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Motivation
� Nonlinear mixed-effects models (NLME) are popular in many

longitudinal data analyses, such as HIV viral dynamics,

pharmacokinetic analyses, and studies of growth and decay.

� In a NLME model, the within individual trajectory is modeled by a

nonlinear model, while the between individual variation is

incorporated by random effects.

� A NLME model incorporates correlation within repeated

measurements, and allows for individual-specific inference.

� Covariates may be introduced to partially explain the between

individual variation.
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Motivation

Common problems in statistical analyses:

� Some subjects may drop out early, and the dropout may be

informative.

� The covariates may contain missing data.

The above two problems may be present simultaneously. So

standard complete-case methods are not applicable. We propose

likelihood methods which incorporate dropouts and missing

covariates simultaneously.

3



Notation

The following notation will be used in this talk:

� � ��� �� �� �	� � � � � �
 ��
 : response measurements at times

� �� �	� � � � � �
 � for individual � .

� � ��� ��� �� �	� � � � � �
 ��
 : missing data indicator for individual � ,

i.e.,� � � � � if� � � is missing and 0 otherwise.

� � � � ��� �� �	� � � � � � � �
 : � baseline covariates

� We write � �� � �� �� � � � �� � � � �� , � ��� � �� �� � � � �� � � � �� .
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The Model and Likelihood

A general NLME model

� � � � � ��� � � �� �� � � � � � � � �� �	� 
 ��� ���� � � � (1)

� � � � � � � �� ��� �� � � � i.i.d.� 
 ��� ��� � � (2)
� � � ��� � � ��� � � � � � ��� � � � 
 � (3)

Marginal density of � �

� � � � � � � ��� � �� �� � ��� � � � � � � � � � ��� � ��� � �� ���� � � �� � �� ��� � � �

(4)

which usually does not have a closed-form expression.
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The Model and Likelihood

Monte-Carlo EM Algorithm: A modification of standard EM

algorithm, with the E-step being approximated by Monte-Carlo

methods (e.g., MCMC methods, rejection sampling methods,

importance sampling methods).

We may view the random effects� � as additional “missing data”, so

we have

Missing data: �� � � �� �� � � � �� �� � ��

Observed data: � � � � � � � � �� � � � � � � ��

Complete data: � � � � � � ��� � � � ��

Let � � ��� �� �� � � � � � � denotes the collection of all parameters.
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The Model and Likelihood

The observed data likelihood is given by

� � � � � � � � � � � � � � � ��� � ��� � �� �� � �

� � � � � �� � � �� � �� � � �� �� � �� �� �� � �� � � �

The above integral is usually intractable.

We consider obtaining the MLEs of � by a Monte-Carlo EM

algorithm.
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A Monte-Carlo EM Algorithm

E-step: compute the conditional expectation of the complete-data

log-likelihood given the observed data, i.e.,

� � � � � ��� � �� � ��� � 	 � � � � � � � ��� � ��� � �� �� � �

� � � 	 � � � � �� � � � � 	 � �� � �� �

� � � 	 � � � � � � � � � � ��� � � � � 


� � � �� �� � � � �� �� � � ��� � �

� � � � � � � �� � � � � � � � � ��� � � � � � �� �� �� � �� �� �� � �

which can be evaluated by Monte-Carlo methods.
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A Monte-Carlo EM Algorithm

We can generate samples from � � � � �� � � � �� �� � � ��� � � �� � � � � �

�� � � � � ��� � � � � � ��� � �� using MCMC methods. E.g., we may use Gibbs

sampler to generate from the full conditionals

� � �� �� � � � � � � � � � � � � ��� � ��� � � � � � ��� � � � �

� � �� �� � � � �� � � � � � � � ��� � ��� � � � � � ��� � � � �

� �� � � � � � � � ��� � � � � � ��� � �� �
Then, we approximate � � � � � �� � �� by its empirical mean, with

missing data replaced by simulated values.
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A Monte-Carlo EM Algorithm

Sampling methods for the E-step:

� Gibbs sampling

� adaptive rejection sampling

� multivariate rejection sampling

� importance sampling.

The M-step is like a complete-data maximization.
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Multivariate Rejection Sampling

Consider sampling from � �� � � � � � � � � � � � ��� � �� . Let

� �
�� �� � � � � � � � � ��� � � ��� � �� and � � sup � � � �
��� � � . A random

sample from � �� � � � � � � � � � � � �� � �� can be obtained as follows.

Step 1: sample� �
� from � �� � �� � � � � , and independently, sample �

from the uniform(0,1) distribution;

Step 2: if � � � �
�� �
� � 	 � , then accept� �
� , otherwise, go to step 1.
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Importance Sampling

� �� �� ��� � �
	

�
� �

�
�

�
�

� �
� �

�  �
� ��� �� ��� �� � �� �� � �  �! � � �� �� � �  #" � �� � �  " ! � � �� �� � �  %$ ! � � �� �

&
'

(
 (5)

where

�� � �� � �

� � �
�� � �� �� � � � �
�� � �� �� � � ���
�� � �� � �� � � � � � �� � � � � � ��� � � �

) � � �
�� � �� �� � � � �
�� � �� �� � � ���
�� � �� �

are importance weights.
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A Monte-Carlo EM Algorithm

Variance-covariance matrix of �

� �
�

� � �
�

�� �
� �

� � �
�

� �
� � � �

�
� � �  � � �

�
� �

where

� � � �
�

� � � �� �
	 � �� � � � � �
�

�� � �� �� � � � �� � � � � �
� �� � �� �� � � �
�� � � �� � 	 � � � � � 

�

and

� �
�

�� � �� �� � � �
� �� � �� �� � � �
�� � � �� � � � � � ��� � � � � � � denotes a sample

generated from � � � � �� � � � �� �� � � ��� � � �� � � � � � �� � � � � � ��� � �� .

The approximate asymptotic covariance matrix of
�

� is ��� �
�

�
� � .
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A Monte-Carlo EM Algorithm

Potential computational problems:

� very slow convergence

� non-convergence

These problems may occur when the dimension of the “missing

data” �� � � �� �� � � � �� �� � �� is high, especially when the dimension of

the random effects� � is high.
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An Approximate Method

To avoid the potential computational problems with the previous

method, we consider an approximate method which may be

computationally much more efficient:

� Take a Taylor expansion about

� � � ;

� Convert the NLME model to a linear mixed-effects (LME) model;

� Handle missing data in the LME model;

� Integrate out� � in the E-step.
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An Approximate Method

We rewrite the NLME model (1) and (3) as a single equation by

combining the two stages

� � � � � � � � � � �� ��� �� � � � � � � � � �	� � � ��� � � � � � �	� � � � 
 �

(6)

Iterative solve the following LME model

�
� � � � �� �� �� � � � � � (7)

where

�
� ��� � ��� � � � � � �

�
� �

� � �� � � �
�

� � � �
� � � � � � � �

� � � � � � � �� ��� �� 	 � �  �� � � � � � � � � � � �� ��� �� 	 � �  � �
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An Approximate Method

Note that we have

� �
�

�� �� � � � �� �� � � ��� � � �
�� � � � � � �� � � � � � � � �

�
� � � � �� � � �� � � � � �

�
� �

� � �
�

�� �� � � � �� �� � � � �� � � � � � � �� � � � � � � � �
�

� � �

where�
�� �� � �� �� �� � �� � � � �� �� � � �

�
� �

� � �� � � � � �� �� � ��
�

� �� � � �� �� � ��
� � � ��

� � � � � � is defined similarly, and

�
� ��� �

�
�� �� � � �

�
� � � � � �� .
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An Approximate Method

Under the LME model (7), it is straightforward to show that

�� � � �� � � � � �
�

� �� 
 �
�� � �
�

� ��

where

�
� ��� �
�  � � � 

�� � � �� � �
�

� � �
�� � �

�
� �� 
� �

�
� �� � �

�
� � 	
� � �
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An Approximate Method

Then, the E-step of the EM algorithm can be written as

� � � � � ��� � �� � ��� � 	 � � � � � � � ��� � ��� � �� �� � �

� � � 	 � � � � �� � � � � 	 � �� � �� �

� � � 	 � � � � � � � � � � ��� � � � � 


� � � �� �� � � � �� �� � � ��� � �

� � � � � � � �� � � � � � � � � ��� � � � � � �� �� �� � �� �� �� � �

� � � � �� � �
� � � � � (8)

where
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An Approximate Method
�

� � � � � �
� � � 	 
��  � � �
� �  �

tr 
�� �� � �
�

� � ��� �
�

� � � � � � � � �
�

� � �
�

���  

! " 

�

�# �$ % � &(' # �$ % � )
�

�* + $ % � &(' * + $ % � &(, � &
�

- ��.
�

�# �$ % �. ' # �$ % � / &

�
�  � � � 	 " 
' � )10 � " 
' # �$ % � )
�

� � &(' * + $ % � &, � &
�

- �. ' # �$ % �

�
� 2 � � �

� � � 	 )�3 ) � �
� tr 
 3

4 � �� � �

� �
� �

�
� �� 3

4 � � � � � " 

�

�# �$ % � &' # �$ % � )
�

�* + $ % � &(' * + $ % � &, � &
�

- � .
�

�# �$ % �. ' # �$ % � &

�
� 5 � � � 	 " 
, � )
�

� � &' � & 6 � " 

�

�# �$ % � &(' # �$ % � )
�

�* + $ % � &' * + $ % � &(, � &
�

- ��.
�

�# �$ % �. ' # �$ % �7
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An Approximate Method

Characteristics of the approximate method:

� The integrals in the E-step do not involve the random effects� � ;

� In the E-step we only need to simulate samples from

� �
�

�� �� � � � �� �� � � � �� � � � � � � �� � � � � � � � �
�

� � rather than

� � �� �� � � � �� �� � � ��� � � � � � � � � � �� � � � � � � � � �� � �� in the likelihood

method.

� The dimension of the “missing data” is reduced to

�
�

�� �� � � � �� �� � �� from � �� �� � � � �� �� � � ��� �� . So the approximate

method is computationally more efficient!
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Time-Dependent Covariates

When the covariates are measured repeatedly over time, a

multivariate repeated measurement model for the covariates with

missing data should be specified.

We may consider a multivariate mixed-effects model for the

incompletely observed time-varying covariates

Let � �� � � �� � � �� ��� � � � � �� � ,� �� � �� � � �� be a vector

obtained by stacking all covariates � � � � � � � � ��� � � ��� � .
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Time-Dependent Covariates

A multivariate LME model for individual � can be written as

� �� � �� � ��� � � � � � � � � ��� ��� � � � 
 �

where � � and � are block diagonal matrices with the� blocks

containing design matrices for each of the� covariates,� is a

vector of fixed-effects parameters,� � is a vector of random effects,

and � ��� � �� � � �� � � �� ��� � � � � �� � .

We may assume that� �� 
 � � ��� � and � � � 
 � � ��� � .
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Time-Dependent Covariates

The observed data log-likelihood can now be written as

� � ��  ��  ��  ��  ��  �  � � 	
�

� �

 � � �

 �
�  �

�� �� � � ��  %$ �  �� � �

� � �� � ��� �  �� � � �$ � �� � � � � � �� � � ��� � � � �  �� �  � �

� � ��� � �� �  �� �  � ��� $ �� � �� � � �� � �� � � �� � � 
��
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Time-Dependent Covariates

The “complete data” log-likelihood can now be written as

� �
� �� � �

�
�� � �� � 	 � � � � � �� ��� � � � �� � � � � 	 � � � � � �� � � � � �

� � � 	 � � �� � �� � � � � � 	 � � � � � �� � � � � � 	 � � � � � � � � � � � � � � �

� � � 	 � � ��� � � � � � � � � � � � / �
where�

� �� � � ��� ��� � � � � � . Then a Monte-Carlo EM

algorithm can be used to obtain the MLE of� .
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Time-Dependent Covariates

In this case, we need to generate random samples of

� �� �� � � � � � �� � � � � � ��� �� from

� � �� �� � � � � � �� � � � � � ��� � � �� � � � � � � � � � � � � � � � � � � � � � � � �

This can again be achieved using the Gibbs sampler combined with

rejection sampling methods.

The computation here will be more intensive since the dimension of

the “missing data” is higher. A more efficient approximate method,

which only needs to sample � � � �� � � � � � �� � �� , can be derived as

before.
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PX-EM Algorithm

The PX-EM algorithm of Liu, Rubin, and Wu (1998) can be used to

speed up the EM algorithms.

The idea is to introduce working parameters to reduce the fraction of

missing information thus speed up the algorithms.

The PX-EM introduces working parameters to the original model

and then applies the standard EM to the expanded model rather

than the original model.
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PX-EM Algorithm

We first consider a PX-EM algorithm for the approximate method.

The expanded model for the LME model can be written as

�
� ��� � � � � �� � � � � � � � � � � � � � � �	� � � � 
 � (9)

where � is an ��� � � � matrix corresponding to the working

parameters.

Implementation of PX-EM: the E-step is unchanged, while the

M-step is a simple modification of the original M-step by including

the maximization over � as well.
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PX-EM Algorithm

Implementation of a PX-EM for the likelihood method: we may

introduce working parameters � so that the second stage model of

the NLME model becomes

� �� � � � � �� � � � �� �

Then we apply the standard EM to the expanded model, which

differs from the original model only by the working parameters � .
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An Example

We consider an AIDS dataset, and model the viral load trajectory

after an anti-HIV treatment. There are fifty-three HIV-1 infected

patients. Five patients dropped out of the study, and sixteen patients

have missing viral loads at scheduled time points.

Visual inspection of the raw data seems to indicate that dropout

patients appear to have slower viral decay, compared to the

remaining patients. Thus, the dropouts are likely to be informative or

nonignorable. The covariates CD4, CH50, and TNF contain 20.5%,

19.0%, and 16.7% missing data respectively.
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An Example

We consider the following HIV viral dynamic model (Wu and Ding,
Biometrics, 1999)

� � � 	 
 � � � � ��� � ����� � � � � � 	 
 � � ���� � � � � � 	 � 
 � � �  (10)


 � � � � � � � 	  � 
  ��� �� 
� � �  � � � 	 � 
 � � �� 
 ��� � � 
� � �  


 � � � � � � � 	 � 
 � � �� 
� � �  � � � 	 � 
 � � � �� 
� � �  (11)

where� � � is the� � 	 �  -transformation of the viral load measurement,

! � � and !� � represent two viral decay rates, and " # � ’s are random

effects.
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An Example

We focus on the following covariate models:

Model 1: � � �� �� � � � 
 ��� �  � � � � � �

Model 2: � � �� �� �� � � � � � 
 � ��  � �� � � �� � �� � � �

Model 3: � � � � �� �� � � �� � � � � � 
 � � �  � � � � � �� � � �� � �� � � � � � �

where� �
� � � �  � � � � � � �� � � � � � � � � � ����  � �� � � �� � � , and

� � � � � �  � � � � � .
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An Example

We first consider the following dropout model

� � � � � � �

�
� �

� ��� � �  �� � �  � �  � � � �
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� �
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Table 1. Estimates for Viral Dynamic Parameters.

Like. (nonig.) Like. (ignor.) Appr. (nonig.) C-C

Parameter Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.

 � 12.17 0.09 12.01 0.10 11.98 0.11 12.47 0.20

 � 0.66 0.15 0.71 0.16 0.71 0.14 0.75 0.20

� 33.14 1.47 35.21 1.41 34.61 1.33 37.87 2.60

� 4.98 2.36 5.57 1.10 5.53 1.95 6.41 3.29

 � 4.84 0.93 5.33 0.44 5.31 0.25 5.19 1.99

� 7.34 0.09 7.08 0.07 7.07 0.13 7.65 0.28

� 0.55 0.08 0.58 0.08 0.58 0.03 0.56 0.17

� 1.90 0.13 1.65 0.06 1.62 0.23 2.15 0.54

� 0.15 0.11 0.12 0.05 0.13 0.05 0.14 0.27
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An Example

Data analysis results:

� The likelihood methods under nonignorable and ignorable

missing data mechanisms and the complete-case method

produce somewhat different results.

� The estimate of the initial viral decay rate � �

is the smallest

using the likelihood method under nonignorable missing data

mechanism and is the largest using the complete-case method.

� The approximate method and the likelihood method produce

similar estimates.
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Sensitivity Analysis

It is important to check the sensitivity of parameter estimates to

various plausible dropout models.

we consider the following plausible dropout models

Model I: logit� � ��� � � 	 � � � � � 	 
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� � � �� 
 
� � � �  

Model II: logit� � ��� � � 	 � � � � � 	 
 � 
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 � � � � �� � 
 
� � � �  

Model III: logit� � ��� � � 	 � � � � � 	 
 � 
 
 � � � � 
 
 � � �� ��

We find that the resulting parameter estimates for the viral dynamic

parameters� are all similar.
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Conclusions
� Statistical analyses ignoring dropouts or missing covariates may

lead to misleading results, such as over-estimating the initial viral

decay rate.

� The current or immediate previous viral load values may be most

predictive for patients’ dropout.

� The likelihood method may be preferable when it does not exhibit

computational difficulties.

� When the likelihood method exhibits computational problems

such as slow or non convergence, the approximate method may

be preferable.
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Conclusions
� The approximate method may avoid some computational

difficulties such as slow or non convergence, and is also

computationally more efficient.

� Estimates based on the approximate method may be excellent

starting values for the likelihood method.

� We should avoid too complicated dropout models since these

models may be non-identifiable.
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