Managing Models in Simulation-Based Design

Natalia M. Alexandrov NASA Langley Research Center Hampton, Virginia

Outline:

- Problem setting
- Model management as means to decrease uncertainty and cost
- Other uncertainty issues
- If time, software development environment

Setting

- Design of engineering systems, characterized by design variable vector x
- Forward or analysis problem
 - Specify x; solve the governing partial differential equation (or equations) for intermediate field or state variable u
 - Evaluate outputs of engineering interest, f, based on u
- Design problem
 - Formulate design objectives and constraints based on f
 - Find the best value of f

Requirement for models

- Conflict of model uncertainty (a large impediment to practical acceptance of PDE-based design) and cost
 - Must be sufficiently fine (high-fidelity) so that the outputs and their derivatives represent system performance
 - Must be sufficiently coarse to be affordable for repeated use within design context
- Some approaches to resolving the conflict
 - Reduce/manage uncertainty associated with analysis and design
 - Use higher-fidelity models at earlier stages of design
 - Improve tractability of high-fidelity models in all stages of design

Focus: CFD-based aerodynamic optimization

- Progression of state of the art in CFD
 - Structured grids
 - Heuristic solution adaptation
 - Overset and unstructured grids
 - In progress
 - Adaptive analysis with error bounds/estimates
 - Adaptive design optimization with well-defined error bounds
 - Future
 - Multiscale problems

Environment – the FUN3D Suite

- Direct development team of about 10 people works on analysis and design using the RANS equations on 3D unstructured grids
- Discrete adjoint formulation used as a basis for error estimation, grid adaptation, and design
- Elasticity PDE formulation used for moving mesh applications
- Automated complex-variable conversion is used for direct differentiation
- A unique capability: exact dual integration algorithm used for computing hand-coded discrete adjoint for full RANS discretization

Compute derivatives via adjoints

Combine cost function f with Lagrange multipliers L_f and L_g to form Lagrangian, L:

$$L(\mathbf{D}, \mathbf{Q}, \mathbf{X}, ?_f, ?_g) = \underbrace{f(\mathbf{D}, \mathbf{Q}, \mathbf{X}) + ?_f^T \mathbf{R}(\mathbf{D}, \mathbf{Q}, \mathbf{X})}_{\text{Objective: Lift, drag, boom, etc.}} + ?_f^T \mathbf{R}(\mathbf{D}, \mathbf{Q}, \mathbf{X}) + ?_g^T \underbrace{(\mathbf{K}\mathbf{X} - \mathbf{X}_{surface})}_{\text{Mesh Equations}}$$

Differentiate with respect to **D**:

$$\frac{dL}{d\mathbf{D}} = \frac{\partial f}{\partial \mathbf{D}} + \left[\frac{\partial \mathbf{R}}{\partial \mathbf{D}}\right]^{T} ?_{f} + \left[\frac{\partial \mathbf{Q}}{\partial \mathbf{D}}\right]^{T} \left\{\frac{\partial f}{\partial \mathbf{Q}} + \left[\frac{\partial \mathbf{R}}{\partial \mathbf{Q}}\right]^{T} ?_{f}\right\}
+ \left[\frac{\partial \mathbf{X}}{\partial \mathbf{D}}\right]^{T} \left\{\frac{\partial f}{\partial \mathbf{X}} + \left[\frac{\partial \mathbf{R}}{\partial \mathbf{X}}\right]^{T} ?_{f} + ?_{g}^{T} \mathbf{K}\right\} - ?_{g}^{T} \left[\frac{\partial \mathbf{X}}{\partial \mathbf{D}}\right]_{surface}$$

$$\left[\frac{\partial \mathbf{R}}{\partial \mathbf{Q}}\right]^T ?_f = -\frac{\partial f}{\partial \mathbf{Q}}$$
 Flowfield Adjoint Equation

$$\mathbf{K}^{T} ?_{g} = -\left\{ \frac{\partial f}{\partial \mathbf{X}} + \left[\frac{\partial \mathbf{R}}{\partial \mathbf{X}} \right]^{T} ?_{f} \right\}$$
 Mesh Adjoint Equation

$$\frac{dL}{d\mathbf{D}} = \frac{\partial f}{\partial \mathbf{D}} + \mathbf{?}_{f}^{T} \frac{\partial \mathbf{R}}{\partial \mathbf{D}} - \mathbf{?}_{g}^{T} \left[\frac{\partial \mathbf{X}}{\partial \mathbf{D}} \right]_{surface}$$
 Sensitivity Equation

(Courtesy Eric Nielsen)

Benefits of adjoints

- Adjoints relate the local equation error to outputs of engineering interest providing
 - Rigorous error estimation and grid adaptation metric
 - No need for a priori knowledge of the flowfield
 - No reliance on heuristics for adaptation
 - Natural stopping criterion for convergence
 - Increases efficiency, reduces cost and uncertainty in analysis and design
 - The most efficient means of computing derivatives for functions of high dimensionality
 - Unlike other methods (e.g., finite differencing), independent on dimensionality

Adjoint-Based Mesh Adaptation

2D High-Lift Example

- Need accurate lift evaluation
- The initial mesh is coarse
- The adjoint-based technique recognizes important regions of the flow

Courtesy Venditti & Darmofal at MIT (using FUN2D)

The FUN3D design environment

Parameterization

Domain Decomposition

Minimize(f)

Flow Solver: f (e.g. C_D)

Mesh Movement

abla f

Derivative Evaluation

Adjoint Solver: ?

Specifics of simulation-based optimization setting

- Despite quality and efficiency of models, expensive and not very robust function & derivatives
 - Pervasive efforts in improving tractability of hi-fi models in design optimization (Sandia, Boeing, INSEAN, to name a few)
- Assume a set of models (hi/lo-fi) of varying accuracy/cost, with no information about model relationship or structure
 - E.g., variable-resolution, varying convergence, variable-fidelity physics, etc.
 - Special model structure or context provides additional algorithmic possibilities (e.g., variable-resolution models in multigrid context, Lewis and Nash; Gratton, Toint, Sartenaer)
- "Preliminary" design / hi-fi models: min. O(10²-10³) variables
 - Must rely on derivative-based optimization
 - In lower-dimensional problems, model management can rely on derivative-free optimization and data sampling models (e.g., Booker et al., numerous other efforts); Space Mapping (Bandler et al.) is another approach; similarity of trends in models important in 0-order approximations
- Assume black-box function evaluation
 - Many efforts in problem formulation
 - Simultaneous analysis and design methods not current focus, but discussion on models applies

Addressing tractability of high-fidelity models

- 1st order Approximation and Model Management Optimization (AMMO) (e.g., NMA & Lewis, AIAA-96-4101/02)
 - Replace local Taylor-series models in subproblems of NLP algorithms with available lower-fidelity models (heuristic use of lo-fi models long-standing in engineering)
 - No reason to assume that lo-fi model trends follow those of hi-fi model ⇒ impose local consistency conditions, i.e., assure local similarity of trends
 - AMMO can be imposed on any algorithm; usually faster than the basic algorithm because lo-fi models have better global properties than local Taylor-series models

AMMO vs. single-fidelity model optimization

Single-fidelity trust-region algorithms

- Do until convergence
 - At x_k build local models
 (Taylor series) of the
 objective and constraints
 based on information
 computed by hi-fi simulation
 - 2. Compute a trial step by solving a subproblem based on local hi-fi models
 - 3. Check improvement in hi-fi responses and update iterates
- End do

Variable-fidelity (AMMO) algorithms

- Do until convergence
 - At x_k select a model from a suite of available lo-fi models and compute corrections based on hi-fi and lo-fi models so that 1st order consistency holds
 - 2. Compute a trial step by solving a subproblem based on corrected lo-fi models, using standard techniques
 - 3. Check improvement in hi-fi responses and update iterates
- End do

AMMO: Convergence vs. Efficiency

- (Essentially) traditional trust-region convergence results apply
- Convergence analysis relies on enforcing local similarity of trends: if f_{HI} is a high-fidelity model and f_{LO} is a low-fidelity model, f^{corr} in optimization subproblem is required to be consistent to 1st order at each major iteration x_k:

$$f^{corr}(x_k) = f_{HI}(x_k)$$
 and $\nabla f^{corr}(x_k) = \nabla f_{HI}(x_k)$

- Exact consistency not needed, but easy to enforce
- Practical efficiency is problem/model dependent on
 - Global predictive properties of low-fidelity model
 - Data-fitting models with sufficient sampling, good global predictive properties
 - Problem/model dependent for other models
 - Expense of low-fidelity model

Enforcing local consistency via corrections

- Additive: $f_{HI}(x) = f_{LO}(x) + a(x)$
- Multiplicative: $f_{HI}(x) = \beta(x) f_{LO}(x)$
- Approximating exact $a(x) = f_{HI}(x) f_{LO}(x)$, $\beta(x) = f_{HI}(x) / f_{LO}(x)$ by linear (quadratic) Taylor series expansion about x_k guarantees 1st (2nd) order consistency. E.g., building

$$\beta_{\mathbf{k}}(\mathbf{x}) = \beta(\mathbf{x_k}) + \nabla \beta(\mathbf{x_k})^{\mathsf{T}} (\mathbf{x} - \mathbf{x_k})$$

and setting $f_{\mathbf{k}}^{\mathsf{corr}}(\mathbf{x}) = \beta_{\mathbf{k}}(\mathbf{x}) f_{\mathsf{LO}}(\mathbf{x}) \Rightarrow 1^{\mathsf{st}}$ order consistency at $\mathbf{x_k}$ (Haftka, 1991)

(Corrections can be mixed as necessary)

Computational experience

Several independent proofs of concept using AMMO for aerodynamic and hydrodynamic and MD design (e.g., Eldred, et al, Marduel et al., Campana & Peri)

- Typical savings in hi-fi function evaluations from 3 to 7-fold
- Q: If mimicking local Taylor series approximations, why expect any savings compared to conventional derivativebased methods?
- A: Local corrections, but hope that corrected lo-fi model has better global behavior. So far, has held for CFD-based applications.
- At NASA LaRC:
 - AMMO imposed on several algorithms (SQP, Augmented Lagrangian, a multilevel method)
 - Example: aerodynamic design optimization...

AMMO framework

Example: aerodynamic shape optimization

- Minimize objectives (e.g., -L/D)
- subject to constraints on the moments

Summary of AMMO with variable resolution models:

 Wing design: minimize some combination of lift and drag, subject to constraints on the moments; same equations (Euler), varying grid refinement

- Observations
 - If meshes were generated as proper subsets of one another, trends were similar
 - Functions computed on meshes that are not proper subsets of a mesh can result in large landscape variations

Favorable relationship between hi-fi & lo-fi model level sets

Trends in hi-fi model and even uncorrected lo-fi model are similar

Less favorable relationship between hi-fi & lo-fi model level sets

No impact on performance (subsonic, well-behaved problem); typical savings in terms of hi-fi evaluations 3-4 times (no tuning of algorithms)

Summary of AMMO with variable resolution, variable-fidelity physics models

 Airfoil design; different equations (Navier-Stokes vs. Euler), varying grid refinement; posed as bound-constrained problem

Trends in models of different physical fidelity can differ drastically

Dissimilar models hi-fi and lo-fi models (combination of lift and drag)

Hi-fi vs. corrected lo-fi model

First-order correction reversed trends

Efficiency depends on relative expense of low-fidelity model

Example: 2D (multi-element airfoil) aerodynamic optimization problem; time/hi-fi analysis / time/lo-fi analysis » 120

	hi-fi eval	lo-fi eval	total CPU time	factor
Optimization (PORT), 2 variables	14/13		» 12 hrs	
AMMO, 2 variables	3/3	19/9	» 2.41 hrs	» 5
Optimization (PORT), 84 variables	19/19		» 35 hrs	
AMMO, 84 variables	4/4	23/8	» 7.2 hrs	» 5

(functions/gradients)

Savings depend on relative expense of low-fidelity model, cont.

- Approximately 4-fold savings in terms of hi-fi function evaluations
- Only 2 time savings; lo-fi model also expensive
- Developing "optimal" lo-fi models; distribute computations via PVD-like approach (after Ferris & Mangasarian)

Distributing computation (following Ferris & Mangasarian)

- Current problem: minimize f(x), s.t. $x \in B$
- Notation: for x ∈ Rⁿ, partitions are x_I ∈ R^{nI}, I =1, ..., p and nI sum up to n
- Let I* be a complement of I in $\{1, ..., p\}$, $\mu_{I^*} \in \mathbb{R}^{p-1}$
- Let $d^k \in \mathbb{R}^n$ be an arbitrary direction, partitioned into n subsets and

$$D^{\mathbf{k}_{l^*}} = \begin{pmatrix} d^{\mathbf{k}_1} & & \\ & \cdots & & \\ & d^{\mathbf{k}_{l+1}} & & \\ & & d^{\mathbf{k}_{p}} \end{pmatrix} \mathbf{n} \mathbf{l}$$

 D^k_{I*} and μ_{I*} are used to form the "forget-me-not" term in subproblems

AMMO with PVD at a low-fidelity subproblem level

Given f_{HI} , x^0 , and $B^0=B^{max}$ (bound constraints) Do until convergence

- 1. Choose f_{LO}^k and compute correction s.t. $f_{corr}^k(x^k) = f_{HI}(x^k)$, $\nabla f_{corr}^k(x^k) = \nabla f_{HI}(x^k)$
- 2. Solve approximately for s^k : $\min_{s} f^k_{corr}(x^k + s)$ s.t. $x^k + s \hat{I}$ B^k :

Do until stopping criterion is satisfied{

Solve in parallel:
$$\min_{\substack{x_{l}, m_{l^{*}} \\ \text{s.t.}}} \phi^{k}_{l}(x_{l}, \mu_{l^{*}}) \equiv f^{k}_{corr}(x_{l}, x^{k}_{l^{*}} + D^{k}_{l^{*}}\mu_{l^{*}})$$

resulting in (y^k_|,µ^k_{|*})

```
Synchronize: Compute x^{k+1} s.t. f(x^{k+1}) \le \min \phi_{l}^{k} (y^{k}_{l}, \mu_{l}^{k}) g^{k} = x^{k+1} - x^{k}
```

3. Update the iterate and bounds based on the actual decrease in f_{HI} produced by s^k vs. the decrease predicted by f^k_{corr}

Comments

- Forget-me-not term distinguishes PVD from block-Jacobi and coordinate descent (secondary variables are fixed there)
- Allowing secondary variables to move improves robustness of the algorithm, as observed in computations by Ferris and Mangasarian
- The choice of d^k is arbitrary theoretically, but important in practice; one particular choice (F&M) is scaled $-\nabla f(x^k)$ for unconstrained problems
- Following Solodov, we use the projected gradient residual function $d^{k} = r(x^{k})$, where $r(x) = x P_{B}[x \nabla f(x^{k})]$
- Solodov's convergence theory allows for sufficient decrease instead of global solutions for the subproblems ⇒ consequences for practical problems and parallelism

But point design is not enough

- One reason direct optimization is not used more widely for actual design is the lack of robustness in point optima
- Currently, much activity in uncertainty-based design; many approaches
 - Global uncertainty quantification
 - Incorporation into optimization
- In practice, in aerospace design, multipoint (robust) design = heuristic inverse design methods
 - Designers ignore "start with a dog" approaches
 - Design optimal airfoils for several flight conditions and average them
 - Average several target pressure distributions and design an airfoil to the resulting distribution
 - Etc.

Problem formulation

- Consider objective function f: X × Y → ℜ
 x ∈ X are design variables, controlled
 y ∈ Y uncertainty variables, not controlled
- Ideally, find $x^* \in X$ s.t., $\forall y \in Y$ $f(x^*;y) = f(x;y) \ \forall \ x \in X$
- Example: aerodynamic shape design
 - Minimize drag of a manufactured airfoil; y are errors in manufacturing
 - Design an airfoil or a wing with good performance over a range of speeds and angles of attack; y are M_{∞} and α

Problem formulation

- Central problem of statistical decision making
- Relax impossible problem...
 - via minimax principle (e.g., Ferguson 1967):
 - min $x \in X$ $\psi(x) \equiv \sup_{y \in Y} f(x;y)$
 - conservative; protect against worst-case scenario
 - via Bayes principle (Welch et al. 1990):
 - min $x \in X$ $\psi(x) \equiv \int_{Y} f(x;y)p(y)dy$
 - p is a probability density function on Y
 - minimize average loss; can be customized via p

Example: airfoil shape design

- $y = M_{\infty}$ and $f(x; M_{\infty})$ is, say, the drag coefficient, then we want to solve $\min_{x \in X} \psi(x) \equiv \int_{range\ of} M_{\infty}\ f(x; M_{\infty}) p(M_{\infty}) dM_{\infty}$
- Here p is the weight function that quantifies the value placed on performance at various speeds
- Such formulations studied by Huyse, Li, and others

Difficulty

- Tractability in question even for problems of medium size
- Under investigation (NMA and Trosset)
 - Low-fidelity models for integration (AMMO-like)
 - A variety of surrogates (data-fitting models) for integration

Now in the works, e.g.,

- Making use of special problem / model structure
 - Tighter integration of adjoint-based adaptation for CFD into optimization logic
 - Optimal modeling strategies, e.g., using lo-fi models of different geometric description (e.g., grid-based vs. non-grid based models); must deal with different variable domains

PVD

- General constraints
- Multidisciplinary/multiobjective application