Improving the Effectiveness of RT: Interstitial Fluid Dynamics in Human Tumors

Michael Milosevic

Radiation Medicine Program
Princess Margaret Hospital
Toronto

Princess Margaret Hospital

Radiotherapy Opportunities

- Precision RT (IMRT)
- Spatial variability
- Temporal variability
- Adaptive RT
- Image analysis
- Biologic imaging
- RT dose modeling
- Biologic effect modeling
- Biologic RT enhancement

Tumors have...

- Chaotic vasculature
- Hyperpermeable vessels
- Abnormal lymphatics
- High interstitial protein
- High interstitial water
- Abnormal interstitium

Hashizume, 2000

What Causes High IFP in Tumors?

- High vascular conductivity (L_pS)
- Low interstitial conductivity (K)
- No lymphatics
- High geometric and viscous blood flow resistance

IFP = Capillary Pressure in Tumors

Baxter, 1989

Cervix Cancer

IFP Measurement

Time after needle insertion

IFP: An Independent Prognostic Factor in Cervix Cancer

Time Response of IFP Measurements

Time (seconds)

Spatio-Temporal IFP Model

Spatio-Temporal IFP Model

- Homogeneous fluid model
- Transducer characteristics known
- Transient fluid flow depends on L_pS, K, E
- Steady-state prior to needle insertion
- Transient disruption of steady-state
- Starling's law for transmural plasma flow
- Darcy's law for interstitial flow
- Conservation of mass

Finite Difference Equations

RTM (r) =
$$\frac{1}{4/3 \pi r^3 L_p S}$$

 $RI(r) = \frac{1}{4 \pi K r}$

$$CI(r) = \frac{4/3 \pi r^3}{E}$$

Transmural flow resistance

Interstitial flow resistance

Interstitial Compliance

Transient Disruption of Interstitial Fluid Equilibrium

K Determines "Volume of Influence"

Time Response Depends on E and K

Physiologic Parameters from IFP Measurements

Eand Kin KHT-C

Eand Kin Cervix Cancer

E and K for Cervix Cancer

209 measurements in 63 patients:

E 1218 <u>+</u> 198.1 mm Hg

K 1.84X10⁻⁷ \pm 4.32X10⁻⁸ cm²/mm Hg s

E Correlates with Lymph Node Metastases?

NO 1086 <u>+</u> 167 mm Hg

N1 1693 <u>+</u> 700 mm Hg

(p=0.01)

The way forward

Adaptive, Precision RT

Biologic Response Enhancement (BRE)

Improved Patient Outcome

Thanks to

Clinical

Anthony Fyles
Wilfred Levin
Lee Manchul
Amit Oza
Philip Chan
Rob Dinniwell

Modeling
Eric Leung

Imaging

Masoom Haider
David Jaffray
Igor Sitartchouk
Ivan Yeung

Biostatistics

Melania Pintilie Gina Lockwood

Clinical Support

Ami Syed Sue Billingsley Geri Ottewell

Laboratory

Rob Bristow
David Hedley
Dick Hill
Julia Skliarenko
Sarah Jane Lunt