Joint models for longitudinal and survival data, with application to prostate cancer.

> Jeremy M. G. Taylor Department of Biostatistics University of Michigan

Joint work with Menggang Yu, Wen Ye, Xihong Lin

Outline

- INTRODUCTION
- DESCRIPTION OF JOINT MODELS
- PROSTATE CANCER APPLICATION
- SEMI-PARAMETRIC LONGITUDINAL MODEL
- OPEN RESEARCH ISSUES

- Setting: Clinical trial or Observational study
- Biomarker, longitudinal variable
 - Internal covariate (a measure of disease progression)
 - Ex1. CD4 and Viral load in HIV studies
 - Ex2. PSA in prostate therapy studies
 - Continuous variable in longitudinal model
- Clinically important endpoint
 - Occurrence of AIDS, death from AIDS
 - Recurrence of prostate cancer following treatment
 - Censored event time in survival model

• Data

- $-(t_i, \delta_i)$, censored event time
- $-X_i$, time-independent covariates
- $-Y_{ij}$, time-dependent covariate, biomarker
- Both T and Y are response variables
- X could be treatment group or stage of disease

TIME SEQUENCE

- 1. Intervention or Exposure, X
- 2. Longitudinal Biomarker, Y
- 3. Clinical Event, T

PRIOR KNOWLEDGE

- From science/biology and preliminary data
- Expect Y to be affected by X
- Y associated with T

MY APPROACH TO MODELLING LONGITUDINAL DATA

- 1. There is an underlying multivariate stochastic process that generated the data
- 2. Goal of modelling is to describe and understand the stochastic process
- 3. Scientific context and prior similar data may suggest some reasonable assumptions, for example
 - Smoothness, monotonicity
 - Unimodal distributions
 - Exponential growth
 - Transformations
- 4. Model should be faithful to the time sequence
- 5. A variety of conclusions and inferences follow from the descriptive model

- 6. Statistical parsimony
- 7. Efficiency matters as well as bias
- 8. Data should fit the model

- General model for [T, Y | X]- Factor as [Y | X][T | Y, X]
- [Y | X], longitudinal model
 - random effects
 - measurement error
 - unbalanced time of observations
- [T | Y, X], survival model
 - time-dependent Cox model
 - Y not fully observed
 - dependent censoring

POSSIBLE GOALS

- 1: Survival analysis, parameters of [T | Y, X]
- 2: Longitudinal analysis, parameters of [Y | X]
- 3: Estimation of marginal survival distribution, [T] or [T | X]
- 4: Use Y as a auxiliary variable to help in the estimation of [T]and $[T \mid X]$
- 5: Use Y as a surrogate endpoint, instead of T, in a clinical trial.
- 6: Prediction of future longitudinal and event times for individual patients

GENERIC JOINT MODEL

• Longitudinal model (random effects)

$$-Y_i(t_{ij}) = Z_i(t_{ij}) + e_{ij}$$

$$-Z_i(t) = X_i\beta + a_i + b_i t$$

- $-(a_i, b_i) \sim \text{Gaussian}$
- Hazard model (proportional hazards) - $\lambda(t) = \lambda_0(t) exp(\alpha Z_i(t) + \omega X_i)$
- $\lambda_0(t)$ parametric or non-parametric
- Estimation
 - MLE, usually EM algorithm
 - MCMC
 - Computationally intensive, no standard software

SOME ISSUES

- Change linear $(a_i + b_i t)$ to smooth/stochastic process $(f_i(t))$
- (a_i, b_i) not Gaussian, robustness.
- Hazard depends on more than current value of $Z_i(t)$
 - History of Z $\{Z_i(s), 0 \le s \le t\}$
 - Slope of $Z_i(t)$

Data

- Patients treated with radiation therapy for prostate cancer (n=921).
- Baseline covariates.
- Longitudinal marker (PSA).
- Censored clinical event times.

 ${\bf Post-treatment} \ {\bf PSA} \\$

- measured every 6 months

- a total of 7306 post-treatment PSA values

- median no. of PSA per patient is 7 (range is 1-31)

- the last PSA is measured at around 144 months after treatment

Endpoints and Censoring

- local recurrence and distant metastasis (n=126)
- censoring: lost to follow-up, end of study, death, start of hormonal therapy (n=795)
- follow-up time: median = 50 months , maximum = 148 months

Goals

- 1. Understand the relationship between
 - Baseline variables (Gleason Score, T-stage, bPSA)
 - PSA trajectory
 - Clinical recurrence (Local recurrence, Distant Metastasis) in a <u>UNIFIED</u> way.
- 2. Make individual predictions.
 - for each patient who hasn't been observed to have a clinical event, assign a probability of the patient being cured or the probability of an event in the next 3 years given their baseline variables and history of PSA.

Idea

- Patient can be 'cured' (D=2) or 'not cured' (D=1). This

occurs at the time of radiation therapy.

- What factors influence the probability of cure
- What factors influence the pattern of PSA given cured.
- What factors influence the pattern of PSA given not cured.
- What factors influence the recurrence hazard given not cured.

Model Specification

Notation

 D_i - partially observed latent variable

 $D_i = 1$ non cure; $D_i = 2$ cure

 \mathbf{X}_i - baseline covariates.

 $PSA_i(t)$ - longitudinal PSA data

 \mathbf{R}_i - random effects of longitudinal model

1. <u>Incidence</u> (long term clinical cure).

logistic model

$$\log\left[\frac{P(D_i = 1 | \mathbf{b}, \mathbf{X}_i)}{1 - P(D_i = 1 | \mathbf{b}, \mathbf{X}_i)}\right] = b_0 + b_1(T_i = 1)$$

 $+b_2(T_i = 2) + b_3 \log(1 + bPSA_i) + b_4(Gleason)$

1. Longitudinal. Non-linear random effects models.

$$\log\left[1 + PSA_{i}(t)\right] = \log\left[1 + r_{i1}e^{-r_{i2}t} + r_{i3}e^{r_{i4}t}\right] + e_{it}$$

where r_{i1}, r_{i2}, r_{i3} and r_{i4} are the unobserved random effects for

subject $i (r_{i1}, r_{i2}, r_{i3} \text{ and } r_{i4} > 0)$.

Separate models for $D_i = 1$ and $D_i = 2$.

Mean structure of $(r_{i1}, r_{i2}, r_{i3} \text{ and } r_{i4})$ depend on X_i .

1. <u>Latency</u>. Time-dependent proportional hazards for those in the susceptible group.

$$\lambda_i (t \mid D_i = 1, \mathbf{R}_i, \mathbf{X}_i) = \lambda_0(t) \exp(\psi(\mathbf{R}_i, t) + \beta' \mathbf{X}_i)$$

where we take

$$\psi(\mathbf{R}_i, t) = \alpha_1 \log \left[1 + PSA_i(t)\right] + \alpha_2 SL_i(t)$$

with $SL_i(t) = \partial \log \left[1 + PSA_i(t)\right] / \partial t$ is the current slope of $\log \left[1 + PSA_i(t)\right]$ at time t.

Computation

Markov chain Monte Carlo based on likelihood and priors

Predict Recurrence for Censored Patients

- Ω : parameters;
- **Y**: observed longitudinal data;
- $\mathbf{T}, \boldsymbol{\Delta}$: survival data;
- t_i : last contact time for patient i;
- $\Omega^{(k)}$: k^{th} draw from the posterior distribution.

For patient *i*, the conditional probability of recurrence within *a* months $P[T_i < t_i + a | \mathbf{Y}, \mathbf{T}, \mathbf{\Delta}, \mathbf{X}_i]$ can be approximated by

$$\frac{1}{m}\sum_{k=1}^{m} P[T_i > t_i + a \mid \mathbf{\Omega}^{(k)}, T_i > t_i, \mathbf{X}_i]$$

Parameters i	n the	failure	time	model:	$\boldsymbol{\beta}, \alpha_1, \alpha_2$
--------------	-------	---------	------	--------	--

Parameter	Mean	S.D.	Mean/S.D.
T1	-1.40	0.31	-4.49
T2	-0.51	0.19	-2.64
bPSA	0.11	0.10	1.11
Gleason	0.39	0.06	6.26
$\log(1+PSA)$	-0.02	0.02	-0.73
Slope	5.32	0.42	12.78

Figure 2: Individual Prediction of clinical recurrence for censored subjects.

Discussion

- Joint modelling can help understand the relationship between biomarkers and true endpoints
- Reduces bias and gains efficiency compared to separately modelling the two responses
- Models are very parametric
- Checking model fits data is non-trivial.

Semi-parametric approach

• Smooth Longitudinal model

$$-Y_i(t_{ij}) = Z_i(t_{ij}) + e_{ij}$$

- $Z_i(t) = X\beta + f(t) + W_i(t)$
- Hazard model (proportional hazards)

$$-\lambda(t) = \lambda_0(t) exp(\alpha Z_i(t))$$

- or
$$\lambda(t) = \lambda_0(t) exp(\alpha_1 Z_i(t) + \alpha_2 SLZ_i(t))$$

- f(t) is a smoothing spline, twice differentiable function.
- $W_i(t)$ is integrated Wiener process.
- Can be represented as a mixed model (Wahba, Zhang and Lin)

Two stage estimation

- Fit longitudinal model, get BLUP estimates of $Z_i(t)$
- Fit hazard model using partial likelihood, with imputed values of $Z_i(t)$

Three approaches

- LVCF, Naive. Use latest value of Y in Cox partial likelihood.
- ORC, Ordinary regression calibration. Use BLUP estimates based on one fit to all the longitudinal data.
- RRC, Risk set regression calibration. Use BLUP estimate based on past longitudinal data amongst those at risk.

Simulation study.

- Focus on estimation of α .
- Considered bias as a function of measurement error, censoring rate

Figure 3: Impact of measurement error

Impact of Measurement Error

Figure 4: Impact of censoring rate

Impact of Censoring

Conclusion from simulation

- ORC and RRC very similar in this semi-parametric model
- Remaining bias due to two-stage estimation, could be reduced by joint estimation

Simulated prostate cancer like data

How good is the estimate of the slope from this semi-parametric model?

Figure 5: Fit to longitudinal data

Real prostate cancer data

Fit semi-parametric longitudinal model

Open issues

- Assessing model fit
- Robustness issues
- Multivariate longitudinal data
- Non Gaussian longitudinal data
- Efficient algorithms