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Setting

• Design of engineering systems, characterized by 
design variable vector x

• Forward or analysis problem
– Specify x; solve the governing partial differential 

equation (or equations) for intermediate field or state 
variable u

– Evaluate outputs of engineering interest, f, based on u

• Design problem
– Formulate design objectives and constraints based on f
– Find the best value of f



Requirement for models  

• Conflict of model uncertainty (a large impediment 
to practical acceptance of PDE-based design) and 
cost
– Must be sufficiently fine (high-fidelity) so that the outputs 

and their derivatives represent system performance
– Must be sufficiently coarse to be affordable for repeated 

use within design context

• Some approaches to resolving the conflict
– Reduce/manage uncertainty associated with analysis 

and design
– Use higher-fidelity models at earlier stages of design
– Improve tractability of high-fidelity models in all stages 

of design



Focus: CFD-based aerodynamic optimization  

• Progression of state of the art in CFD
– Structured grids
– Heuristic solution adaptation
– Overset and unstructured grids
– In progress

• Adaptive analysis with error bounds/estimates
• Adaptive design optimization with well-defined error 

bounds

– Future
• Multiscale problems



• Direct development team of about 10 people 
works on analysis and design using the RANS 
equations on 3D unstructured grids 

• Discrete adjoint formulation used as a basis for 
error estimation, grid adaptation, and design

• Elasticity PDE formulation used for moving mesh 
applications 

• Automated complex-variable conversion is used 
for direct differentiation

• A unique capability: exact dual integration 
algorithm used for computing hand-coded 
discrete adjoint for full RANS discretization

Environment – the FUN3D Suite



Combine cost function f with Lagrange multipliers Λf and Λg to form Lagrangian, L:

Differentiate with respect to D:
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Compute derivatives via adjoints



Benefits of adjoints

• Adjoints relate the local equation error to 
outputs of engineering interest providing 
– Rigorous error estimation and grid adaptation 

metric
• No need for a priori knowledge of the flowfield
• No reliance on heuristics for adaptation
• Natural stopping criterion for convergence
• Increases efficiency, reduces cost and uncertainty in 

analysis and design
– The most efficient means of computing 

derivatives for functions of high dimensionality
• Unlike other methods (e.g., finite differencing), 

independent on dimensionality



Adjoint-Based Mesh Adaptation
2D High-Lift Example

• Need accurate lift evaluation 
• The initial mesh is coarse
• The adjoint-based technique 

recognizes important regions 
of the flow

Courtesy Venditti & Darmofal at MIT (using FUN2D)



Minimize(f)

Domain Decomposition

Mesh Movement

Flow Solver: f  (e.g. CD)Parameterization

Adjoint Solver: f?Derivative Evaluation

f∇

The FUN3D design environment



Specifics of simulation-based optimization setting

• Despite quality and efficiency of models, expensive and not 
very robust function & derivatives
– Pervasive efforts in improving tractability of hi-fi models in design 

optimization (Sandia, Boeing, INSEAN, to name a few)

• Assume a set of models (hi/lo-fi) of varying accuracy/cost, 
with no information about model relationship or structure
– E.g., variable-resolution, varying convergence, variable-fidelity physics, etc.
– Special model structure or context provides additional algorithmic 

possibilities (e.g., variable-resolution models in multigrid context, Lewis and 
Nash; Gratton, Toint, Sartenaer)

• “Preliminary” design / hi-fi models: min. O(102-103) variables
– Must rely on derivative-based optimization
– In lower-dimensional problems, model management can rely on derivative-

free optimization and data sampling models (e.g., Booker et al., numerous 
other efforts); Space Mapping (Bandler et al.) is another approach; similarity 
of trends in models important in 0-order approximations

• Assume black-box function evaluation
– Many efforts in problem formulation
– Simultaneous analysis and design  methods not current focus, but

discussion on models applies



• 1st order Approximation and Model Management 
Optimization (AMMO) (e.g., NMA & Lewis, AIAA-
96-4101/02)
– Replace local Taylor-series models in subproblems of 

NLP algorithms with available lower-fidelity models 
(heuristic use of lo-fi models long-standing in 
engineering)

– No reason to assume that lo-fi model trends follow those 
of hi-fi model ⇒ impose local consistency conditions, i.e., 
assure local similarity of trends

– AMMO can be imposed on any algorithm; usually faster 
than the basic algorithm because lo-fi models have better 
global properties than local Taylor-series models

Addressing tractability of high-fidelity models



AMMO vs. single-fidelity model optimization

Single-fidelity trust-region algorithms

• Do until convergence
1. At xk build local models

(Taylor series) of the 
objective and constraints 
based on information 
computed by hi-fi simulation

2. Compute a trial step by 
solving a subproblem based 
on local hi-fi models

3. Check improvement in hi-fi 
responses and update 
iterates

• End do

Variable-fidelity (AMMO) algorithms 

• Do until convergence
1. At xk select a model from a 

suite of available lo-fi models
and compute corrections 
based on hi-fi and lo-fi 
models so that 1st order 
consistency holds

2. Compute a trial step by 
solving a subproblem based 
on corrected lo-fi models, 
using standard techniques

3. Check improvement in hi-fi 
responses and update 
iterates

• End do



AMMO: Convergence vs. Efficiency
• (Essentially) traditional trust-region convergence results 

apply
• Convergence analysis relies on enforcing local similarity of 

trends: if fHI is a high-fidelity model and fLO is a low-fidelity 
model, fcorr in optimization subproblem is required to be 
consistent to 1st order at each major iteration xk:

fcorr (xk) = fHI(xk)   and   ∇ fcorr (xk) = ∇fHI(xk)

• Exact consistency not needed, but easy to enforce

• Practical efficiency is problem/model dependent on
– Global predictive properties of low-fidelity model

• Data-fitting models – with sufficient sampling, good global 
predictive properties

• Problem/model dependent for other models

– Expense of low-fidelity model



Enforcing local consistency via corrections

• Additive: fHI(x) = fLO (x) + a(x)
• Multiplicative: fHI(x) = β(x) fLO (x)
• Approximating exact a(x) = fHI(x) - fLO (x), β(x) = fHI(x) / fLO (x) 

by linear (quadratic) Taylor series expansion about xk 
guarantees 1st (2nd) order consistency. E.g., building 

βk(x) = β(xk) + ∇ β(xk)T (x – xk)
and setting fk

corr(x) = βk(x) fLO (x) ⇒ 1st order 
consistency at xk (Haftka, 1991)

(Corrections can be mixed as necessary)



Computational experience

Several independent proofs of concept using AMMO for 
aerodynamic and hydrodynamic and MD design (e.g., Eldred, 
et al, Marduel et al., Campana & Peri) 

• Typical savings in hi-fi function evaluations from 3 to 7-fold
• Q: If mimicking local Taylor series approximations, why 

expect any savings compared to conventional derivative-
based methods?

• A: Local corrections, but hope that corrected lo-fi model has 
better global behavior. So far, has held for CFD-based 
applications.

• At NASA LaRC:
– AMMO imposed on several algorithms (SQP, Augmented Lagrangian, 

a multilevel method)
– Example: aerodynamic design optimization…



AMMO framework



Example: aerodynamic shape optimization

• Minimize objectives (e.g., -L/D)
• subject to constraints on the moments

CFD analysis Outputs 

Geometry description

Design variables



Summary of AMMO with variable resolution models:

• Wing design: minimize some combination of lift and drag, subject to 
constraints on the moments; same equations (Euler), varying grid
refinement

• Observations
– If meshes were generated as proper subsets of one another, trends 

were similar
– Functions computed on meshes that are not proper subsets of a mesh 

can result in large landscape variations



Favorable relationship between hi-fi & lo-fi model level sets

Trends in hi-fi model and even uncorrected lo-fi model are
similar



Less favorable relationship between hi-fi & lo-fi model level sets

No impact on performance (subsonic, well-behaved problem);
typical savings in terms of hi-fi evaluations 3-4 times (no tuning
of algorithms)



Summary of AMMO with variable resolution, variable-fidelity physics 
models 

• Airfoil design; different equations (Navier-Stokes vs. Euler), 
varying grid refinement; posed as bound-constrained problem

• Trends in models of different physical fidelity can differ 
drastically

Hi-fi grid Lo-fi grid



Dissimilar models hi-fi and lo-fi models (combination of lift and drag)



Hi-fi vs. corrected lo-fi model

First-order correction reversed trends



Efficiency depends on relative expense of low-fidelity model 

≈ 5≈ 7.2 hrs4/4            23/8AMMO, 
84 variables

≈ 35 hrs19/19Optimization 
(PORT),
84 variables

≈ 5≈ 2.41 hrs3/3           19/9AMMO, 
2 variables

≈ 12 hrs14/13Optimization 
(PORT), 
2 variables

factortotal CPU timehi-fi            lo-fi
eval eval

(functions/gradients)

Example: 2D (multi-element airfoil) aerodynamic optimization problem; 
time/hi-fi analysis / time/lo-fi analysis ≈ 120



Savings depend on relative expense of low-fidelity 
model, cont.

• Approximately 4-fold savings in terms of hi-fi 
function evaluations

• Only 2 time savings; lo-fi model also expensive
• Developing “optimal” lo-fi models; distribute 

computations via PVD-like approach (after Ferris 
& Mangasarian)



Distributing computation (following Ferris & Mangasarian)

• Current problem: minimize f(x), s.t. x ∈ B
• Notation: for x ∈ Rn, partitions are xl ∈ Rnl, l =1, …, p and nl

sum up to n
• Let l* be a complement of l in {1, …, p}, µl* ∈ Rp-1

• Let dk ∈ Rn be an arbitrary direction, partitioned into n 
subsets and 

p-1
dk

1

…
Dk

l* = dk
l-1                                    nl
dk

l+1

…
dk

p

• Dk
l* and µl* are used to form the “forget-me-not” term in 

subproblems



AMMO with PVD at a low-fidelity subproblem level
Given fHI, x0, and B0=Bmax (bound constraints)
Do until convergence

1. Choose fkLO and compute correction  s.t. fkcorr(xk)=fHI(xk), 
∇fkcorr(xk)=∇fHI(xk)

2. Solve approximately for sk:  min fkcorr(xk + s)   s.t. xk + s ∈ Bk:

Do until stopping criterion is satisfied{

Solve in parallel:  min ϕk
l(xl,µl*) ≡ fk

corr(xl, xk
l* + Dk

l* µl*) 
s.t.    (xl, xk

l* + Dk
l* µl*) ∈ Bk,

resulting in (yk
l,µk

l*) 
Synchronize:  Compute xk+1 s.t. f(xk+1 ) ≤ min ϕk

l
(yk

l,µk
l*)

sk = xk+1 - xk

3. Update the iterate and bounds based on the actual decrease in fHI
produced by sk vs. the decrease predicted by fkcorr

}

xl, µl*

s



Comments

• Forget-me-not term distinguishes PVD from block-Jacobi and coordinate 
descent (secondary variables are fixed there)

• Allowing secondary variables to move improves robustness of the 
algorithm, as observed in computations by Ferris and Mangasarian

• The choice of dk is arbitrary theoretically, but important in practice; one 
particular choice (F&M) is scaled -∇f(xk) for unconstrained problems

• Following Solodov, we use the projected gradient residual function
dk = r(xk), where r(x) = x – PB [x - ∇f(xk) ] 

• Solodov’s convergence theory allows for sufficient decrease instead of 
global solutions for the subproblems ⇒ consequences for practical 
problems and parallelism



But point design is not enough

• One reason direct optimization is not used more 
widely for actual design is the lack of robustness in
point optima

• Currently, much activity in uncertainty-based design; 
many approaches
– Global uncertainty quantification
– Incorporation into optimization

• In practice, in aerospace design, multipoint (robust) 
design = heuristic inverse design methods
– Designers ignore “start with a dog” approaches
– Design optimal airfoils for several flight conditions and 

average them
– Average several target pressure distributions and design 

an airfoil to the resulting distribution
– Etc.



Problem formulation

• Consider objective function f : X × Y → ℜ
x ∈ X are design variables, controlled
y ∈ Y uncertainty variables, not controlled

• Ideally, find x* ∈ X s.t., ∀ y ∈ Y
f(x*;y) = f(x;y) ∀ x ∈ X

• Example: aerodynamic shape design
– Minimize drag of a manufactured airfoil; y are 

errors in manufacturing
– Design an airfoil or a wing with good performance 

over a range of speeds and angles of attack; y 
are M∞ and α



Problem formulation

• Central problem of statistical decision making
• Relax impossible problem…

– via minimax principle (e.g., Ferguson 1967):
• min x ∈ X ψ(x) ≡ sup y∈Y f(x;y)
• conservative; protect against worst-case 

scenario
– via Bayes principle (Welch et al. 1990):

• min x ∈ X ψ(x) ≡ ∫Y f(x;y)p(y)dy
• p is a probability density function on Y
• minimize average loss; can be customized via 

p



Example: airfoil shape design

• y = M∞ and f(x; M∞) is, say, the drag 
coefficient, then we want to solve
min x ∈ X ψ(x) ≡ ∫range of M∞ f(x; M∞)p(M∞)dM∞

• Here p is the weight function that quantifies 
the value placed on performance at various 
speeds 

• Such formulations studied by Huyse, Li, and 
others



Difficulty

• Tractability in question even for problems of 
medium size

• Under investigation (NMA and Trosset)
– Low-fidelity models for integration (AMMO-like)
– A variety of surrogates (data-fitting models) for 

integration



Now in the works, e.g.,

• Making use of special problem / model 
structure
– Tighter integration of adjoint-based adaptation 

for CFD into optimization logic
– Optimal modeling strategies, e.g., using lo-fi

models of different geometric description (e.g., 
grid-based vs. non-grid based models); must 
deal with different variable domains

• PVD
– General constraints
– Multidisciplinary/multiobjective application


