

Regression Methods for Longitudinal Data with Missing Observations and Mismeasured Measurements

Grace Y. Yi

Department of Statistics & Actuarial Science
University of Waterloo

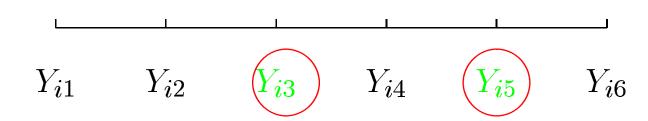
Outline

- INCOMPLETE LONGITUDINAL DATA
- MOTIVATING EXAMPLES
- MODEL FORMULATION
- ESTIMATION PROCEDURES
- REGRESSION FOR BINARY DATA
- SIMULATION STUDY
- DISCUSSION

Incomplete Longitudinal Data

NOTATION

ullet n subjects are followed up longitudinally at m occasions



- Y_{ij} : continuous response; $\mathbf{Y}_i = (Y_{i1}, Y_{i2}, ..., Y_{im})'$
- $R_{ij} = I(Y_{ij} \text{ is observed}); \quad \mathbf{R}_i = (R_{i1}, R_{i2}, ..., R_{im})'$
- x_{ij} : covariate vector

MODEL OF INTEREST

• $\mu_i = E(Y_i|x_i)$: mean vector

SELECTION MODELS (Little & Rubin 1987)

$$f(\boldsymbol{Y}_i, \boldsymbol{R}_i | \boldsymbol{x}_i; \boldsymbol{\theta}, \boldsymbol{\alpha}) = f(\boldsymbol{Y}_i | \boldsymbol{x}_i; \boldsymbol{\theta}) f(\boldsymbol{R}_i | \boldsymbol{Y}_i, \boldsymbol{x}_i; \boldsymbol{\alpha})$$

MISSING DATA MECHANISMS (Little & Rubin 2002)

Missing Completely At Random (MCAR)

$$f(\boldsymbol{R}_i|\boldsymbol{Y}_i,\boldsymbol{x}_i;\boldsymbol{lpha}) = f(\boldsymbol{R}_i|\boldsymbol{x}_i;\boldsymbol{lpha})$$

Missing At Random (MAR)

$$f(\boldsymbol{R}_i|\boldsymbol{Y}_i,\boldsymbol{x}_i;\boldsymbol{lpha}) = f(\boldsymbol{R}_i|\boldsymbol{Y}_i^{obs},\boldsymbol{x}_i;\boldsymbol{lpha})$$

Not Missing At Random (NMAR)

$$f(\boldsymbol{R}_i|\boldsymbol{Y}_i,\boldsymbol{x}_i;\boldsymbol{lpha}) = f(\boldsymbol{R}_i|\boldsymbol{Y}_i^{obs},\boldsymbol{Y}_i^{mis},\boldsymbol{x}_i;\boldsymbol{lpha})$$

Motivating Examples

- URINE DATA (Liu & Liang 1992)
 - 7 consecutive daily urine samples
 - 408 men participated in the study only 397 complete measurements
 - response: systolic blood pressure
 - covariates: age, body mass index daily urinary sodium chloride
- DIABETES TRIAL (Hu & Lachin 2001)
 - 9 repeated measurements of albumin excretion rate
 - incomplete response measurements (some just had 5 measurements)
 - covariates: HDL cholesterol level systolic blood pressure

FEATURES

- longitudinal data: a response Y with covariates x is recorded at each assessment
- missing observations: some response measurements are not available
- measurement error in covatiates:

$$m{x}_{ij} = (\omega_{ij}, m{z}'_{ij})'$$
: $p \times 1$ covariate vector ω_{ij} : error-prone

 z_{ij} : error-free

Model Formulation

RESPONSE MODEL

- Mean and Variance:
 - \bullet $\mu_{ij} = \mathrm{E}(Y_{ij}|\boldsymbol{x}_i)$
 - $v_{ij} = \operatorname{var}(Y_{ij}|\boldsymbol{x}_i)$

Regression Model:

$$\mu_{ij} = g^{-1}(\boldsymbol{x}'_{ij}\boldsymbol{\beta})$$
$$v_{ij} = \phi h^{-1}(g^{-1}(\boldsymbol{x}'_{ij}\boldsymbol{\beta}))$$

ADDITIVE ERROR MODEL

$$W_{ij} = \omega_{ij} + e_{ij}$$

where e_{ij} has mean 0 and mgf m(t)

Estimation of Parameters:

- validation data sample
- repeated measurements of ω_{ij}
- if neither is available, then sensitivity analysis can be conducted

MISSING DATA PROCESS

Notation:

monotone missing data patterns:

$$R_{ij} = 0 \Rightarrow R_{ik} = 0 \text{ for } k > j$$

drop-out time:

$$M_i = \sum_{j=1}^m R_{ij} + 1$$

conditional probability:

$$\lambda_{ij} = P(R_{ij} = 1 | R_{i,j-1} = 1, \boldsymbol{y}_i, \boldsymbol{x}_i)$$

marginal probability:

$$\pi_{ij} = P(R_{ij} = 1 | \boldsymbol{y}_i, \boldsymbol{x}_i)$$

- Conditional Method:
 - Model

logit
$$\lambda_{ij} = oldsymbol{u}_{ij}'oldsymbol{lpha}$$

 u_{ij} : consisting of z_{ij} and observed responses

Conditional Method:

Model

logit
$$\lambda_{ij} = oldsymbol{u}_{ij}'oldsymbol{lpha}$$

 u_{ij} : consisting of z_{ij} and observed responses

- ullet Estimating lpha
 - Likelihood: $L_i(\boldsymbol{\alpha}) = \prod_{t=2}^{m_i-1} \lambda_{it} \cdot (1 \lambda_{im_i})$
 - $m{ ilde{\omega}}$ score: $m{S}_i(m{lpha}) = \partial \ell_i(m{lpha})/\partial m{lpha}$
 - ullet $\sum_{i=1}^n oldsymbol{S}_i(oldsymbol{lpha}) = oldsymbol{0}$
 - $\pi_{ij} = P(R_{ij} = 1 | \mathbf{y}_i, \mathbf{x}_i) = \prod_{t=2}^{j} \lambda_{it}$
- MAR mechanisms are accommodated

- Marginal Method:
 - Model

$$\mathsf{logit}\ \pi_{ij} = \boldsymbol{u}_{ij}'\boldsymbol{\alpha}$$

 u_{ij} : consisting of z_{ij} and observed responses

Marginal Method:

Model

logit
$$\pi_{ij} = oldsymbol{u}'_{ij}oldsymbol{lpha}$$

 u_{ij} : consisting of z_{ij} and observed responses

- ullet Estimating lpha
 - estimating functions for α :

$$oldsymbol{S}(oldsymbol{lpha}) = \sum_{i=1}^n oldsymbol{S}_i(oldsymbol{lpha})$$

- $S_i(\alpha) = \frac{\partial \boldsymbol{\pi}_i'}{\partial \boldsymbol{\Omega}} \boldsymbol{W}_i^{-1} (\boldsymbol{R}_i \boldsymbol{\pi}_i), \quad \text{for } i = 1, 2, ..., n$
- $oldsymbol{\omega}$ $oldsymbol{W}_i$ is the working matrix:

e.g.,
$$W_i = \text{diag}(\pi_{ij}(1 - \pi_{ij}), j = 1, 2, ..., m)$$

MAR and NMAR can be accommodated.

Estimation Procedures

COVARIATES ARE ERROR-FREE

$$oldsymbol{U}_i(oldsymbol{eta},oldsymbol{lpha}) = oldsymbol{D}_i'[oldsymbol{V}_i^{-1/2}oldsymbol{\Omega}_i^{-1}oldsymbol{V}_i^{-1/2}]\cdotoldsymbol{\Delta}_i(oldsymbol{lpha})\cdotoldsymbol{\epsilon}_i$$

a

$$m{P}_i = \partial m{\mu}_i'/\partial m{eta}$$

$$\bullet \quad \epsilon_i = (\epsilon_{i1}, \epsilon_{i2}, ..., \epsilon_{im})' : \epsilon_{ij} = Y_{ij} - \mu_{ij}$$

$$lacksquare V_i = \mathsf{var}(oldsymbol{Y}_i)$$

• $\Omega_i = \text{correlation matrix } [r_{ijk}]^{-1}$

^a Horvitz & Thompson 1952; Robins et al. 1995; Yi & Cook 2002 a, b

COVARIATES ARE ERROR-PRONE

find $U_{i\beta_s}^*(\beta, \alpha; W, Y, z)$ of the observed data such that

$$\mathrm{E}_{W|X}[U_{i\beta_s}^*(\boldsymbol{\beta}, \boldsymbol{\alpha}; \boldsymbol{W}, Y, z)] = U_{i\beta_s}(\boldsymbol{\beta}, \boldsymbol{\alpha}; \boldsymbol{\omega}, Y, z)$$

a

then

$$U_{i\beta_s}^*(\boldsymbol{\beta}, \boldsymbol{\alpha}; W, Y, z) = 0$$

is an unbiased estimating equation for β_s

Denote

$$U_i^* = (U_{i\beta_1}^*, ..., U_{i\beta_p}^*)'$$

^a Nakamura 1990

COMMENTS

$$U_{i\beta_s} = \sum_{j=1}^{m} \sum_{k=1}^{m} \frac{I(R_{ij} = 1)}{\pi_{ij}} \cdot \eta_{ij} \cdot r_{ikj} v_{ik}^{-1/2} v_{ij}^{-1/2} \cdot \frac{\partial \mu_{ij}}{\partial \beta_s} \cdot (Y_{ij} - \mu_{ij})$$

- $m{ ilde{P}}$ $\eta_{ij}=1$: optimal (Robins et al. 1995)
- $\eta_{ij} = 1$, $r_{ikj} = I(k = j)$: working indep. matrix
- $r_{ikj} = I(k = j):$ $U_{i\beta_s} = \sum_{j=1}^{m} \frac{I(R_{ij}=1)}{\pi_{ij}} \cdot \eta_{ij} \cdot v_{ij}^{-1} \cdot \frac{\partial \mu_{ij}}{\partial \beta_s} \cdot (Y_{ij} \mu_{ij})$
- $U_{i\beta_s} = \sum_{j=1}^m \frac{I(R_{ij}=1)}{\pi_{ij}} \cdot \eta_{ij}^* \cdot \frac{\partial \mu_{ij}}{\partial \beta_s} \cdot (Y_{ij} \mu_{ij})$

METHODS

Moment Identities:

- $\bullet \ \mathrm{E}_{W|\omega}\{W_{ij}\} = \omega_{ij}$
- $\mathbb{E}_{W|\omega}\{[m(t)]^{-1} \cdot [W_{ij} (m(t))^{-1}m'(t)]e^{tW_{ij}}\} = \omega_{ij}e^{t\omega_{ij}}$

• Optimal Estimating Functions $U_{i\beta_s}$:

$$U_{i\beta_s} = \sum_{i=1}^{m} \sum_{k=1}^{m} \frac{I(R_{ij} = 1)}{\pi_{ij}} \cdot r_{ikj} v_{ik}^{-1/2} v_{ij}^{-1/2} \cdot \frac{\partial \mu_{ij}}{\partial \beta_s} \cdot (Y_{ij} - \mu_{ij})$$

REGRESSION MODELS

a

- Linear Regression
- Quadratic Regression
- Gamma Regression
- Inverse Gaussian Regression
- Poisson Regression

^a Yi 2005

ASYMPTOTIC DISTRIBUTION

Under regularity conditions, we have, as $n \to \infty$,

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{d}{\to} N(\mathbf{0}, \boldsymbol{P}^{-1}\boldsymbol{\Sigma}[\boldsymbol{P}^{-1}]')$$

where

•
$$P = E\left[\partial U_i^*(\boldsymbol{\beta}, \boldsymbol{\alpha})/\partial \boldsymbol{\beta'}\right]$$

$$Q_i(\boldsymbol{\beta}, \boldsymbol{\alpha}) = U_i^*(\boldsymbol{\beta}, \boldsymbol{\alpha}) - E(\partial U_i^*(\boldsymbol{\beta}, \boldsymbol{\alpha}) / \partial \boldsymbol{\alpha}') [E(\partial S_i(\boldsymbol{\alpha}) / \partial \boldsymbol{\alpha}')]^{-1} S_i(\boldsymbol{\alpha})$$

Regression for Binary Data

LOGISTIC MODEL

logit
$$\mu_{ij} = \omega_{ij}\beta_1 + \boldsymbol{z}'_{ij}\beta_z$$

 $v_{ij} = \mu_{ij}(1 - \mu_{ij})$

Regression for Binary Data

LOGISTIC MODEL logit
$$\mu_{ij} = \omega_{ij}\beta_1 + \boldsymbol{z}'_{ij}\beta_z$$

$$v_{ij} = \mu_{ij}(1 - \mu_{ij})$$

$$U_{i\beta_s} = \sum_{j=1}^{m} \frac{I(R_{ij} = 1)}{\pi_{ij}} \cdot \underline{\eta_{ij}} \cdot \underline{v_{ij}^{-1}} \frac{\partial \mu_{ij}}{\partial \beta_s} \cdot (Y_{ij} - \mu_{ij})$$

take
$$\eta_{ij}=1+e^{\omega_{ij}\beta_1+\boldsymbol{z}'_{ij}\boldsymbol{\beta}_z}$$
, or $1+e^{-\omega_{ij}\beta_1-\boldsymbol{z}'_{ij}\boldsymbol{\beta}_z}$,

$$U_{i\beta}^{(1)} = \sum_{j=1}^{m} \frac{I(R_{ij}=1)}{\pi_{ij}} \cdot \begin{pmatrix} \omega_{ij} \\ \boldsymbol{z}_{ij} \end{pmatrix} \cdot \{Y_{ij} + (Y_{ij}-1)e^{\omega_{ij}\beta_1 + \boldsymbol{z}'_{ij}\boldsymbol{\beta}_z})\}$$

$$U_{i\beta_s} = \sum_{j=1}^{m} \frac{I(R_{ij}=1)}{\pi_{ij}} \cdot \eta_{ij}^* \cdot \frac{\partial \mu_{ij}}{\partial \beta_s} \cdot (Y_{ij} - \mu_{ij})$$

• take $\eta_{ij}^* = (1 + e^{\omega_{ij}\beta_1 + \boldsymbol{z}_{ij}'}\boldsymbol{\beta}_z)^3$, then

$$U_{i\beta}^{(3)} = \sum_{j=1}^{m} \frac{I(R_{ij}=1)}{\pi_{ij}} \cdot \begin{pmatrix} \omega_{ij} \\ \boldsymbol{z}_{ij} \end{pmatrix} \cdot e^{\omega_{ij}\beta_1 + \boldsymbol{z}'_{ij}\boldsymbol{\beta}_z}$$
$$\cdot \{Y_{ij} + (Y_{ij} - 1)e^{\omega_{ij}\beta_1 + \boldsymbol{z}'_{ij}\boldsymbol{\beta}_z}\}$$

• take $\eta_{ij}^* = (1 + e^{\omega_{ij}\beta_1 + \boldsymbol{z}_{ij}'}\boldsymbol{\beta}_{ij})^2 (1 + e^{-\omega_{ij}\beta_1 - \boldsymbol{z}_{ij}'}\boldsymbol{\beta}_z)$, then $U_{i\beta}^{(4)} = \sum_{j=1}^m \frac{I(R_{ij}=1)}{\pi_{ij}} \cdot \begin{pmatrix} \omega_{ij} \\ \boldsymbol{z}_{ij} \end{pmatrix} \cdot \{Y_{ij}(1 + e^{-\omega_{ij}\beta_1 - \boldsymbol{z}_{ij}'}\boldsymbol{\beta}_z) - 1\}$

CORRECTION TERMS

$$C_1(W_{ij}, r, t) = e^{r(W_{ij}t + \mathbf{z}'_{ij}\boldsymbol{\beta}_{ij})}/m(rt), \quad r = 1, 2$$

$$C_2(W_{ij}, r, t) = [W_{ij} - m'(rt)/m(rt)]e^{r(W_{ij}t + \mathbf{z}'_{ij}\boldsymbol{\beta}_{ij})}/m(rt), \quad r = 1, 2$$

UNBIASED ESTIMATING FUNCTIONS

$$\boldsymbol{U}_{i\beta}^{*}(1) = \sum_{j=1}^{m} \frac{I(R_{ij}=1)}{\pi_{ij}} \cdot \left(\begin{array}{c} Y_{ij}W_{ij} + (Y_{ij}-1)C_2(W_{ij},1,\beta_1) \\ Y_{ij}\boldsymbol{z}_{ij} + (Y_{ij}-1)\boldsymbol{z}_{ij}C_1(W_{ij},1,\beta_1) \end{array} \right)$$

$$\boldsymbol{U}_{i\beta}^{*(2)} = \sum_{j=1}^{m} \frac{I(R_{ij}=1)}{\pi_{ij}} \cdot \left(\begin{array}{c} (Y_{ij}-1)W_{ij} + Y_{ij}C_2(W_{ij},1,\beta_1) \\ (Y_{ij}-1)\boldsymbol{z}_{ij} + Y_{ij}\boldsymbol{z}_{ij}C_1(W_{ij},1,\beta_1) \end{array} \right)$$

$$U_{i\beta}^{*(3)} = \sum_{j=1}^{m} \frac{I(R_{ij}=1)}{\pi_{ij}} \cdot \left(Y_{ij}C_{2}(W_{ij}, 1, \beta_{1}) + (Y_{ij} - 1)C_{2}(W_{ij}, 2, \beta_{1}) \\ Y_{ij}C_{1}(W_{ij}, 1, \beta_{1})\boldsymbol{z}_{ij} + (Y_{ij} - 1)C_{1}(W_{ij}, 2, \beta_{1})\boldsymbol{z}_{ij} \right)$$

$$U_{i\beta}^{*(4)} = \sum_{j=1}^{m} \frac{I(R_{ij}=1)}{\pi_{ij}} \cdot \begin{pmatrix} (Y_{ij}-1)C_2(W_{ij},1,\beta_1) + Y_{ij}W_{ij} \\ (Y_{ij}-1)C_1(W_{ij},1,\beta_1)z_{ij} + Y_{ij}z_{ij} \end{pmatrix}$$

EFFICIENT ESTIMATOR

Let

$$m{\Phi}_{ieta}^* = (m{U}_{ieta}^{*(1)}, m{U}_{ieta}^{*(2)}, m{U}_{ieta}^{*(3)}, m{U}_{ieta}^{*(4)})'$$

$$\mathbf{\Phi}_{\beta}^* = \frac{1}{n} \sum_{i=1}^n \Phi_{i\beta}^*, \quad \mathbf{\Sigma}^* = \text{var}(\Phi_{\beta}^*)$$

$$\mathbf{Q}^*(\boldsymbol{\beta}) = \mathbf{\Phi}_{\boldsymbol{\beta}}^{*\prime} \mathbf{\Sigma}^{*-1} \mathbf{\Phi}_{\boldsymbol{\beta}}^*$$

then

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} Q^*(\boldsymbol{\beta})$$

is an efficient estimator of β .

COMMENTS

• In actual implementation, Σ^* is replaced by

$$\widetilde{\boldsymbol{\Sigma}}^* = \frac{1}{n^2} \sum_{i=1}^n \boldsymbol{\Phi}_{i\beta}^* \boldsymbol{\Phi}_{i\beta}^{*\prime}$$

$$Q^*(\hat{\boldsymbol{\beta}}) \sim \chi_{df}^2$$

with

$$df = \dim(\mathbf{\Phi}_{i\beta}^*) - \dim(\boldsymbol{\beta})$$
$$= 3p$$

Simulation Study

- Response Models:
 - Continuous response: $Y_{ij} \sim N(\mu_{ij}, 1.0)$ with

$$\mu_{ij} = \beta_0 + \omega_{ij}\beta_1$$

• Count data: $Y_{ij} \sim Poisson(\mu_{ij})$ with

$$\log \mu_{ij} = \beta_0 + \omega_{ij}\beta_1$$

Simulation Study

- Response Models:
 - Continuous response: $Y_{ij} \sim N(\mu_{ij}, 1.0)$ with

$$\mu_{ij} = \beta_0 + \omega_{ij}\beta_1$$

• Count data: $Y_{ij} \sim Poisson(\mu_{ij})$ with

$$\log \mu_{ij} = \beta_0 + \omega_{ij}\beta_1$$

- Measurement Error: $W_{ij} \sim N(\omega_{ij}, \sigma_e^2)$
- True covariate: $\omega_{ij} \sim N(0.5, 1.0)$
- Missing Data Models: $logit \lambda_{ij} = \alpha_0 + \alpha_1 y_{i,j-1}$
- Setting: n = 200, 500; 1000 simulations

Linear Regression (n = 500)

Missingness	True	σ			σ			
(α_0,α_1)		bias	s.e.	rate	· ·	bias	s.e.	rate
(0.5, 0.5)	$\beta_0 = 1$	0.0001	0.0328	95.7		0.0040	0.0530	94.5
	$\beta_1 = 1$	-0.0010	0.0310	95.1		-0.0071	0.0658	95.6
(0.5, 0)	$\beta_0 = 1$	0.0017	0.0385	96.0		0.0006	0.0609	95.3
	$\beta_1 = 1$	0.0007	0.0357	95.6		-0.0031	0.0751	94.7
(0.5, -0.5)	$\beta_0 = 1$	0.0005	0.0696	94.4		0.0046	0.1066	93.8
	$\beta_1 = 1$	-0.0021	0.0636	93.4		-0.0161	0.1370	94.2
(0.5, 0.5)	$\beta_0 = -1$	-0.0004	0.0725	93.0		-0.0127	0.1156	92.8
	$\beta_1 = -1$	0.0029	0.0637	93.8		0.0148	0.1458	93.8
(0.5, 0)	$\beta_0 = -1$	-0.0008	0.0392	95.8		-0.0046	0.0633	94.3
	$\beta_1 = -1$	0.0028	0.0361	94.6		0.0087	0.0785	94.2
(0.5, -0.5)	$\beta_0 = -1$	0.0010	0.0331	95.4		-0.0038	0.0531	94.9
	$\beta_1 = -1$	0.0000	0.0292	95.7		0.0067	0.0654	94.4

Poisson Regression (n = 500)

Missingness	True	σ		σ			
(α_0,α_1)		bias	s.e.	rate	 bias	s.e.	rate
(0.1, 0.1)	$\beta_0 = 0.2$	-0.0012	0.0410	94.5	0.0017	0.0491	95.1
	$\beta_1 = 0.2$	0.0023	0.0343	93.4	-0.0018	0.0509	93.7
(0.1, 0)	$\beta_0 = 0.2$	0.0020	0.0448	94.1	0.0032	0.0522	93.8
	$\beta_1 = 0.2$	-0.0005	0.0369	94.6	-0.0032	0.0545	94.6
(0.1, -0.1)	$\beta_0 = 0.2$	0.0019	0.0465	94.6	0.0042	0.0530	95.4
	$\beta_1 = 0.2$	0.0006	0.0401	93.1	-0.0018	0.0569	94.4
(0.1, 0.1)	$\beta_0 = 0.2$	0.0015	0.0412	94.7	0.0065	0.0583	95.7
	$\beta_1 = 0.4$	-0.0011	0.0326	93.7	-0.0053	0.0566	94.4
(0.1, 0)	$\beta_0 = 0.2$	0.0016	0.0447	94.7	0.0045	0.0610	95.0
	$\beta_1 = 0.4$	0.0008	0.0325	94.6	-0.0055	0.0605	94.2
(0.1, -0.1)	$\beta_0 = 0.2$	0.0016	0.0495	94.1	0.0070	0.0708	94.4
	$\beta_1 = 0.4$	-0.0007	0.0366	94.2	-0.0060	0.0689	94.2

SUMMARY

- Finite sample biases are reasonably small, suggesting that the estimates obtained from the proposed methods are consistent.
- Standard error tends to increase as the magnitude in measurement error increases.
- Coverage rates agree well with the nominal level 95%, which indicates that the resultant estimators are reliable.
- Increasing sample size can reduce the magnitude of the finite sample bias and standard error, and the effect on the latter seems more striking.

Discussion

- We proposed a semiparametric approach in the sense that the full distribution form of the response process is not needed. Instead, only the marginal mean and variance structures are assumed.
- We considered a functional method for the measurement error model, where the distribution of the true covariates is not required.
- The proposed methods can be extended to the case with multiple error-prone covariates.
- More flexible missing data process can be accommodated by incorporating error-prone covariates into the modeling.