

Clinical Activity of TPT Neuroblastoma

- 60% response rate (CR+PR) with a median (range) tumor reduction of 58% (5%, 95%). (Santana *et al.* JCO 2005)
 - Dosed daily for 10 days
 - Individualized dose: target TPT plasma AUC of 80 to 120 ng/ml·hr. Median dose of 2.7 mg/m²
- 39% response rate (POG, Kretschmar et al. JCO 2004)
 - Dosed daily for 5 days
 - Traditional dose of 2 mg/m²

Dose Individualization

- Large inter-individual variability (12 fold range in systemic clearance) in TPT Clearance in children with cancer.
- It has been shown in xenograft mice that the minimum TPT systemic exposure to achieve a CR in 4 of 6 NB models was an AUC of 88 ng/ml·hr

Clinical Activity of TPT Refractory Acute Leukemia

- 6 of 18 (CR+PR) in patients dosed with 1.4-2.4 mg/m² over 12 days.
- 2 of 31 (CR+PR) in patients dosed with 2-5.2 mg/m² over 5 to 9 days.
 - The two positive responses were dosed over 5 and 9 days.

TPT Toxicities Neuroblastoma (Santana et al. JCO 2005)

- Grade 4 neutropenia: occurred in all patients; median length (range) 15 days (8-22).
- Grade 4 thrombocytopenia: occurred in all but 1 patient
- Grade 4 diarrhea: 6 episodes of 56 TPT cycles

Dosage and Schedule are Clinically Relevant Factors

- TPT is a topoisomerase I inhibitor (cell-cycle specific)
- Mathematical models of cell-cycle specific drugs suggest <u>longer</u> schedules to be <u>more</u> efficacious but also <u>more</u> myelosuppressive
 - Panetta and Adam MCM 1995
 - Panetta MB 1997

Optimal Dosage and Schedule?

Main Modeling Aim

- Develop an optimal treatment in terms of TPT and/or G-CSF dose/schedule that:
 - Maximizes efficacy. Defined by a reduction in tumor volume over a predefined interval
 - Effectively manages toxicities. Defined by a
 - minimum acceptable ANC level
 - maximum length of ANC depletion
 - and/or maximum TPT exposure.

Examples of treatment functions:

General form:

Piecewise constant form:

 $\{u(t) \ measurable \mid 0 \le u(t) \le D, \ t \in [0,T]\}$

$$u(t) = \begin{cases} \int_{t_i}^{D_i} & \text{for } 0 \le t < t_i \\ \int_{(t_i - t_{i-1})}^{D_i} & \text{for } t_{i-1} \le t < t_i \end{cases}$$

Examples of Objective Functions

Traditional optimal control forms: (Fister and Panetta SIAM J Applied Math. 2000 and 2003)

$$\min_{u(t)} J(u) = \int_0^T \left[a \left(N - N_d \right)^2 + b u^2 \right] dt \quad or$$

$$\min_{u(t)} J(u) = aN(T) + b \int_0^T u(t) dt$$

Constrained optimization forms: (Iliadis and Barbolosi CBR 2000, Barbolosi and Iliadis CBM 2001)

$\min[N(T)]$ or $\min_{D} \left[N(t^*) \right] \quad with \quad N(t^*) = \min_{t \in [0,T]} \left[N(t) \right] \quad \bullet \quad \mathsf{ANC} \ge \mathsf{Min} \; \mathsf{ANC}$

Contraints

- Cons ≤ Max Conc
- AUC ≤ Max AUC
- Length(ANC) ≤ Max Length(ANC)

Tumor Efficacy Model

- Panetta and Adam MCM 1995
- Panetta MB 1997

Human Neuroblastoma doubling times in Xenografts 4.7 to 18 days Zamboni *et al.* JNCI 1998

TPT Myelosuppression Model

Serial ANC data with model fit based on 27 pediatric NB patients

Proposed Optimal Control Problem

- Minimize tumor volume with respect to TPT and G-CSF dose/schedule
 - At the <u>end</u> of the second cycle (or, on the interval [0, T])
 - piecewise constant dosing
 - Note: end of second cycle: median T=58 days,
 (range 44 to 73 days)
- Constraints related to toxicities
 - Length of ANC<500 (1/mm 3) < ANC $_{\rm t}$ } Specific constraint
 - TPT Dose < TPT $_{max}$
 - − G-CSF Dose < G-CSF_{max}

Generalized constraints

Results

• Current dosing schedule:

- TPT 2 mg/m²/day daily×5×2
- G-CSF 5 mg/kg/day daily from day
 12 to 20
- Estimated cell kill based on median data in: (Santana et al. JCO 2005)

Results

- Current dosing schedule w/o G-CSF:
 - TPT 1 mg/m 2 /day daily×5×2
 - Note: Lower dose due to toxicity
 - Full dose would have delayed treatment ~8 days.

Results

- Shorter dosing schedule:
 - TPT 4 mg/m²/day daily×5
 - NOTE: 2 × previous simulation
 - ↑ doses don't improve results due to CCS nature of TPT
 - G-CSF 5 mg/kg/day daily day 6 to 16
 - Less myelosuppression suggests decreasing time between courses

Comments and Conclusions

- Preliminary modeling and simulation results relate well to known clinical results
- Current model allows for comparison of treatment strategies *in silico*
- Optimal control techniques can automate determining the *best* treatment dose/schedule based on the model assumptions.
- Consider various cell-kill hypotheses.
 - Skipper's log-kill model: Proportional to sensitive population (Schabel, Skipper, and Wilcox, CCR 1964)
 - Norton Simon Hypothesis: Proportional to the growth rate (Norton and Simon CTR 1977, 1986)