum_{i \in L} (R_{f,i} - C_{f,i}) x_{f,i}$$

Subject to:

$$\begin{split} \sum_{f \in F} x_{f,i} = 1, \forall i \in L \\ y_{f,a,t^{-}} + \sum_{i \in I(f,a,t)} x_{f,i} - y_{f,a,t^{+}} - \sum_{i \in O(f,a,t)} x_{f,i} = 0, \forall f, a, t \\ \sum_{a \in A} y_{f,a,t_{m}} + \sum_{i \in CL(f)} x_{f,i} \leq N_{f}, \forall f \in F \\ x_{f,i} \in \{0,1\}, \forall f \in F, \forall i \in L \\ y_{f,a,t} \geq 0, \forall f, a, t \end{split}$$

Modeling Robustness in FAM

- The goal of robustness is to produce FAM solutions that anticipate subsequent planning and operational recovery
 - Planning: reduce crew costs by avoiding low frequency service to a spoke by a given fleet
 - Reduce maintenance costs by reducing the total number of fleet/station combinations
 - Operations: limit diversity of aircraft types at stations in order to create more possibilities for crew swaps and aircraft swaps

Spoke Purity in FAM

- We impose station purity to make FAM solutions more favorable to crew planning, maintenance planning, and operations
 - Limit the number of fleet types at spokes
 - Multiple levels of purity based on station size
 - Relax fleet purity to family purity
- We also penalize the number of station/family pairs
 - Leads to more clustered use of fleet families

Station Purity Formulation

$$\begin{split} w_{f,s} &\geq x_{f,i} \forall f \in F, s \in A, i \in L \\ \sum_{f \in F} w_{f,s} &\leq SP_s \forall s \in A \\ w_{f,s} &\in \{0,1\} \forall f \in F, s \in A \end{split}$$

FAM Scenarios

- Star7: Mid-size international weekly schedule, one hub, 7 fleet types
- Int7: Mid-size international weekly schedule, multiple hubs, 7 fleet types
- US7: US domestic daily schedule, multiple hubs, 7 fleet types
- US19: US domestic daily schedule, multiple hubs, 19 fleet types
- Test environment: Pentium 4 processor (2.0 gHz, 1.5 g RAM), ILOG CPLEX 8.0, ILOG Concert 1.2

FAM Scenarios

Models and computational results – no purity

Case	Cities	Flights	Fleet	Legal	Rows	Cols	Profit*	Time**	
			Types	Assignments				LP	IP
Star7	44	1568	7	4991	4747	8163	65.38	6.30	2.31
Int7	50	2358	7	6537	6900	11072	82.54	12.64	7.24
US7	210	4182	7	27698	16547	40056	17.52	11.83	0.52
US19	210	4182	19	71096	35899	102794	19.36	253.00	8.53

* \$ x 1,000,000 ** CPU seconds

Station Purity Limits Dispersion of Fleets US7

- Base: no purity
- Mod: 1 fleet type at small stations, 2 at larger stations, no restrictions at hubs
- Max: 1 fleet type at all non-hub stations

		Total
Purity	Sinaletons	Combinations
Base	164	630
Moderate	33	357
Maximum	22	280

Purity Increases FAM Solution Times

Station Decomposition Model

- Master Problem determine fleeting based on plans between hub and spokes
 - Reduce number of rows spoke balance moved to subproblems
 - Reduce number of decision variables
 - Remove/reduce impact of station-level constraints
- Subproblem generate plan(s) for a spoke
 - Relatively small, simple IP

Decomposition for Star Network

General Network

General Network

SDM Notation

3.1.1 SDM Sets

- *H*: set of hub airports, indexed by h. $H \subset A$.
- S : set of spoke airports, indexed by s. $S \subset A$, $H \cap S = \emptyset$.
- G : set of station groups, indexed by g.
- A^g : set of airports in station group $g \in G$, indexed by a.
- P: set of assignment plans, indexed by p.
- P^s : set of plans for spoke s, indexed by p.
- P^{g} :set of plans for station group $g \in G$, indexed by p.
- L^{g} : set of flight legs within group $g \in G$, indexed by i. $L^{g} \subset L$
- L^h : set of hub-to-hub flight legs $h \in H$, indexed by i. $L^h \subset L, \ L^h \cap L^g = \emptyset.$

3.1.2 Decision Variables

 $x_p = \begin{cases} 1, \text{ if plan p is in the SDM solution} \\ 0, \text{ otherwise} \end{cases}$

$$x_{f,i}^{p} = \begin{cases} 1, \text{ if } \log i \in L \text{ is assigned fleet } f \in F \text{ in } \text{plan } p \in P \\ 0, \text{ otherwise} \end{cases}$$

SDM Notation

3.1.1 Parameters and Data

 $R_p: \text{ revenue for plan p, } R_p = \sum_{f \in F} \sum_{i \in L} R_{f,i} x_{f,i}^p .$ $C_p: \text{ cost for plan p, } C_p = \sum_{f \in F} \sum_{i \in L} C_{f,i} x_{f,i}^p .$

 PC_{f}^{p} : the number of aircraft from fleet $f \in F$ on the ground or in the air at the counting time in plan $p \in P$.

 $q_{f,h,t,p} = \begin{cases} 1, \text{ if plan p includes an arrival of aircraft type f at hub h, time t} \\ -1, \text{ if plan p includes a departure of aircraft type a at hub h, time t} \\ 0, \text{ otherwise} \end{cases}$

SDM Master

Maximize:

$$\sum_{f \in F} \sum_{i \in L} (R_{f,i} - C_{f,i}) x_{f,i} + \sum_{p \in P} (R_p - C_p) x_p$$

Subject to:

$$\begin{split} \sum_{f \in F} x_{f,i} &= 1, \forall i \in L^h, \forall h \in H \\ y_{f,h,t^-} + \sum_{i \in I(f,h,t), i \in L^h} x_{f,i} - y_{f,h,t^+} - \sum_{i \in O(f,h,t), i \in L^h} x_{f,i} + \sum_{p \in P} q_{f,h,t,p} x_p = 0, \forall f,h,t \\ \sum_{h \in H} y_{f,h,t_m} + \sum_{i \in CL(f), i \in L^h} x_{f,i} + \sum_{p \in P} PC_f^p x_p \leq N_f, \forall f \in F \\ \sum_{p \in P^g} x_p = 1, \forall g \in G \\ x_{f,i} \in \{0,1\}, \forall f \in F, \forall i \in L^h \\ x_p \in \{0,1\}, \forall p \in P \\ y_{f,h,t} \geq 0, \forall f,h,t \end{split}$$

 $\begin{aligned} \pi_g^{conv} &: \text{dual variable on the convexity constraint for group } g \in G \,. \\ \pi_f^{pc} &: \text{dual variable on the plane count constraint for fleet } f \in F \,. \\ \pi_{f,h,t}^{bal} &: \text{dual variable on the balance constraint for fleet } f \in F \,, \text{hub } h \in H \,, \text{node } t \in T \,. \end{aligned}$

SDM SubProblem

Maximize:

$$\begin{split} z^{g} &= \sum_{f \in F} \sum_{i \in L^{g}} (R_{f,i} - C_{f,i}) x_{f,i} - \sum_{f \in F} \sum_{a \in A^{g}} \pi_{f}^{pc} y_{f,a,t_{0}} \\ &+ \sum_{f} \sum_{h} \sum_{i \in I(f,h,t)} \pi_{f,h,t}^{bal} x_{f,i} - \sum_{f} \sum_{h} \sum_{i \in O(f,h,t)} \pi_{f,h,t}^{bal} x_{f,i} \forall f, h, t \end{split}$$

Subject to:

$$\begin{split} \sum_{f \in F} x_{f,i} &= 1, \forall i \in L^g \\ y_{f,a,t^-} + \sum_{i \in I(f,a,t), i \in L^g} x_{f,i} - y_{f,a,t^+} - \sum_{i \in O(f,a,t), i \in L^g} x_{f,i} = 0, \forall f, a \in A^g, t \\ w_{f,a} &\geq x_{f,i} \forall f \in F, a \in A^g, i \in L^g \\ \sum_{f \in F} w_{f,a} &\leq SP_a \forall a \in A^g \\ x_{f,i} \in \{0,1\}, \forall f \in F, \forall i \in L^g \\ y_{f,a,t} &\geq 0, \forall f, a \in A^g, t \\ w_{f,a} &\in \{0,1\} \forall f \in F, a \in A^g \end{split}$$

Station Decomposition Flow

Stopping criterion:

If max { $RC^s : s \in S$ } $\leq kz$

Where $RC^s = z^s - \pi^s$ and k = .0001

SDM Performance vs FAM

SDM Dual Improvement Approach

- The quality of plans generated is limited by the quality of the current dual solution
 - On successive master iterations, the dual may not improve so plans may not be optimum
 - May require many iterations
- Second Stage Master Problem (SSMP) finds the optimal dual solution in a convex region defined by previous dual solutions
 - Improves dual solution at each iteration
 - Generates plans without resolving the master
 - Reduce the number of major iterations
 - Reduce CPU time

Station Decomposition with SSMP

SDM Master and Dual

SDM master problem:

Maximize: $C_H X_H + \sum_{g \in G} \sum_{p \in P^G} P_p x_p$

Subject to:

$$\sum_{p \in P^G} x_p = 1, \forall g \in G$$
$$A_H X_H + \sum_{g \in G} \sum_{p \in P^g} A^p x_p = b$$
$$X_H \ge 0, x_p \ge 0, \forall p \in P$$

Dual of the SDMmp is:

Minimize:
$$\pi b + \sum_{g \in G} \pi_g^{conv}$$

Subject to:

$$\pi A_{H} \geq C_{H}$$
$$\pi_{g}^{conv} + \pi A^{p} \geq P_{p}, \forall g \in G, p \in P^{g}$$

 C_H : vector of objective function coefficients for H2H flight legs (revenue minus cost).

 X_H : vector of decision variables associated with H2H flight assignments and hub ground flows.

 $P_p = R_p - C_p$: profit associated with plan p.

 A_{H} : matrix of coefficients for H2H cover, hub balance and plane count constraints.

- A^{p} : vector of coefficients for plane count and hub incidence for plan p.
- *b* : vector of right hand side values associated with plane count and hub balance constraints.

Restrict L(π) to Convex Region

• Let λ be a vector of weights on these solutions, and let π^{λ} be the convex combination of the previous solutions based on these weights. The restricted lagrangian minimization becomes:

$$\min_{\{\pi^1,\dots,\pi^r\}} L(\pi^\lambda) = \min\left\{\pi^\lambda b + \sum_s S^s(\pi^\lambda) \mid \pi^\lambda = \sum_j \lambda_j \pi^j, \sum_j \lambda_j = 1, \lambda_j > 0\right\}$$

• This is equivalent to:

$$\min_{\{\pi^{1},\ldots,\pi^{t}\}} L(\pi^{\lambda}) = \min \begin{cases} \pi^{\lambda}b + \sum_{g \in G} \pi_{g}^{conv} \mid \\ \pi_{g}^{conv} \geq P_{p} - \pi^{\lambda}A^{p} \forall p \in P^{g} \\ \pi^{\lambda} = \sum_{j=1..t} \lambda_{j}\pi^{j}, \sum_{j=1..t} \lambda_{j} = 1, \lambda_{1..t} > 0 \end{cases}$$

or:

$$\min_{\{\pi^{1},...,\pi^{t}\}} L(\pi^{\lambda}) = \min \begin{cases} \sum_{j=1..t} \lambda_{j} \pi^{j} b + \sum_{g \in G} \pi_{g}^{conv} \mid \\ \sum_{j=1..t} \lambda_{j} \pi^{j} A^{p} + \pi_{g}^{conv} \geq P_{p}, \forall p \in P^{g} \end{cases} \\ \sum_{j=1..t} \lambda_{j} = 1, \lambda_{1..t} \geq 0 \end{cases}$$

SSMP: Second Stage Master

Maximize:
$$z_0 + \sum_{p \in P} P_p x_p$$

Subject to:

$$\sum_{p \in P^g} x_p = 1, \forall g \in G$$
$$z_0 + \sum_{p \in P} \pi^j A^p x_p = \pi^j b, \forall j = \{1..t\}$$
$$x_p \ge 0$$

- z_0 is the dual of the convexity constraint on λ
- λ_i is the dual on the jth constraint
- Given an optimal solution to the SSMP, the improved dual π^{λ} is found

as:
$$\pi^{\lambda} = \sum_{j=1..t} \lambda_j \pi^j$$

SSMP Performance: Major Iterations

Solving SDM MIP

- The SDM LP relaxation is tighter than the FAM relaxation
 - SDM solutions are convex combinations of integer subproblem solutions
 - Should give better results if solved to optimality
- Unfortunately there are problems:
 - SDM solution is highly fractional
 - Good LP columns may not produce a feasible MIP solution
- Used typical strategy to solve MIP: variable fixing, branching on subproblem variables using SOS1
- This results in higher MIP gap and longer MIP times
- Developed a "fix and price" heuristic to fix and later unfix variables while generating new columns
 - This results in faster runtimes and lower MIP gaps

Fix and Price Heuristic for Solving SDM MIP

- 1.Solve LP relaxation to specified stopping criteria
- 2.Fix plan variables close to 1
- **3.Solve master**
- 4.If profit drops below a specified threshold: Unfix low reduced cost variables Add cut to avoid this solution in future
 - iterations

5.Generate new plans for unfixed stations

6.If some stations are unfixed Go to Step 2 7.Solve MIP

SDM MIP Results with Fix and Price

Schedule	Purity	FAM			SDM			SDM w/ F&P		
		Time	Nodes	Gap	Time	Nodes	Gap	Time	Nodes	Gap
Star7	None	8.61	1	0.00%	8.47	1	0.00%	9.34	1	0.00%
	Max	88.74	9	0.60%	1.90	1	0.00%	2.00	1	0.00%
	Mod	21.27	1	0.01%	26.37	1	0.00%	27.87	1	0.00%
	None	19.88	1	0.01%	65.34	8	0.05%	39.93	1	0.00%
Int7	Max	45.55	1	0.00%	12.32	1	0.00%	12.34	1	0.00%
	Mod	55.33	8	0.03%	74.27	15	0.10%	48.29	1	0.00%
	None	12.35	7	0.00%	26.93	7	0.00%	26.08	1	0.00%
US7	Max	188.77	3	0.01%	20.71	39	0.11%	15.18	1	0.00%
	Mod	92.74	6	0.01%	25.62	36	0.10%	16.12	1	0.00%
US19	None	261.53	20	0.01%	621.44	163	0.18%	858.59	2	0.01%
	Max	8686.23	30	0.20%	175.17	90	0.29%	115.86	15	0.33%
	Mod	2167.55	32	0.04%	663.47	318	0.55%	260.74	1	0.00%
										33

ODFAMpIr and Family Purity

- Fleet-level purity has a significant negative impact on profit
- We can achieve many of the benefits associated with purity by imposing it at a crew-compatible family level
- ODFAMpIr results in more reasonable profit impact at family level
- Family purity results in significant runtime impacts

		Level	ODFAMplr			
Schedule	Purity			B&B	Cplex	
			Profit	Nodes	Time	
Star7	Base		65.80	1	18.75	
	Mod	Family	65.79	1	12.36	
	Max	Family	64.87	1986	4775.73	
Int7	Base		83.93	3	42.56	
	Mod	Family	83.93	1	45.01	
	Max	Family	83.86	12	65.09	
US19	Base		19.34	1	1718.77	
	R Mod	Family	19.31	1	4870.06	
	R Max	Family	19.13	1	13721.50	

Family/Station Penalties

- AA Maintenance stated that each fleet/sta combination increases annual operating costs by \$500k
- Added a penalty to the FAM formulation to estimate potential benefits of reducing combinations
- Three cases were run for each scenario:
 - Base: No purity
 - \$0: Moderate family purity no penalty
 - \$X0,000: Moderate family purity with daily or weekly penalty on family/station
- Annual benefits for ODFAM and purity are significant

	5	Profit	50		
Schedule	Penalty	(mm)	FS	ΔFS	Net Profit
	Base	\$65.79	64		65.15
	\$0	\$65.79	62	2	65.17
Star7	\$30,000	\$65.75	56	8	65.19
	\$50,000	\$65.59	54	10	65.05
	\$500,000	\$65.00	51	13	64.49
	Base	\$83.91	79		83.12
	\$0	\$83.91	79	0	83.12
Int7	\$30,000	\$83.86	72	7	83.14
	\$50,000	\$83.82	71	8	83.11
	\$500,000	\$83.56	70	9	82.86
	Base	\$19.32	508		18.36
11910	\$0	\$19.30	488	20	18.63
0019	\$1,500	\$19.24	370	138	18.73
	\$3,000	\$19.21	370	138	18.70

Crew Pairing Cost

- For the US7 RJ fleet and three FAM solutions, we solved the planning problem for crew pairings
 - Base FAM solution no purity constraints
 - Mod and max purity FAM solutions for
- Consistent rules for all three
 - Rules came from Sabre for client airline
- Measured excess pay-and-credit percentages
 - Base: 26.2%, Mod 5.6%, Max 4.2%

The more real bottom line

- Just from down-line planning
- Base solution daily operating profit:
 19.36 505x1370 = 18.67 (maintenance)
 18.67 .42 = 18.25 (excess crew cost)
- Mod solution daily operating profit:
 19.26 374x1370 = 18.75 (maintenance)
 18.75 .14 = 18.61 (excess crew cost)
- Operational recovery savings should be comparable

The more real bottom line

- Why is clustered fleets more robust?
- Leads to clustered crews
 - Can swap pilots if e.g. a flight is late getting in and cuts crew rest too much
- More planes are same fleet family
 - Can have fewer overnight maintenance stations because more planes of a given fleet are on the ground
 - Can swap planes as well

Conclusions

- Robustness potential benefits and computational issues associated with fleet and family purity
- Station Decomposition Model (SDM) developed a workable formulation for a general airline network
- Dual Improvement Algorithm makes column generation more efficient by using convex combinations of previous duals
- Fix and price is an approach to solving the SDM MIP that provides significant improvements in solution quality and efficiency compared to the column generation->MIP approach