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Latent Variables & Measurement Error

• Real, but difficult to measure 
(Platonic) 

• Physical / medical sciences

ξ = calorific intake 
X = self-reports on eating 

• May have replicate measures

• Often continuous measures 

• Hypothetical, useful for theory 
building  

• Social / education / business  
sciences
ξ = peer relations  
X1 = I have many friends (1-5) 
X2 , X3, X4, etc… 

• Not replicates
• Typically discrete measures 

Unobservable Variables 

Both comprise measurement error problems

“Errors in Variables”“Latent Variables”



Measurement Error Models
• Fuller (1987): Measurement Error Models
• Carroll, Rupert, & Stefanski (1995): Measurement Error in 

Nonlinear Models

Linear:  Y = �0 + �1� + �2Z + �

Non-linear: E(Y| � , Z) = f (� , Z, �)

X = � + � ;  � (� , �) = 0;  Z exactly measured

Need side-conditions on unknown variances

For example, if  � 2 (�) known or estimable, we can estimate �

Validation data, replication data, instrumental data



The Social Science Approach to Latent 
(Measurement Error) Models

• The measurement model (one factor)

• Identification: set �1=1 or set �2(ξ ) =1

• Note: Even if �1=1, X2, …, X p are not conditionally 
unbiased for ξ, i.e., NOT replicates.
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The Social Science Approach to Latent 
(Measurement Error) Models

• The structural model
– one (or more) linear equations

� = �0 + �1�1 + �2�2 + �3Z + �

– link with measurement models for η and ξξξξ, using manifest 
variables Y, X1 and X2.

– Can do simultaneous estimation of structural and measurement

model parameters using SEM methods (ML, GLS, other).



One Slide Summary of SEM Methods

• Basic version (Joreskog, 1972) used ML, later GLS

• Consistent parameter and s.e. estimates if Y and X’s normal

• For non-normal Y and X’s, parameters consistent, s.e.’s not

• ADF, PML and DWLS versions yield consistent s.e.’s
– the latter two with some loss of efficiency

• For discrete data, main issue is skewness and kurtosis, not the 
discreteness itself, provided # categories is 5 or more

• Discrete SEM (Muthen, 1984) models discreteness directly 

• Some complex survey facilities available



Latent Variable Modeling in Practice

• Some data analysts use simultaneous  SEM methods

• Many do not
– Lack of familiarity
– Concerns re normality “requirements”
– Convergence problems when N is small, or model is large

• Alternative methods
– OLS regression with latent variable ‘scores’ (Two-step)
– Two-stage / instrumental variables regression (Bollen, 1996)
– Partial Least Squares (PLS; Wold, 1982, 1985)

• Will focus on two-step and 2SLS/IV methods



Two-Step Methods
• Consider one or more LV’s in a  single linear equation

� = �1�1 + �2�2 + �3 Z + � (1)

with ζ independent of ξ1 and ξ2, Z exactly measured,
and E(η) =  E(ξi ) = E(Z) = 0.

• Assume that ξi and η satisfy measurement models

Y = λλλληη + εεεε and Xi = λλλλξiξi + δi ,  i = 1, r

• Estimate (predict) ξi and η using measurement models

- replace ξi and η in (1) by their predicted values

- estimate β ’s by OLS



Predictors
• Factor scores

- Regression

- Bartlett

• CTT scores                           , 
- use when Cronbach’s alpha   

• IRT scores 
– nonlinear functions of Y, Xi  – next slide
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• IRT Scores
- Item characteristic function (binary manifest variables)

P(Yj=1|η) = Pj(η) = Φ[aj(η – bj)]

- Joint conditional probability of Y

P(Y |η ;a,b) = Πj [Pj(η )]Yj[1 – Pj(η )]1-Yj

- Assumed (or empirical) distribution of η  is g(η)     
- hence P(η | Y )
- hence  E(η | Y ) = 

- Above referred to as EAP; also have MLE and WLE

η̂



Consistency of the Two-Step Method

η = β β β β ////ξξξξ +  ζ, ξ and ζ independent,
with zero means.

where

=η̂ u+
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Some Sufficient Consistency Conditions

Given
• ξ and ζ independent, 
• Y satisfies a trait model with univariate trait η,
• X1 . . . Xr satisfies a trait model with multivariate traits

ξ1, . . . ξr , and

(1)       = E(ξξξξ | X ),    a calibration estimator

(2)                     ,      i.e.,     is conditionally unbiased.,

then        is consistent for ββββ .

ξξξξ̂

ηηη =)|ˆ(E

ββββ̂

η̂



Example 1    η = β β β β ////ξξξξ +  ζ

• Continuous manifest variables, Y and X
• obtained via Bartlett factor scoring
• obtained via blockwise regression factor scoring

- Bartlett scores are conditionally unbiased for η

- Regression scores are Bayes predictors for
multi-normal X and ξξξξ

• See Skrondall and Laake (2001, Psychometrika)

η̂
ξξξξ̂



Example 2      Simple Regression, 
Exact on Latent

Y = βξ + ζ

• Continuous Y (i.e., exactly measured η )

• Single ξ

• Discrete X

• obtained via IRT / EAP scoring (EB) ξ̂



Percent Bias, Exact on Latent (EAP)
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Example 3      Exact on Multiple Latent

Y = β β β β /ξξξξ + ζ, ξξξξ = (ξ1, . . . ,ξr)/

• Scores for ξξξξ via multivariate (blockwise) EAP scoring

-
- not the usual case

• Typically, univariate (factorwise) scoring is used, i.e.,

- , k = 1, . . . , r
- yields estimate   

• consistent if  ξk’s are independent (see also S and L)
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Percent Bias, Exact on Latent (univ. EAP)
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• Note 1
η = ββββ ////ξξξξ + γZ + ζ

If Z is correlated with ξξξξ, then neither univariate nor 
multivariate EAP scoring of ξξξξ will yield consistent 
parameter estimates.

Need  , or a simpler alternative.

• Note 2
There is no cond’lly unbiased IRT scoring procedure
- Bias (EAP) = O(1/n)
- Bias (WLE) = o(1/n)

WLE / mult EAP         Bartlett / Regression?
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Analysis of Bias in Two-Step Regression
(Croon, 2002; C and R, 2002)

• Continuous case / discrete case not tractable
• Simple regression

η = βξ + ζ
Y = λλλληη + εεεε and     X = λλλλξξ + δδδδ

and

• OLS

where                          and                      
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Analysis of Two-Step Bias, cont’d

• and     conditionally unbiased when πη = πξ = 1
- yields the classical attenuation result

• Otherwise, error variance not only source of bias
- π η implies bias if η regressed on exact ξ = X

• Can recover S and L result
- Bartlett scoring     πη = 1
− Regression scoring πξ  =

��
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Analysis of Two Step Bias, cont’d
• Also, for

• Thus, for a test of H0: β = 0,                cancels
- test  power depends only on       and       . 
- i.e., on error variance not prediction bias

• OLS-based estimate of                   also consistent

• No equivalent results for discrete / IRT two-step
- above is a rough guide
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(                   ;  N = 300; )                   707.2 =ρ=γ S 7072 .== M

Y
i ρλ

2-3-6-6-32-520

40-20-19-32-195
5

187-13-11-43-1120

1815-32-31-43-315
2

CTTIRTCTTIRTCTTIRT

B(se)B(R2)B(β)
# 

itms
# 

cats.



Percent Bias for Exact on Latent (EAP)
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Notes for Latent on Latent Two Step
• For latent on latent two-step regression, with similar 

measurement models for response and explanatory 
latent variables, CTT and IRT/EAP biases are similar

• Effects of category numbers and scale lengths are 
similar for simple and multiple regression, though degree 
of correlation between latent explanatory variables 
affects magnitudes of biases

• To minimize bias, use long scales and a minimum of 5 
categories per item



Instrumental Variables / Two Stage Least 
Squares

Y = β β β β ////ξξξξ +  ζ, ,                      
X = ξξξξ + δ ,δ ,δ ,δ , ξ, δ ξ, δ ξ, δ ξ, δ and ζ  independent and                                               

normally distributed
• Assume such that ,      

but  Z is uncorrelated with δ δ δ δ and ζ.
• Let         , and write

Y = β β β β //// + u,       u = ββββ’(X - )  +  (ζ − ββββ’δδδδ)   
• Then, u is uncorrelated with                , and Z,  if

E[(X – AZ)Z/] = 0 A = E(XZ/)E-1(ZZ/) 1st stage
• Regress Y on Z to get estimate of β β β β /A = G
• Hence, from   ββββ / = GA/(AA/)-1,  get estimate 2nd stage

rR∈ξξξξRY ∈

qR∈Z 0≠)'( ξξξξZE
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X̂ X̂
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�
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Bollen’s (1996) 2SLS Approach
(see also Joreskog and Sorbom, 1993) 

� = �0 + �1�1 + �2�2 + �

Measurement Models
Y1 =      � +  �1

Y2 = ��2 � +  �2
.
.
.

Yp = ��p � +  �p

Xi1 =      �i +  �i1

Xi2 = ��i2 �i + �i2
.
.
.

Xip = �� ip �i + �ip

(Y1 - �1) =  �0 + �1 (X11 - �11) + �2 (X21 - � 21) +  �

i.e., Y1 = �0 + �1 X11 + �2 X21 + u ,

where          u = � - �1 �11 - �2 �21 + �1

Hence 

i = 1, 2



2SLS Approach (cont.)

Instruments : Xi2 , . . . , Xip , for i = 1, 2

First Stage: 

Regress X11 on q = 2(p-1) instruments to get          

Regress X21 on q instruments to get           

Second Stage:

OLS of Y1 on                         to get consistent 

estimates of               21
ˆ  and  ˆ ββ

11X̂

21X̂

2111 X̂  and  X̂



Issues
• Bias

- increases as # instruments increases
- for univariate ξ, under the Bollen setup

- similar to Nagar (1959) for individual equations in 
econometric systems

• Finite Sample Moments
- may only exist up to degree  r(p – 2)
- ref Mariano (1972), Phillips (1983) for discussion of 

limited info estimates in econometric systems

• Tradeoff?

Npr /])([ˆ 12 −−∝− ββ



Bias vs Scale Length, For Two Explanatory LVs
True R2 =0.5; ρ(ξ1,ξ2)=0.5; λ’s =0.775; 5 cats; N=150

-20.7-11.03620

-9.6-4.91610

-3.0-1.565

0.00.023

1.5-0.802

B(R2)B(b)# Free IV’s
q-r = r(p-2)

# Items /
scale (p)



Issues,  continued

• Y2 , . . . , Yp not used in the single equation 
application of Bollen’s method

- select the one with the highest loading?

- the highest R2  on the predictor X’s ?

- Use Bartlett (conditionally unbiased) score?

- other?



2SLS Simulation, Two Explanatory LVs, 
Discrete Indicators

• Sample Size = 300, β’s=.707,  λ’s = .775

0.2
-0.6
-9.5
-9.9
1.0

0.1
-0.5
-4.9
-5.1
0.4

2SLS(A)
2SLS(B)
2-Step (CTT)
2-Step (IRT)

Discrete-SEM

10Y. 10X1, 10X2
(C’s α = 0.94)

0.5
-0.4

-18.4
-19.7
2.6

0.2
-0.2
-9.7
-9.8
1.2

2SLS(A)
2SLS(B)
2-Step (CTT)
2-Step (IRT)

Discrete-SEM

5Y, 5X1, 5X2
(C’s α = 0.88)

%B(R2)%B(ββββ)Method# items

• 2SLS(A): Item Y1 used for    . . . . 2SLS(B): Bartlett score for    .
• 2 Instruments: means of X1,2 … x1,10, and X2,2 …X2,10, resp.

η̂ η̂



2SLS for Probit with Latent Predictors
(Bollen, Thomas, Wang & Hipp, 2005; SAMSI / NPCDS)

≤

P ( Y = 1 | � , � ) = f (� , � )

Consider probit model:  

with  � ~ N( 0 , �� ), independent of � ~ N(0, 1)

and Y = 1 when y* > 0  and Y = 0 when y     0        

Measurement models as before for �1, … �r

Hence unbiased predictors X1,1, …, Xr,1 for �1, … �r

Assume instruments Z1, …, Zq (q       r)≥
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2SLS Probit with Latent Predictors, cont’d

k1
ˆ ,  ...  ,ˆ ββ k12111 X̂ ,  ...  ,X̂ ,X̂

Step 1. Regress Xi1’s in turn on Z’s to get                                        

(Variance of disturbance now no longer ≠ 1 )

Step 2. Probit regression of Y on                                to get 

Step 3. Estimate variance of disturbance term – need polychoric

correlation of y* and X – obtain bias correction factor

Step 4. Correct                           to get                

Step 5.  Get linearization estimator using plug-in estimate of C(y*, X)

Note:         are consistent, unlike the calibration 
method of CRS.

k1
ˆ ,  ...  ,ˆ ββ *

k
*
1

ˆ ,  ...  ,ˆ ββ

k121 X ,  ...  X ˆ,ˆ,ˆ
11X

k12111 X̂ ,  ...  ,X̂ ,X̂ k1
ˆ ,  ...  ,ˆ ββ

*β̂βββ



2SLS Probit with Latent Predictors, cont’d

3 latent predictors, R2 = 0.5; 3 indicators per latent predictor; 
CD = 0.5 for each indicator; 2 IV’s per latent predictor;

No.0017.00181000

Yes.0026.0092500

Yes.0046.0187200

Yes.0091.0311100

Bias Detected?Sample Size 
(N)

v Mean bias for intercept undetectable even for N = 100

B )B(σσσσ ))B(2|B(| σσσσ>

Simulation
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