Regression Methods for Longitudinal Data with Missing Observations and Mismeasured Measurements

Grace Y. Yi
Department of Statistics \& Actuarial Science
University of Waterloo

Outline

- INCOMPLETE LONGITUDINAL DATA
- MOTIVATING EXAMPLES
- MODEL FORMULATION
- ESTIMATION PROCEDURES
- REGRESSION FOR BINARY DATA
- SIMULATION STUDY
- DISCUSSION

Incomplete Longitudinal Data

NOTATION

- n subjects are followed up longitudinally at m occasions

- $Y_{i j}$: continuous response; $\quad \boldsymbol{Y}_{i}=\left(Y_{i 1}, Y_{i 2}, \ldots, Y_{i m}\right)^{\prime}$
- $R_{i j}=I\left(Y_{i j}\right.$ is observed $) ; \quad \boldsymbol{R}_{i}=\left(R_{i 1}, R_{i 2}, \ldots, R_{i m}\right)^{\prime}$
- $x_{i j}$: covariate vector

MODEL OF INTEREST

- $\boldsymbol{\mu}_{i}=E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{x}_{i}\right)$: mean vector

SELECTION MODELS (Little \& Rubin 1987)

$$
f\left(\boldsymbol{Y}_{i}, \boldsymbol{R}_{i} \mid \boldsymbol{x}_{i} ; \boldsymbol{\theta}, \boldsymbol{\alpha}\right)=f\left(\boldsymbol{Y}_{i} \mid \boldsymbol{x}_{i} ; \boldsymbol{\theta}\right) f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}, \boldsymbol{x}_{i} ; \boldsymbol{\alpha}\right)
$$

MISSING DATA MECHANISMS (Little \& Rubin 2002)

- Missing Completely At Random (MCAR)

$$
f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}, \boldsymbol{x}_{i} ; \boldsymbol{\alpha}\right)=f\left(\boldsymbol{R}_{i} \mid \boldsymbol{x}_{i} ; \boldsymbol{\alpha}\right)
$$

- Missing At Random (MAR)

$$
f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}, \boldsymbol{x}_{i} ; \boldsymbol{\alpha}\right)=f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}^{o b s}, \boldsymbol{x}_{i} ; \boldsymbol{\alpha}\right)
$$

- Not Missing At Random (NMAR)

$$
f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}, \boldsymbol{x}_{i} ; \boldsymbol{\alpha}\right)=f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}^{o b s}, \boldsymbol{Y}_{i}^{m i s}, \boldsymbol{x}_{i} ; \boldsymbol{\alpha}\right)
$$

Motivating Examples

- URINE DATA (Liu \& Liang 1992)
- 7 consecutive daily urine samples
- 408 men participated in the study only 397 complete measurements
- response: systolic blood pressure
- covariates: age, body mass index daily urinary sodium chloride
- DIABETES TRIAL (Hu \& Lachin 2001)
- 9 repeated measurements of albumin excretion rate
- incomplete response measurements (some just had 5 measurements)
, covariates: HDL cholesterol level systolic blood pressure

FEATURES

- longitudinal data: a response Y with covariates x is recorded at each assessment
- missing observations: some response measurements are not available
- measurement error in covatiates:

$$
\begin{aligned}
\boldsymbol{x}_{i j}= & \left(\omega_{i j}, \boldsymbol{z}_{i j}^{\prime}\right)^{\prime}: p \times 1 \text { covariate vector } \\
& \omega_{i j}: \text { error-prone } \\
& \boldsymbol{z}_{i j}: \text { error-free }
\end{aligned}
$$

Model Formulation

RESPONSE MODEL

- Mean and Variance:

$$
\begin{aligned}
& \text { - } \mu_{i j}=\mathrm{E}\left(Y_{i j} \mid \boldsymbol{x}_{i}\right) \\
& \text { - } v_{i j}=\operatorname{var}\left(Y_{i j} \mid \boldsymbol{x}_{i}\right)
\end{aligned}
$$

- Regression Model:

$$
\begin{aligned}
& \mu_{i j}=g^{-1}\left(\boldsymbol{x}_{i j}^{\prime} \boldsymbol{\beta}\right) \\
& v_{i j}=\phi h^{-1}\left(g^{-1}\left(\boldsymbol{x}_{i j}^{\prime} \boldsymbol{\beta}\right)\right)
\end{aligned}
$$

ADDITIVE ERROR MODEL

$$
W_{i j}=\omega_{i j}+e_{i j}
$$

where $e_{i j}$ has mean 0 and $\mathrm{mgf} m(t)$

- Estimation of Parameters:
- validation data sample
- repeated measurements of $\omega_{i j}$
- if neither is available, then sensitivity analysis can be conducted

MISSING DATA PROCESS

- Notation:
- monotone missing data patterns:

$$
R_{i j}=0 \Rightarrow R_{i k}=0 \text { for } k>j
$$

- drop-out time:

$$
M_{i}=\sum_{j=1}^{m} R_{i j}+1
$$

- conditional probability:

$$
\lambda_{i j}=P\left(R_{i j}=1 \mid R_{i, j-1}=1, \boldsymbol{y}_{i}, \boldsymbol{x}_{i}\right)
$$

- marginal probability:

$$
\pi_{i j}=P\left(R_{i j}=1 \mid \boldsymbol{y}_{i}, \boldsymbol{x}_{i}\right)
$$

- Conditional Method:
- Model

$$
\text { logit } \lambda_{i j}=u_{i j}^{\prime} \alpha
$$

$\boldsymbol{u}_{i j}$: consisting of $z_{i j}$ and observed responses

- Conditional Method:
- Model

$$
\text { logit } \lambda_{i j}=u_{i j}^{\prime} \alpha
$$

$\boldsymbol{u}_{i j}$: consisting of $z_{i j}$ and observed responses

- Estimating α
- Likelihood: $L_{i}(\boldsymbol{\alpha})=\prod_{t=2}^{m_{i}-1} \lambda_{i t} \cdot\left(1-\lambda_{i m_{i}}\right)$
- score: $\boldsymbol{S}_{i}(\boldsymbol{\alpha})=\partial \ell_{i}(\boldsymbol{\alpha}) / \partial \boldsymbol{\alpha}$
- $\sum_{i=1}^{n} \boldsymbol{S}_{i}(\boldsymbol{\alpha})=\mathbf{0}$
- $\pi_{i j}=P\left(R_{i j}=1 \mid \boldsymbol{y}_{i}, \boldsymbol{x}_{i}\right)=\prod_{t=2}^{j} \lambda_{i t}$
- MAR mechanisms are accommodated
- Marginal Method:
- Model

$$
\begin{gathered}
\text { logit } \pi_{i j}=\boldsymbol{u}_{i j}^{\prime} \boldsymbol{\alpha} \\
\boldsymbol{u}_{i j}: \text { consisting of } z_{i j} \text { and observed responses }
\end{gathered}
$$

- Marginal Method:
- Model

$$
\text { logit } \pi_{i j}=\boldsymbol{u}_{i j}^{\prime} \alpha
$$

$\boldsymbol{u}_{i j}$: consisting of $z_{i j}$ and observed responses

- Estimating α
- estimating functions for α :

$$
\boldsymbol{S}(\boldsymbol{\alpha})=\sum_{i=1}^{n} \boldsymbol{S}_{i}(\boldsymbol{\alpha})
$$

- $\boldsymbol{S}_{i}(\boldsymbol{\alpha})=\frac{\partial \boldsymbol{\pi}_{i}^{\prime}}{\partial \boldsymbol{\alpha}} \boldsymbol{W}_{i}^{-1}\left(\boldsymbol{R}_{i}-\boldsymbol{\pi}_{i}\right), \quad$ for $i=1,2, \ldots, n$
- \boldsymbol{W}_{i} is the working matrix:

$$
\text { e.g., } \boldsymbol{W}_{i}=\operatorname{diag}\left(\pi_{i j}\left(1-\pi_{i j}\right), j=1,2, \ldots, m\right)
$$

- MAR and NMAR can be accommodated.

Estimation Procedures

COVARIATES ARE ERROR-FREE

$$
\boldsymbol{U}_{i}(\boldsymbol{\beta}, \boldsymbol{\alpha})=\boldsymbol{D}_{i}^{\prime}\left[\boldsymbol{V}_{i}^{-1 / 2} \boldsymbol{\Omega}_{i}^{-1} \boldsymbol{V}_{i}^{-1 / 2}\right] \cdot \boldsymbol{\Delta}_{i}(\boldsymbol{\alpha}) \cdot \boldsymbol{\epsilon}_{i}
$$

- $\boldsymbol{D}_{i}=\partial \boldsymbol{\mu}_{i}^{\prime} / \partial \boldsymbol{\beta}$
- $\boldsymbol{\epsilon}_{i}=\left(\epsilon_{i 1}, \epsilon_{i 2}, \ldots, \epsilon_{i m}\right)^{\prime}: \epsilon_{i j}=Y_{i j}-\mu_{i j}$
- $\boldsymbol{V}_{i}=\operatorname{var}\left(\boldsymbol{Y}_{i}\right)$
- $\boldsymbol{\Omega}_{i}=$ correlation matrix $\left[r_{i j k}\right]^{-1}$
- $\boldsymbol{\Delta}_{i}(\boldsymbol{\alpha})=\operatorname{diag}\left(I\left(R_{i j}=1\right) / \pi_{i j}, 1 \leq j \leq m\right)$
${ }^{a}$ Horvitz \& Thompson 1952; Robins et al. 1995; Yi \& Cook 2002 a, b

COVARIATES ARE ERROR-PRONE

find $\boldsymbol{U}_{i \beta_{s}}^{*}(\boldsymbol{\beta}, \boldsymbol{\alpha} ; W, Y, z)$ of the observed data such that

$$
\mathrm{E}_{W \mid X}\left[U_{i \beta_{s}}^{*}(\boldsymbol{\beta}, \boldsymbol{\alpha} ; W, Y, z)\right]=U_{i \beta_{s}}(\boldsymbol{\beta}, \boldsymbol{\alpha} ; \omega, Y, z)
$$

then

$$
U_{i \beta_{s}}^{*}(\boldsymbol{\beta}, \boldsymbol{\alpha} ; W, Y, z)=0
$$

is an unbiased estimating equation for β_{s}
Denote

$$
\boldsymbol{U}_{i}^{*}=\left(U_{i \beta_{1}}^{*}, \ldots, U_{i \beta_{p}}^{*}\right)^{\prime}
$$

[^0]
COMMENTS

$U_{i \beta_{s}}=\sum_{j=1}^{m} \sum_{k=1}^{m} \frac{I\left(R_{i j}=1\right)}{\pi_{i j}} \cdot \eta_{i j} \cdot r_{i k j} v_{i k}^{-1 / 2} v_{i j}^{-1 / 2} \cdot \frac{\partial \mu_{i j}}{\partial \beta_{s}} \cdot\left(Y_{i j}-\mu_{i j}\right)$

- $\eta_{i j}=1$: optimal (Robins et al. 1995)
- $\eta_{i j}=1, r_{i k j}=I(k=j)$: working indep. matrix
- $r_{i k j}=I(k=j)$:

$$
U_{i \beta_{s}}=\sum_{j=1}^{m} \frac{I\left(R_{i j}=1\right)}{\pi_{i j}} \cdot \eta_{i j} \cdot v_{i j}^{-1} \cdot \frac{\partial \mu_{i j}}{\partial \beta_{s}} \cdot\left(Y_{i j}-\mu_{i j}\right)
$$

- $U_{i \beta_{s}}=\sum_{j=1}^{m} \frac{I\left(R_{i j}=1\right)}{\pi_{i j}} \cdot \eta_{i j}^{*} \cdot \frac{\partial \mu_{i j}}{\partial \beta_{s}} \cdot\left(Y_{i j}-\mu_{i j}\right)$

METHODS

- Moment Identities:
- $\mathrm{E}_{W \mid \omega}\left\{W_{i j}\right\}=\omega_{i j}$
- $\mathrm{E}_{W \mid \omega}\left\{[m(t)]^{-1} \cdot e^{t W_{i j}}\right\}=e^{t \omega_{i j}}$
- $\mathrm{E}_{W \mid \omega}\left\{[m(t)]^{-1} \cdot\left[W_{i j}-(m(t))^{-1} m^{\prime}(t)\right] e^{t W_{i j}}\right\}=\omega_{i j} e^{t \omega_{i j}}$
- Optimal Estimating Functions $U_{i \beta_{s}}$:

$$
U_{i \beta_{s}}=\sum_{j=1}^{m} \sum_{k=1}^{m} \frac{I\left(R_{i j}=1\right)}{\pi_{i j}} \cdot r_{i k j} v_{i k}^{-1 / 2} v_{i j}^{-1 / 2} \cdot \frac{\partial \mu_{i j}}{\partial \beta_{s}} \cdot\left(Y_{i j}-\mu_{i j}\right)
$$

REGRESSION MODELS

- Linear Regression
- Quadratic Regression
- Gamma Regression
- Inverse Gaussian Regression
- Poisson Regression
${ }^{a}$ Yi 2005

ASYMPTOTIC DISTRIBUTION

Under regularity conditions, we have, as $n \rightarrow \infty$,

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{d} N\left(\mathbf{0}, \boldsymbol{P}^{-1} \boldsymbol{\Sigma}\left[\boldsymbol{P}^{-1}\right]^{\prime}\right)
$$

where

- $\boldsymbol{P}=E\left[\partial \boldsymbol{U}_{i}^{*}(\boldsymbol{\beta}, \boldsymbol{\alpha}) / \partial \boldsymbol{\beta}^{\prime}\right]$
- $\boldsymbol{\Sigma}=E\left\{\boldsymbol{Q}_{i}(\boldsymbol{\beta}, \boldsymbol{\alpha}) \boldsymbol{Q}_{i}^{\prime}(\boldsymbol{\beta}, \boldsymbol{\alpha})\right\}$
- $\boldsymbol{Q}_{i}(\boldsymbol{\beta}, \boldsymbol{\alpha})=$ $\boldsymbol{U}_{i}^{*}(\boldsymbol{\beta}, \boldsymbol{\alpha})-E\left(\partial \boldsymbol{U}_{i}^{*}(\boldsymbol{\beta}, \boldsymbol{\alpha}) / \partial \boldsymbol{\alpha}^{\prime}\right)\left[E\left(\partial \boldsymbol{S}_{i}(\boldsymbol{\alpha}) / \partial \boldsymbol{\alpha}^{\prime}\right)\right]^{-1} \boldsymbol{S}_{i}(\boldsymbol{\alpha})$

Regression for Binary Data

$\underline{\text { LOGISTIC MODEL } \quad \operatorname{logit} \mu_{i j}=\omega_{i j} \beta_{1}+\boldsymbol{z}_{i j}^{\prime} \beta_{z}, ~}$ $v_{i j}=\mu_{i j}\left(1-\mu_{i j}\right)$

Regression for Binary Data

$\underline{\text { LOGISTIC MODEL }} \quad \operatorname{logit} \mu_{i j}=\omega_{i j} \beta_{1}+\boldsymbol{z}_{i j}^{\prime} \beta_{z}$

$$
\begin{gathered}
v_{i j}=\mu_{i j}\left(1-\mu_{i j}\right) \\
U_{i \beta_{s}}=\sum_{j=1}^{m} \frac{I\left(R_{i j}=1\right)}{\pi_{i j}} \cdot \eta_{i j} \cdot \underline{v_{i j}^{-1} \frac{\partial \mu_{i j}}{\partial \beta_{s}}} \cdot\left(Y_{i j}-\mu_{i j}\right)
\end{gathered}
$$

take $\eta_{i j}=1+e^{\omega_{i j} \beta_{1}+\boldsymbol{z}_{i j}^{\prime} \boldsymbol{\beta}_{z}}$, or $1+e^{-\omega_{i j} \beta_{1}-\boldsymbol{z}_{i j}^{\prime} \boldsymbol{\beta}_{z}}$,

- $U_{i \beta}^{(1)}=\sum_{j=1}^{m} \frac{I\left(R_{i j}=1\right)}{\pi_{i j}} \cdot\binom{\omega_{i j}}{\boldsymbol{z}_{i j}} \cdot\left\{Y_{i j}+\left(Y_{i j}-1\right) e^{\left.\omega_{i j} \beta_{1}+\boldsymbol{z}_{i j}^{\prime} \boldsymbol{\beta}_{z}\right)}\right\}$
- $U_{i \beta}^{(2)}=\sum_{j=1}^{m} \frac{I\left(R_{i j}=1\right)}{\pi_{i j}} \cdot\binom{\omega_{i j}}{\boldsymbol{z}_{i j}} \cdot\left\{Y_{i j}\left(1+e^{-\omega_{i j} \beta_{1}-\boldsymbol{z}_{i j}^{\prime} \boldsymbol{\beta}_{z}}\right)-1\right\}$

$$
U_{i \beta_{s}}=\sum_{j=1}^{m} \frac{I\left(R_{i j}=1\right)}{\pi_{i j}} \cdot \eta_{i j}^{*} \cdot \frac{\partial \mu_{i j}}{\partial \beta_{s}} \cdot\left(Y_{i j}-\mu_{i j}\right)
$$

$$
\begin{aligned}
& U_{i \beta}^{(3)}= \sum_{j=1}^{m} \frac{I\left(R_{i j}=1\right)}{\pi_{i j}} \cdot\binom{\omega_{i j}}{\boldsymbol{z}_{i j}} \cdot e^{\omega_{i j} \beta_{1}+\boldsymbol{z}_{i j}^{\prime} \boldsymbol{\beta}_{z}} \\
& \cdot\left\{Y_{i j}+\left(Y_{i j}-1\right) e^{\left.\omega_{i j} \boldsymbol{\beta}_{1}+\boldsymbol{z}_{i j}^{\prime} \boldsymbol{\beta}_{z}\right)}\right\}
\end{aligned}
$$

$$
U_{i \beta}^{(4)}=\sum_{j=1}^{m} \frac{I\left(R_{i j}=1\right)}{\pi_{i j}} \cdot\binom{\omega_{i j}}{\boldsymbol{z}_{i j}} \cdot\left\{Y_{i j}\left(1+e^{-\omega_{i j} \beta_{1}-\boldsymbol{z}_{i j}^{\prime} \boldsymbol{\beta}_{z}}\right)-1\right\}
$$

CORRECTION TERMS

$$
C_{1}\left(W_{i j}, r, t\right)=e^{r\left(W_{i j} t+\boldsymbol{z}_{i j}^{\prime} \boldsymbol{\beta}_{i j}\right)} / m(r t), \quad r=1,2
$$

$C_{2}\left(W_{i j}, r, t\right)=\left[W_{i j}-m^{\prime}(r t) / m(r t)\right] e^{r\left(W_{i j} t+\boldsymbol{Z}_{i j}^{\prime} \boldsymbol{\beta}_{i j}\right)} / m(r t), \quad r=1,2$

UNBIASED ESTIMATING FUNCTIONS

$$
\begin{aligned}
& \hline \boldsymbol{U}_{i \beta}^{*}(1)=\sum_{j=1}^{m} \frac{I\left(R_{i j}=1\right)}{\pi_{i j}} \cdot\binom{Y_{i j} W_{i j}+\left(Y_{i j}-1\right) C_{2}\left(W_{i j}, 1, \beta_{1}\right)}{Y_{i j} \boldsymbol{z}_{i j}+\left(Y_{i j}-1\right) \boldsymbol{z}_{i j} C_{1}\left(W_{i j}, 1, \beta_{1}\right)} \\
& \boldsymbol{U}_{i \beta}^{*}(2)=\sum_{j=1}^{m} \frac{I\left(R_{i j}=1\right)}{\pi_{i j}} \cdot\binom{\left(Y_{i j}-1\right) W_{i j}+Y_{i j} C_{2}\left(W_{i j}, 1, \beta_{1}\right)}{\left(Y_{i j}-1\right) \boldsymbol{z}_{i j}+Y_{i j} z_{i j} C_{1}\left(W_{i j}, 1, \beta_{1}\right)} \\
& \boldsymbol{U}_{i \beta}^{*}{ }^{(3)}=\sum_{j=1}^{m} \frac{I\left(R_{i j}=1\right)}{\pi_{i j}} \\
& \cdot\binom{Y_{i j} C_{2}\left(W_{i j}, 1, \beta_{1}\right)+\left(Y_{i j}-1\right) C_{2}\left(W_{i j}, 2, \beta_{1}\right)}{Y_{i j} C_{1}\left(W_{i j}, 1, \beta_{1}\right) \boldsymbol{z}_{i j}+\left(Y_{i j}-1\right) C_{1}\left(W_{i j}, 2, \beta_{1}\right) \boldsymbol{z}_{i j}} \\
& \boldsymbol{U}_{i \beta}^{*}(4)=\sum_{j=1}^{m} \frac{I\left(R_{i j}=1\right)}{\pi_{i j}} \cdot\binom{\left(Y_{i j}-1\right) C_{2}\left(W_{i j}, 1, \beta_{1}\right)+Y_{i j} W_{i j}}{\left(Y_{i j}-1\right) C_{1}\left(W_{i j}, 1, \beta_{1}\right) \boldsymbol{z}_{i j}+Y_{i j} \boldsymbol{z}_{i j}}
\end{aligned}
$$

EFFICIENT ESTIMATOR

Let

$$
\begin{gathered}
\boldsymbol{\Phi}_{i \beta}^{*}=\left(\boldsymbol{U}_{i \beta}^{*(1)}, \boldsymbol{U}_{i \beta}^{*(2)}, \boldsymbol{U}_{i \beta}^{*(3)}, \boldsymbol{U}_{i \beta}^{*(4)}\right)^{\prime} \\
\boldsymbol{\Phi}_{\beta}^{*}=\frac{1}{n} \sum_{i=1}^{n} \Phi_{i \beta}^{*}, \quad \boldsymbol{\Sigma}^{*}=\operatorname{var}\left(\Phi_{\beta}^{*}\right) \\
\boldsymbol{Q}^{*}(\boldsymbol{\beta})=\boldsymbol{\Phi}_{\beta}^{* *} \boldsymbol{\Sigma}^{*-1} \boldsymbol{\Phi}_{\beta}^{*}
\end{gathered}
$$

then

$$
\hat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}} Q^{*}(\boldsymbol{\beta})
$$

is an efficient estimator of $\boldsymbol{\beta}$.

COMMENTS

- In actual implementation, Σ^{*} is replaced by

$$
\begin{gathered}
\tilde{\boldsymbol{\Sigma}}^{*}=\frac{1}{n^{2}} \sum_{i=1}^{n} \boldsymbol{\Phi}_{i \beta}^{*} \boldsymbol{\Phi}_{i \beta}^{* \prime} \\
\boldsymbol{Q}^{*}(\hat{\boldsymbol{\beta}}) \sim \chi_{d f}^{2}
\end{gathered}
$$

with

$$
\begin{aligned}
d f & =\operatorname{dim}\left(\boldsymbol{\Phi}_{i \beta}^{*}\right)-\operatorname{dim}(\boldsymbol{\beta}) \\
& =3 p
\end{aligned}
$$

Simulation Study

- Response Models:
- Continuous response: $Y_{i j} \sim N\left(\mu_{i j}, 1.0\right)$ with

$$
\mu_{i j}=\beta_{0}+\omega_{i j} \beta_{1}
$$

- Count data: $Y_{i j} \sim \operatorname{Poisson}\left(\mu_{i j}\right)$ with

$$
\log \mu_{i j}=\beta_{0}+\omega_{i j} \beta_{1}
$$

Simulation Study

- Response Models:
- Continuous response: $Y_{i j} \sim N\left(\mu_{i j}, 1.0\right)$ with

$$
\mu_{i j}=\beta_{0}+\omega_{i j} \beta_{1}
$$

- Count data: $Y_{i j} \sim \operatorname{Poisson}\left(\mu_{i j}\right)$ with

$$
\log \mu_{i j}=\beta_{0}+\omega_{i j} \beta_{1}
$$

- Measurement Error: $W_{i j} \sim N\left(\omega_{i j}, \sigma_{e}^{2}\right)$
- True covariate: $\quad \omega_{i j} \sim N(0.5,1.0)$
- Missing Data Models: $\operatorname{logit} \lambda_{i j}=\alpha_{0}+\alpha_{1} y_{i, j-1}$
- Setting: $n=200,500 ; 1000$ simulations

Linear Regression ($n=500$)

Missingness$\left(\alpha_{0}, \alpha_{1}\right)$	True	$\sigma_{e}=0.25$			$\sigma_{e}=1.00$		
		bias	s.e.	rate	bias	s.e.	rate
$(0.5,0.5)$	$\beta_{0}=1$	0.0001	0.0328	95.7	0.0040	0.0530	94.5
	$\beta_{1}=1$	-0.0010	0.0310	95.1	-0.0071	0.0658	95.6
$(0.5,0)$	$\beta_{0}=1$	0.0017	0.0385	96.0	0.0006	0.0609	95.3
	$\beta_{1}=1$	0.0007	0.0357	95.6	-0.0031	0.0751	94.7
(0.5, -0.5)	$\beta_{0}=1$	0.0005	0.0696	94.4	0.0046	0.1066	93.8
	$\beta_{1}=1$	-0.0021	0.0636	93.4	-0.0161	0.1370	94.2
$(0.5,0.5)$	$\beta_{0}=-1$	-0.0004	0.0725	93.0	-0.0127	0.1156	92.8
	$\beta_{1}=-1$	0.0029	0.0637	93.8	0.0148	0.1458	93.8
$(0.5,0)$	$\beta_{0}=-1$	-0.0008	0.0392	95.8	-0.0046	0.0633	94.3
	$\beta_{1}=-1$	0.0028	0.0361	94.6	0.0087	0.0785	94.2
$(0.5,-0.5)$	$\beta_{0}=-1$	0.0010	0.0331	95.4	-0.0038	0.0531	94.9
	$\beta_{1}=-1$	0.0000	0.0292	95.7	0.0067	0.0654	94.4

Poisson Regression ($n=500$)

Missingness$\left(\alpha_{0}, \alpha_{1}\right)$	True	$\sigma_{e}=0.25$			$\sigma_{e}=1.00$		
		bias	s.e.	rate	bias	s.e.	rate
(0.1, 0.1)	$\beta_{0}=0.2$	-0.0012	0.0410	94.5	0.0017	0.0491	95.1
	$\beta_{1}=0.2$	0.0023	0.0343	93.4	-0.0018	0.0509	93.7
$(0.1,0)$	$\beta_{0}=0.2$	0.0020	0.0448	94.1	0.0032	0.0522	93.8
	$\beta_{1}=0.2$	-0.0005	0.0369	94.6	-0.0032	0.0545	94.6
(0.1, -0.1)	$\beta_{0}=0.2$	0.0019	0.0465	94.6	0.0042	0.0530	95.4
	$\beta_{1}=0.2$	0.0006	0.0401	93.1	-0.0018	0.0569	94.4
(0.1, 0.1)	$\beta_{0}=0.2$	0.0015	0.0412	94.7	0.0065	0.0583	95.7
	$\beta_{1}=0.4$	-0.0011	0.0326	93.7	-0.0053	0.0566	94.4
(0.1, 0)	$\beta_{0}=0.2$	0.0016	0.0447	94.7	0.0045	0.0610	95.0
	$\beta_{1}=0.4$	0.0008	0.0325	94.6	-0.0055	0.0605	94.2
$(0.1,-0.1)$	$\beta_{0}=0.2$	0.0016	0.0495	94.1	0.0070	0.0708	94.4
	$\beta_{1}=0.4$	-0.0007	0.0366	94.2	-0.0060	0.0689	94.2

SUMMARY

- Finite sample biases are reasonably small, suggesting that the estimates obtained from the proposed methods are consistent.
- Standard error tends to increase as the magnitude in measurement error increases.
- Coverage rates agree well with the nominal level 95%, which indicates that the resultant estimators are reliable.
- Increasing sample size can reduce the magnitude of the finite sample bias and standard error, and the effect on the latter seems more striking.

Discussion

- We proposed a semiparametric approach in the sense that the full distribution form of the response process is not needed. Instead, only the marginal mean and variance structures are assumed.
- We considered a functional method for the measurement error model, where the distribution of the true covariates is not required.
- The proposed methods can be extended to the case with multiple error-prone covariates.
- More flexible missing data process can be accommodated by incorporating error-prone covariates into the modeling.

[^0]: ${ }^{a}$ Nakamura 1990

