

New NLP problems for Power System Analysis and Operation in Competitive Electricity Markets

Kankar Bhattacharya and

Claudio Cañizares

Department of Electrical & Computer Engineering University of Waterloo, Waterloo, Ontario

kankar@ece.uwaterloo.ca ccanizar@uwaterloo.ca www.power.uwaterloo.ca

Outline

- Introduction and motivation
- Previous work in NLP problems for electricity markets:
 - Security-constrained optimal power flow (SC-OPF)
 - SC-OPF power market models
- New NLP problems and applications:
 - Multi-objective voltage-stability-constrained OPF (VSC-OPF)
 - Singular value VSC-OPF
 - OPF-based reactive-power market models:
 - Mixed integer-NLP problems
 - Elimination of integer variables
- Conclusions

Power System Analysis and

Introduction and Motivation

- Optimization models have traditionally played a very important role in power system operations and planning studies
- With introduction of competitive markets some of these models have undergone a shift in paradigm
- Many new issues have emerged and so have new models to address these issues requiring faster computation methods and ability to handle large systems

Introduction and Motivation

- "Typical" optimization problems in power system operation:
 - Unit Commitment (UC) problem:
 - Scheduling generators over 1-week to 1-day horizon to minimize costs subject to a set of linear constraints
 - Mixed Integer-LP problem
 - Optimal Power Flow (OPF) problem:
 - Short-term generation schedules to minimize cost
 / loss subject to nonlinear constraints and limits
 - Nonlinear programming (NLP) problem

Introduction and Motivations

- Electricity market problems:
 - Obtain generation and load schedules to maximize "social welfare"
 - Viewed as an OPF problem
 - In some markets, nodal-prices are also obtained
- ◆ These problems have been successfully solved using a variety of well-known optimization techniques for large systems (e.g. Interior Point methods applied to NLP OPF problems).

Introduction and Motivations

- Deregulation has increased the need to seek optimal operating conditions while meeting system security constraints
- New optimization problems motivated by electricity market issues:
 - Stability-constrained OPF:
 - more secure and "cheaper" operation schedules
 - Some "security" constraints are replaced, in some cases, by implicit constraints.
 - Reactive power problems:
 - Obtain reactive power schedules to maximize "social welfare" while maintaining system security
 - Mixed Integer-NLP problem

for Power System Analysis and ompetitive Electricity Markets

Security Constrained OPF (SCOPF)

"Standard" SCOPF problem:

Min. $\sum_{i=0}^{N_G} a_i P_{G_i}^2 + b_i P_{G_i} + c_i$ s.t. $F_{pf}(\delta, V, Q_G, P_G) = 0$ $P_{G_{\min}} \leq P_G \leq P_{G_{\max}}$ $P_T(\delta, V) \leq P_{T_{\text{max}}}$ $I_T(\delta, V) \leq I_{T_{\text{max}}}$ $Q_{G_{\min}} \le Q_G \le Q_{G_{\max}}$ $V_{\mathsf{min}} \leq V \leq V_{\mathsf{max}}$

SCOPF... contd.

The nonlinear power flow equations
 Fpf(δ,V,QG,PG) have the general form (2 equations per bus i = 1,...,N):

$$\begin{split} P_i - \sum_{k=1}^N V_i V_k [G_{ik} \cos(\delta_i - \delta_k) + B_{ik} \sin(\delta_i - \delta_k)] &= 0 \\ Q_i - \sum_{k=1}^N V_i V_k [G_{ik} \sin(\delta_i - \delta_k) - B_{ik} \cos(\delta_i - \delta_k)] &= 0 \\ P_i &= \begin{cases} P_{G_i} & \forall i \in \text{generators} \\ -P_{L_i} & \forall i \in \text{loads} \end{cases} \\ Q_i &= \begin{cases} Q_{G_i} & \forall i \in \text{generators} \\ -Q_{L_i} & \forall i \in \text{loads} \end{cases} \end{split}$$

$$G_{ik}, B_{ik}, P_{L_i}, Q_{L_i} \rightarrow \text{constants}$$

SCOPF... contd.

- Objective is to minimize generation costs
- Grid "security" is represented by:
 - Line power flows P_T , typically computed off-line using an N-1 contingency criterion
 - Current thermal limits I_T
 - Bus voltage limits V
- These problems have been solved successfully for large systems (thousands of constraints) using Interior Point methods

 $9 ext{-} ext{Feb} ext{-}06$

SCOPF in Markets

In electricity markets, the "typical" NLP SCOPF for a double auction market is:

$$\begin{aligned} \text{Max.} \quad S_b &= C_d^T P_d - C_s^T P_s \\ \text{s.t.} \quad F_{pf}(\delta, V, Q_G, P_s, P_d) &= 0 \\ 0 &\leq P_s \leq P_{s_{\text{max}}} \\ 0 &\leq P_d \leq P_{d_{\text{max}}} \\ P_T(\delta, V) &\leq P_{T_{\text{max}}} \\ I_T(\delta, V) &\leq I_{T_{\text{max}}} \\ Q_{G_{\text{min}}} &\leq Q_G \leq Q_{G_{\text{max}}} \\ V_{\text{min}} &\leq V \leq V_{\text{max}} \end{aligned}$$

for Power System Analysis and Competitive Electricity Markets

SCOPF in Markets... contd.

where

$$P_i = \begin{cases} P_{Go_i} + P_{s_i} & \forall i \in \text{generators} \\ -P_{Lo_i} - P_{d_i} & \forall i \in \text{loads} \end{cases}$$

$$Q_i = \left\{ \begin{array}{ll} Q_{G_i} & \forall i \in \text{generators} \\ -Q_{L_i} & \forall i \in \text{loads} \end{array} \right.$$

$$G_{ik}, B_{ik}, P_{Go_i}, P_{Lo_i}, Q_{L_i} \rightarrow \text{constants}$$

SCOPF in Markets... contd.

- This model is basically an NLP SCOPF that maximizes social welfare
- Locational marginal prices (LMP) are byproducts of this optimization problem (the Lagrange multipliers of F_{pf}).
- In practice, market models based on LP models are more commonly used by system operators.

Linear SCOPF in Markets

 For example, the following multi-period LP model may be used to clear these markets (e.g. Ontario):

$$\begin{aligned} &\text{Max.} \quad S_b = \sum_{t=1}^N C_{d_t}^T P_{d_t} - C_{s_t}^T P_{s_t} \\ &\text{s.t.} \quad P_{d_{i_t}} - P_{s_{i_t}} - \sum_{j=1, j \neq i}^n P_{loss_{ij_t}} - \sum_{j=1, j \neq i}^n P_{ij_t} = 0 \quad \forall i, t \\ &P_{ij_t} - b_{ij} (\delta_{i_t} - \delta_{j_t}) = 0 \quad \forall i, j, i \neq j, t \\ &P_{T_t} = [P_{ij_t}] \leq P_{T_t \max} \quad \forall t \\ &0 \leq P_{s_t} \leq P_{s_t \max} \quad \forall t \\ &0 \leq P_{d_t} \leq P_{d_t \max} \quad \forall t \\ &P_{s_t} - P_{s_{t+1}} \leq R d_{s_t} \quad \forall t \\ &P_{s_{t+1}} - P_{s_t} \leq R u_{s_t} \quad \forall t \end{aligned}$$

Linear SCOPF in Markets... contd.

- Rd and Ru represent the ramp-down and ramp-up constraints, respectively
- Other constraints are also included in these models (e.g. operating reserve in Ontario)
- The line power flow limits vary with the solution of the auction; thus, fixed limits are not representative of system conditions, negatively affecting prices and system security.
- This has led to the development of stability constrained OPF models.

Multi-objective Voltage Stability Constrained OPF (VSC-OPF)

The objective is to maximize both social welfare and system "loadability", i.e. voltage stability margins (VSM):

$$\begin{aligned} &\text{Max.} \quad (1-w)\underbrace{(C_d^T P_d - C_s^T P_s)}_{S_b} + w \lambda_c \\ &\text{s.t.} \quad F_{PF}(\delta, V, Q_G, P_s, P_d) = 0 \\ &\quad F_{PF_c}(\delta_c, V_c, Q_{Gc}, P_s, P_d, \lambda_c) = 0 \\ &\quad 0 \leq P_s \leq P_{s_{\text{max}}} \\ &\quad 0 \leq P_d \leq P_{d_{\text{max}}} \\ &\quad \lambda_{c_{\text{min}}} \leq \lambda_c \leq \lambda_{c_{\text{max}}} \\ &\quad I_T(\delta, V) \leq I_{T_{\text{max}}} \\ &\quad Q_{G_{\text{min}}} \leq Q_G \leq Q_{G_{\text{max}}} \\ &\quad V_{\text{min}} \leq V \leq V_{\text{max}} \\ &\quad I_{T_c}(\delta_c, V_c) \leq I_{T_{c_{\text{max}}}} \\ &\quad Q_{Gc_{\text{min}}} \leq Q_{Gc} \leq Q_{Gc_{\text{max}}} \\ &\quad V_{c_{\text{min}}} \leq V_c \leq V_{c_{\text{max}}} \end{aligned}$$

Multi-objective VSC-OPF

- ◆ I_c represents the VSM and all c constraints correspond to the system at its "critical" point (max. VSM)
- By varying the weight w (0 < w < 1), more or less stress can be put on security
- In practice, w should be very small to avoid "undesirable" effects on the market power levels and prices

♦ The objective again is to maximize social benefit while guaranteeing a min. VSM:

$$\begin{aligned} \text{Max.} \quad S_b &= C_d^T P_d - C_s^T P_s \\ \text{s.t.} \quad F_{pf}(\underbrace{\delta, V, Q_G, P_s, P_d}) &= 0 \\ \sigma_{min}(\underbrace{D_z F_{pf}|_o}) &\geq \sigma_c \\ \underbrace{J_{pf}} \\ 0 &\leq P_s \leq P_{s_{\text{max}}} \\ 0 &\leq P_d \leq P_{d_{\text{max}}} \\ I_T(\delta, V) &\leq I_{T_{\text{max}}} \\ Q_{G_{\text{min}}} &\leq Q_G \leq Q_{G_{\text{max}}} \\ V_{\text{min}} &\leq V \leq V_{\text{max}} \end{aligned}$$

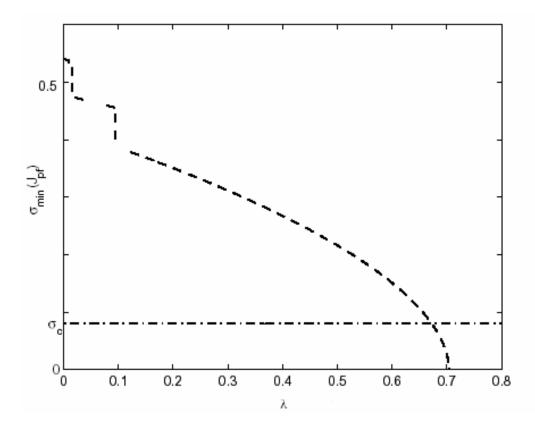
9-Feb-06

16

Power System Analysis and ompetitive Electricity Markets

Singular Value VSC-OPF

• $s_{min}(J_{pf})$ is a VS index that becomes zero at a singularity point of the power flow Jacobian:



for Power System Analysis and

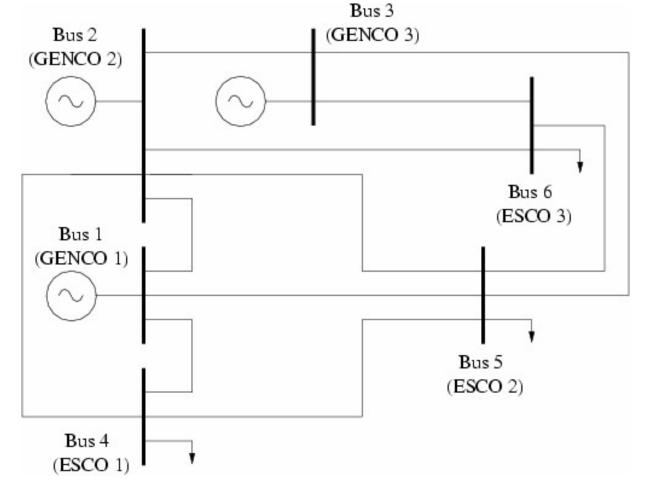
Singular Value VSC-OPF

- All these models only represent the system static behavior; however, stability and security is an inherently dynamic problem
- Some system dynamics can be represented in the VSC-OPF problem by replacing the $s_{min}(J_{pf})$ constraint with the singular value of a dynamic Jacobian

New NLP problems for Power System Analysis and Operation in Competitive Electricity Markets Fields Institute Seminar:

VSC-OPF

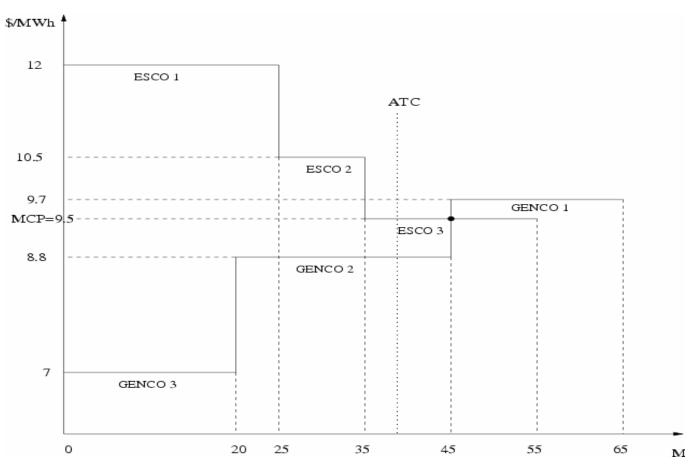
♦ Example:



problems for Power System Analysis and Competitive Electricity Markets Fields Institute Seminar: Operation

VSC-OPF

– Unconstrained optimization:



9-Feb-06

20

problems for Power System Analysis and Competitive Electricity Markets Fields Institute Seminar:

VSC-OPF

SC-OPF with off-line line power flow limits:

Participant	V	ρ	P_{BID}	P_0	Pay	
	[p.u.]	[\$/MWh]	[MW]	[MW]	[\$/h]	
GENCO 1	1.100	9.70	14.4	90	-1013	
GENCO 2	1.100	8.80	2.4	140	-1253	
GENCO 3	1.084	8.28	20.0	60	-663	
ESCO 1	1.028	11.64	15.6	90	1229	
ESCO 2	1.013	10.83	0.0	100	1083	
ESCO 3	1.023	9.13	20.0	90	1005	
TOTALS	T = 315.6 MW		$Pay_{IMO} = 388 \$/h$			
	Losses	= 11.2 MW	VSM = 520 MW			

problems for Power System Analysis and Competitive Electricity Markets Fields Institute Seminar:

VSC-OPF

♦ VSC-OPF (both techniques yield practically the same results for a "small" w):

Participant	V	ho	P_{BID}	P_0	Pay	
	[p.u.]	[\$/MWh]	[MW]	[MW]	[\$/h]	
GENCO 1	1.100	8.94	0.0	90	-805	
GENCO 2	1.100	8.91	25.0	140	-1470	
GENCO 3	1.100	9.07	20.0	60	-726	
ESCO 1	1.021	9.49	25.0	90	1091	
ESCO 2	1.013	9.57	10.0	100	1053	
ESCO 3	1.039 9.35		8.0	90	916	
TOTALS	T =	323 MW	Pay _{IMO} = 59 \$/h			
	Losses	= 12 MW	VSM = 539 MW			

problems for Power System Analysis and

VSC-OPF

- Better operating conditions:
 - Higher voltages
 - Lower losses
 - Higher VSM
- Better market conditions:
 - Lower nodal-prices
 - Higher transaction levels

Power System Analysis and

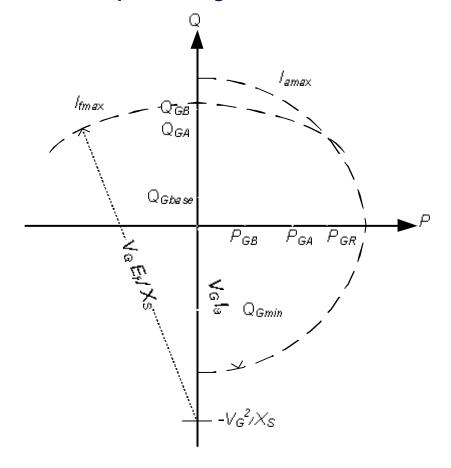
Reactive-Power OPF Auction

- Reactive power is very important to keep power systems secure
- It has an effect on pricing, so there is a need to "optimally" dispatch it (max. security at min. price)
- Need to provide financial incentives to produce and consume reactive power
- There is lack of transparency in the procurement of reactive power services

for Power System Analysis and ompetitive Electricity Markets

Reactive-Power OPF Auction

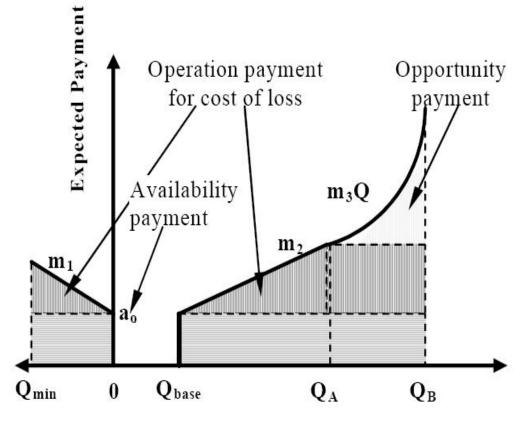
Generator capability curve:



Competitive Electricity Markets

Reactive-Power OPF Auction

• Reactive power prices:



Reactive power support

9-Feb-06 26

problems for Power System Analysis and Fields Institute Seminar:

Power System Analysis and petitive Electricity Markets

Reactive-Power OPF Auction

$$\begin{aligned} \text{Max.} \quad S_w &= \sum_i (C_{Li} \lambda_{Gi} - b_{Gi_o}) Q_{Gi_2} + \\ &\sum_i \left((C_{Li} \gamma_{Gi} - b_{Gi_o}) Q_{Gi_3} - \frac{1}{2} m_{Gi_o} (Q_{Gi_3} - Q_{Gi_A})^2 \right) \\ \text{s.t.} \quad F_{pf}(\delta, V, Q_G, P_{Go}, P_{Lo}) &= 0 \\ &w_{Gi_1} Q_{Gi_{\min}} \leq Q_{Gi_1} \leq w_{Gi_1} Q_{Gi_{blag}} \\ &w_{Gi_2} Q_{Gi_{blead}} \leq Q_{Gi_2} \leq w_{Gi_2} Q_{Gi_A} \\ &w_{Gi_3} Q_{Gi_A} \leq Q_{Gi_3} \leq w_{Gi_3} Q_{Gi_B} \\ &w_{Gi_1} + w_{Gi_2} + w_{Gi_3} = 1 \\ &Q_{Gi} = Q_{Gi_1} + Q_{Gi_2} + Q_{Gi_3} \\ &V_{\min} \leq V \leq V_{\max} \end{aligned}$$

where

$$Q_{Gi_{A}} = \begin{cases} \sqrt{\left(\frac{V_{Gio}E_{f_{Gio}}}{X_{s_{Gi}}}\right)^{2} - P_{Gio}^{2}} - \frac{V_{Gio}^{2}}{X_{s_{Gi}}} & \forall P_{Gio} < P_{Gi_{R}} \\ \sqrt{\left(V_{Gio}I_{a_{Gio}}\right)^{2} - P_{Gio}^{2}} & \forall P_{Gio} > P_{Gi_{R}} \end{cases}$$

$$Q_{Gi_{B}} = \sqrt{\left(\frac{V_{Gio}E_{f_{Gio}}}{X_{s_{Gi}}}\right)^{2} - P_{Gi_{min}}^{2}} - \frac{V_{Gio}^{2}}{X_{s_{Gi}}}$$

Reactive-Power OPF Auction

- b_{Gio} : Cost of loss price offer for operating in the region $Q_{base} < Q < Q_A$ (\$/MVARh)
- m_{Gio} : opportunity price offer for operating in the region $Q_A < Q < Q_B$ (\$/MVARh). In Ontario, IESO recognizes the MCP for energy scheduled, but not delivered.
- ?: dual (Lagrange multiplier) of the nodal reactive power balance constraint and denotes the sensitivity of the system loss parameter to change in reactive power injection at a bus (MW/MVAR)

University of

for Power System Analysis and

Reactive-Power OPF Auction

- ?: dual (Lagrange multiplier) of the generator reactive power constraint; indicates by how much the system loss will change for a unit change in reactive power capability (MW/MVAR)
- This is a mixed integer-NLP (MINLP) problem
- It's computationally expensive

Eliminating Integer Constraints

- Objective is to develop a heuristic scheme to eliminate integer constraints and reduce the high computational burden of MINLP
- This is achieved through the following three steps:
 - Step 1:
 - Obtain $?_i$, $?_i$ and Q_{Gi} by solving an OPF to minimize losses, i.e. solve:

Eliminating Integer Constraints

$$\begin{aligned} &\text{Min.} \quad \sum_{i} P_{G_i} \\ &\text{s.t.} \quad F_{pf}(\delta, V, Q_G, P_G, P_{Lo}, LF) = \mathbf{0} \\ &\quad Q_{G_{\min}} \leq Q_G \leq Q_{G_{\max}} \\ &\quad V_{\min} \leq V \leq V_{\max} \end{aligned}$$

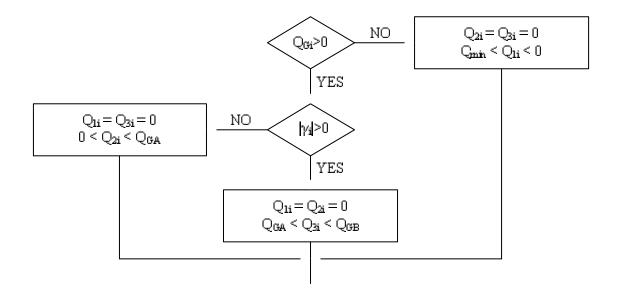
• Identify the region in which Q_{Gi} lies according to the value of $?_i$ and Q_{Gi} :

31

problems for Power System Analysis and Competitive Electricity Markets Operation

Fields Institute Seminar:

Eliminating Integer Constraints



- ◆ Step 2:
 - Solve an OPF to maximize the Social Welfare (S_w) and obtain $Q_{Gi'}$ i.e. solve:

for Power System Analysis and petitive Electricity Markets

Eliminating Integer Constraints

$$\begin{aligned} \text{Max.} \quad S_w &= \sum_i (C_{Li}\lambda_{Gi} - b_{Gi_o})Q_{Gi_2} + \\ &\sum_i \left((C_{Li}\gamma_{Gi} - b_{Gi_o})Q_{Gi_3} - \frac{1}{2}m_{Gi_o}(Q_{Gi_3} - Q_{Gi_A})^2 \right) \\ \text{s.t.} \quad F_{pf}(\delta, V, Q_G, P_{Go}, P_{Lo}) &= 0 \\ &Q_{Gi} &= Q_{Gi_1} \text{ or } Q_{Gi_2} \text{ or } Q_{Gi_3} \\ &\left\{ \begin{array}{l} Q_{Gi_{\min}} \leq Q_{Gi} \leq Q_{Gi_{blag}} \text{ or } \\ Q_{Gi_{blead}} \leq Q_{Gi} \leq Q_{Gi_A} \text{ or } \\ Q_{Gi_A} \leq Q_{Gi} \leq Q_{Gi_B} \end{array} \right. \\ &I_T(\delta, V) \leq I_{T_{\max}} \\ &V_{\min} \leq V \leq V_{\max} \end{aligned}$$

where

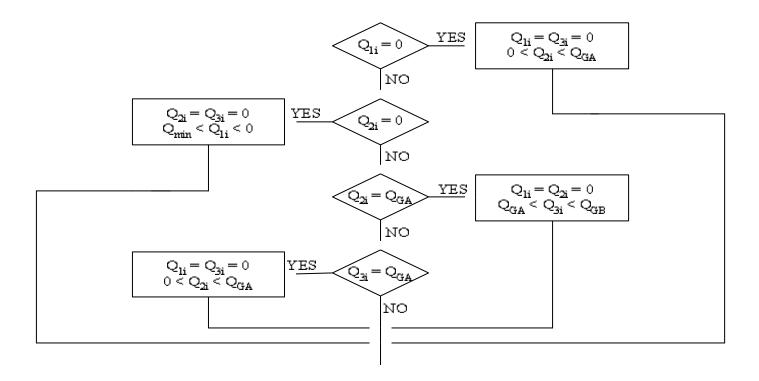
$$Q_{Gi_{A}} = \begin{cases} \sqrt{\left(\frac{V_{Gio}E_{f_{Gio}}}{X_{s_{Gi}}}\right)^{2} - P_{Gio}^{2}} - \frac{V_{Gio}^{2}}{X_{s_{Gi}}} & \forall P_{Gio} < P_{Gi_{R}} \\ \sqrt{\left(V_{Gio}I_{a_{Gio}}\right)^{2} - P_{Gio}^{2}} & \forall P_{Gio} > P_{Gi_{R}} \end{cases}$$

$$Q_{Gi_{B}} = \sqrt{\left(\frac{V_{Gio}E_{f_{Gio}}}{X_{s_{Gi}}}\right)^{2} - P_{Gi_{min}}^{2}} - \frac{V_{Gio}^{2}}{X_{s_{Gi}}}$$

problems for Power System Analysis and Competitive Electricity Markets Fields Institute Seminar: Operation

Eliminating Integer Constraints

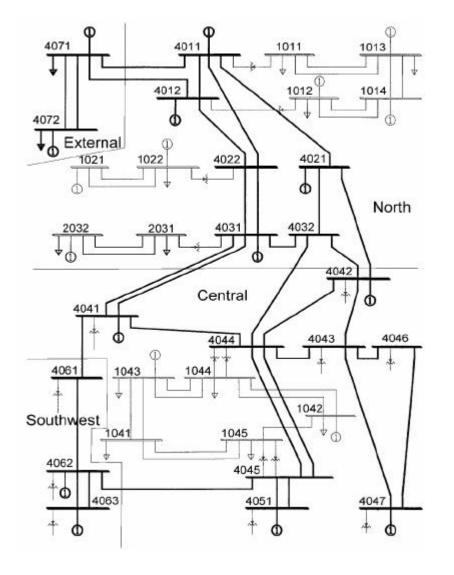
- Step 3:
 - Update solution if Q_{Gi} in any region hits limits



problems for Power System Analysis and Competitive Electricity Markets Fields Institute Seminar: Operation

Eliminating Integer Constraints

- CIGRE 32-bus system:
 - Known for voltage stability problems
 - There are 20 generators



problems for Power System Analysis and ompetitive Electricity Markets

Eliminating Integer Constraints

Step 1:

Bus	λ	γ	Q _G	Q ₁	Q ₂	Q ₃
4072	0	0	4.05320		4.05320	
4071	0	0	0.86323		0.86323	
4011	0.00595	0	-1.0000	-1.0000		
4012	0.00185	0	-1.6000	-1.6000		
4021	0.21796	0	-0.3000	-0.3000		
4031	0.04059	0	-0.4000	-0.4000		
4042	0.06379	0	0	0		
4041	0.02638	0	-2.0000	-2.0000		
4062	0.00485	0	0	0		
4063	0	0	1.75463		1.75463	
4051	0	0	1.15767		1.15767	
4047	0.04254	0	0	0		
2032	0	0	0.73650		0.73650	
1013	0	0	1.04556		1.04556	
1012	0	0	-0.3644	-0.3644		
1014	0	0	0.41924		0.41924	
1022	0.00014	0.00014	0.90533			0.90533
1021	0.02960	0.02960	2.03846			2.03846
1043	0.06571	0.06571	0.97956			0.97956
1042	0	0	-0.3265	-0.3265		

problems for Power System Analysis and Competitive Electricity Markets Fields Institute Seminar:

Eliminating Integer Constraints

- Step 2:

Bus	Q ₁	Q_2	Q ₃	Q _G	Q _{1min}	Q _{1max}	Q _{2min}	Q _{2max}	Q _{3min}	Q _{3max}
4072		2.61574		2.61574	-3.00	0	0	42.981	42.981	68.769
4071	0			0	-0.50	0	0	1.7059	1.7059	2.7294
4011	0			0	-1.00	0	0	8.9927	8.9927	14.388
4012	0			0	-1.60	0	0	5.2844	5.2844	8.4550
4021	-0.30			-0.3000	-0.30	0	0	1.0235	1.0235	1.6376
4031	-0.40			-0.4000	-0.40	0	0	1.1941	1.1941	1.9106
4042	0			0	0	0	0	2.3882	2.3882	3.8212
4041	-2.00			-2.0000	-2.00	0	0	1.0235	1.0235	1.6376
4062	0			0	0	0	0	2.0471	2.0471	3.2753
4063		1.60328		1.60328	0	0	0	4.0941	4.0941	6.5505
4051		0.95654		0.95654	0	0	0	2.3882	2.3882	3.8212
4047	0			0	0	0	0	9.2069	9.2069	14.731
2032		0.43483		0.43483	-0.80	0	0	2.8100	2.8100	4.6400
1013		1.67565		1.67565	-0.50	0	0	2.5489	2.5489	4.0783
1012	0			0	-0.80	0	0	2.7294	2.7294	4.3670
1014	0			0	-1.00	0	0	5.5921	5.5921	8.9474
1022			0.85294	0.85294	-0.25	0	0	0.8529	0.8529	1.3647
1021			2.06510	2.06510	-1.60	0	0	2.0471	2.0471	3.2753
1043			1.09176	1.09176	-0.20	0	0	0.6824	0.6824	1.0918
1042	0			0	-0.40	0	0	1.3647	1.3647	2.1835

Social Welfare = 1,835.820 \$/hr.

Eliminating Integer Constraints

Step 3:

- Update the solution as $Q_3(1022) = Q_{3min}(1022)$
- Hence, $Q_3(1022) = 0$ and $Q_{2min}(1022) = Q_2(1022) = Q_{2max}(1022)$.
- When we update, the solution the value of the new $S_w = 1,919.899$ \$/h.
- This value is higher than the previous one, and hence the solution needs to be updated.
- The new solution is:

problems for Power System Analysis and Competitive Electricity Markets Fields Institute Seminar: Operation

Eliminating Integer Constraints

Bus	Q_1	Q_2	Q_3	Q _G	Q _{1min}	Q _{1max}	Q _{2min}	Q _{2max}	Q _{3min}	Q _{3max}
4072	(1	2.73685	0	2.73685	-3.00	0	0	42.981	42.981	68.769
4071	0			0	-0.50	0	0	1.7059	1.7059	2.7294
4011	0			0	-1.00	0	0	8.9927	8.9927	14.388
4012	0			0	-1.60	0	0	5.2844	5.2844	8.4550
4021	-0.30			-0.3000	-0.30	0	0	1.0235	1.0235	1.6376
4031	-0.40			-0.4000	-0.40	0	0	1.1941	1.1941	1.9106
4042	0			0	0	0	0	2.3882	2.3882	3.8212
4041	-2.00			-2.0000	-2.00	0	0	1.0235	1.0235	1.6376
4062	0			0	0	0	0	2.0471	2.0471	3.2753
4063		1.67274		1.67274	0	0	0	4.0941	4.0941	6.5505
4051		0.82260		0.82260	0	0	0	2.3882	2.3882	3.8212
4047	0			0	0	0	0	9.2069	9.2069	14.731
2032		0.46831		0.46831	-0.80	0	0	2.8100	2.8100	4.6400
1013		1.98463		1.98463	-0.50	0	0	2.5489	2.5489	4.0783
1012	0			0	-0.80	0	0	2.7294	2.7294	4.3670
1014	0			0	-1.00	0	0	5.5921	5.5921	8.9474
1022		0		0	-0.25	0	0	0.8529	0.8529	1.3647
1021			2.27948	2.27948	-1.60	0	0	2.0471	2.0471	3.2753
1043			1.09176	1.09176	-0.20	0	0	0.6824	0.6824	1.0918
1042	0			0	-0.40	0	0	1.3647	1.3647	2.1835

Social Welfare = 1,919.899 \$/hr.

Concluding Remarks

- All these problems are challenging, large (several thousand constraints and variables) NLP problems
- Ad-hoc solution techniques have been developed based on nature of the problem
- Convergence issues need further study; however, global optimum values are not a great concern
- For these models to be useful in practice, solutions should obtained in 1-2 mins.

Conclusions

- "Novel" NLP solution methods might prove useful to solve some of these OPF problems (e.g. we are looking at applying SDP in some cases)
- Other NLP models are being developed to address some shortcomings of the proposed problems, such as:
 - Inclusion of system security in reactive power markets
 - Proper representation of system security in LPbased models

♦ This is an NLP problem with an implicit constraint:

Min.
$$S(\chi)$$

s.t. $F(\chi) = 0$
 $\underline{H} \le H(\chi) \le \overline{H}$
 $\underline{\chi} \le \chi \le \overline{\chi}$

– Interior point solution approach:

Min.
$$S(\chi) - \mu_s \sum_i (\ln s_i + \ln q_i)$$

s.t. $F(\chi) = 0$
 $-s - q + \overline{H} - \underline{H} = 0$
 $-H(\chi) - q + \overline{H} = 0$
 $s > 0, \quad q > 0$

– Lagrange-Newton method:

$$L_{\mu}(u) = S(\chi) - \mu_{s} \sum_{i} (\ln s_{i} + \ln q_{i}) - \rho^{T} F(\chi)$$
$$-\varsigma^{T} (-s - q + \overline{H} - \underline{H}) - \tau^{T} (-H(\chi) - q + \overline{H})$$
$$\Rightarrow \nabla_{u} L_{\mu}(u) = 0$$

- The solution procedure requires finding the Hessian:

$$\nabla_{\chi}^{2} L_{\mu}(u) = \nabla_{\chi}^{2} S(\chi) - \rho^{T} \nabla_{\chi}^{2} F(\chi) + \tau^{T} \nabla_{\chi}^{2} H(\chi)$$

- Since $H(\chi)$ has an implicit constraint, to obtain $\Gamma^2_{\gamma} H(\chi)$:

$$\frac{\partial^{2} \sigma_{min}(J_{pf})}{\partial \chi_{i} \chi_{j}} \bigg|_{\chi_{*} + \Delta \chi} \approx \frac{\frac{\partial \sigma_{min}(J_{pf})}{\partial \chi_{i}} \bigg|_{\chi_{*}} - \frac{\partial \sigma_{min}(J_{pf})}{\partial \chi_{i}} \bigg|_{\chi_{*} + \Delta \chi}}{\Delta \chi_{j}}$$

based on approximations that are obtained from the properties of the singular value:

$$\Delta \sigma_{min}(J_{pf}) \approx U_1^T D_z^2 F|_* \Delta z V_1$$

$$\Delta \sigma_{min}(J_{pf}) \approx -U_1^T D_z^2 F|_* D_z F|_*^{-1} D_p F|_* \Delta p V_1$$