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e Setting: Clinical trial or Observational study

e Biomarker, longitudinal variable

Internal covariate (a measure of disease progression)

Ex1. CD4 and Viral load in HIV studies
Ex2. PSA in prostate therapy studies

Continuous variable in longitudinal model

e Clinically important endpoint
— Occurence of AIDS, death from AIDS
— Recurrence of prostate cancer following treatment

— (Censored event time in survival model




e Data

— (5, 9;), censored event time

— X, time-independent covariates

— Y;;, time-dependent covariate, biomarker

e Both T and Y are response variables

e X could be treatment group or stage of disease




TIME SEQUENCE
1. Intervention or Exposure, X
2. Longitudinal Biomarker, Y
3. Clinical Event, T

PRIOR KNOWLEDGE

e From science/biology and preliminary data

e Expect Y to be affected by X

e Y associated with T




MY APPROACH TO MODELLING LONGITUDINAL DATA

1.

There is an underlying multivariate stochastic process that
generated the data

. Goal of modelling is to describe and understand the stochastic

process

. Scientific context and prior similar data may suggest some

reasonable assumptions, for example
Smoothness, monotonicity
Unimodal distributions
Exponential growth

Transformations

. Model should be faithful to the time sequence

. A variety of conclusions and inferences follow from the

descriptive model




6. Statistical parsimony

7. Efficiency matters as well as bias

8. Data should fit the model




e General model for [T,Y | X]|
— Factor as [Y | X||T'|Y, X]

e Y | X], longitudinal model

— random effects
— measurement error

— unbalanced time of observations

e |T'|Y,X], survival model
— time-dependent Cox model
— Y not fully observed

— dependent censoring




POSSIBLE GOALS

1:

Survival analysis, parameters of [T'|Y, X]
Longitudinal analysis, parameters of [Y | X]

Estimation of marginal survival distribution, [T] or [T'| X]

Use Y as a auxiliary variable to help in the estimation of [T]
and [T'| X]

Use Y as a surrogate endpoint, instead of T, in a clinical trial.

Prediction of future longitudinal and event times for individual

patients




GENERIC JOINT MODEL
e Longitudinal model (random effects)
= Yi(tyy) = Zi(ti;) + €3
— Zi(t) = XiB + a; + bt
— (a4, b;) ~ Gaussian

e Hazard model (proportional hazards)

— AMt) = Mo(t)exp(aZ;(t) + wX;)

e )\o(t) parametric or non-parametric

e Kstimation
— MLE, usually EM algorithm
— MCMC

— Computationally intensive, no standard software




SOME ISSUES

e Change linear (a; + b;t ) to smooth /stochastic process (f;(t))

e (a;,b;) not Gaussian, robustness.

e Hazard depends on more than current value of Z;(t)
— History of Z {Z;(5),0 < s <t}
— Slope of Z;(t)




Data

e Patients treated with radiation therapy for prostate

cancer (n=921).

e Baseline covariates.
e Longitudinal marker (PSA).

e Censored clinical event times.
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Post-treatment PSA

measured every 6 months

a total of 7306 post-treatment PSA values

median no. of PSA per patient is 7 (range is 1-31)

the last PSA is measured at around 144 months after treatment
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Endpoints and Censoring

- local recurrence and distant metastasis (n=126)

- censoring: lost to follow-up, end of study, death, start of
hormonal therapy (n=795)

- follow-up time: median = 50 months , maximum = 148 months




Goals

1. Understand the relationship between

- Baseline variables (Gleason Score, T-stage, bPSA)

- PSA trajectory
- Clinical recurrence (Local recurrence, Distant Metastasis)

in a UNIFIED way.

2. Make individual predictions.

- for each patient who hasn’t been observed to have a clinical
event, assign a probability of the patient being cured or the
probability of an event in the next 3 years given their
baseline variables and history of PSA.




Idea

Patient can be 'cured’ (D=2) or 'not cured’ (D=1). This

occurs at the time of radiation therapy.

What factors influence the probability of cure

What factors influence the pattern of PSA given cured.

What factors influence the pattern of PSA given not cured.

What factors influence the recurrence hazard given not cured.




Model Specification

Notation

D; - partially observed latent variable

D; =1 non cure; D; = 2 cure

X; - baseline covariates.

PSA;(t) - longitudinal PSA data

R, - random effects of longitudinal model



1. Incidence (long term clinical cure).

logistic model

I—P(D,=1]b, X,)

log =by + b1 (T; = 1)

+bo(T; = 2) + bz log(1 + bPSA;) + ba(Gleason)




1. Longitudinal. Non-linear random effects models.

log [1 - PSAq;(t)} — log [1 + re” izt 4 7“7;36”41 + €;¢

where 7;1, 7,0, 7;3 and r;4 are the unobserved random effects for

subject 1 (7“2'1, rio, Ti3 and r;4 > O)

Separate models for D; =1 and D; = 2.

Mean structure of (7;1, 72,73 and 7;4) depend on Xj.
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1. Latency. Time-dependent proportional hazards for those in the

susceptible group.
where we take

b(Ri, 1) = oy log [1 + PSAZ-(t)} + g SLi(t)

with SL;(t) = 0log [1 + PSAi(t)} /0t is the current slope of

log[l + PSAZ-(t)} at time ¢.




Computation

Markov chain Monte Carlo based on likelihood and priors




Predict Recurrence for Censored Patients

(): parameters;
Y: observed longitudinal data;
T, A: survival data;

t;: last contact time for patient ¢;

e QM. Ekth draw from the posterior distribution.

For patient ¢, the conditional probability of recurrence within a
months P[Ti <t;+a|lY, T, A, Xz] can be approximated by

> P[T; >ti+a|ﬂ(k)7ﬂ > t;, X, |
k=1




Parameters in the failure time model: 8, a1, as

Parameter

Mean

S.D.

Mean/S.D.

T1

T2

bPSA
Gleason
log(14+PSA)
Slope

-1.40
-0.51
0.11
0.39
-0.02
2.32

0.31
0.19
0.10
0.06
0.02
0.42

-4.49
-2.64
1.11
6.26
-0.73
12.78




Figure 1: Prediction of future PSA values
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Figure 2: Individual Prediction of clinical recurrence for censored

subjects.

Patient 1 Patient 2
121.3 88.37

0 50 100 150 100

Time(mos) Time(mos)

Patient 3 Patient 4

135.13 60 67\
54 . 54

6 . 6

R R R o
0 0

0 50 100 0 50 100
Time(mos) Time(mos)

Patient 5 Patient 6
54.83

50 100
Time(mos) Time(mos)




Discussion

e Joint modelling can help understand the relationship between

biomarkers and true endpoints

e Reduces bias and gains efficiency compared to separately

modelling the two responses
e Models are very parametric

e Checking model fits data is non-trivial.




Semi-parametric approach

e Smooth Longitudinal model
= Yi(tiy) = Zi(ti;) + ey
— Zi(t) = XB+ f(t) + Wi(?)
Hazard model (proportional hazards)
— At) = Ao(t)exp(aZ;(t))
— or A\(t) = Ao(t)exp(a1Zi(t) + aaSLZ;(t))
f(t) is a smoothing spline, twice differentiable function.

W;(t) is integrated Wiener process.

Can be represented as a mixed model (Wahba, Zhang and Lin)




Two stage estimation

e Fit longitudinal model, get BLUP estimates of Z;(t)

e Fit hazard model using partial likelihood, with imputed values
of Zz (t)




Three approaches

e LVCF, Naive. Use latest value of Y in Cox partial likelihood.

e ORC, Ordinary regression calibration. Use BLUP estimates
based on one fit to all the longitudinal data.

e RRC, Risk set regression calibration. Use BLUP estimate
based on past longitudinal data amongst those at risk.




Simulation study.

e Focus on estimation of «.

e Considered bias as a function of measurement error, censoring

rate
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Figure 3: Impact of measurement error
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Figure 4: Impact of censoring rate
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Conclusion from simulation

e ORC and RRC very similar in this semi-parametric model

e Remaining bias due to two-stage estimation, could be reduced

by joint estimation




Simulated prostate cancer like data

How good is the estimate of the slope from this semi-parametric

model?




Figure 5: Fit to longitudinal data
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Real prostate cancer data

Fit semi-parametric longitudinal model




Figure 6: Fit to longitudinal data
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Open issues

e Assessing model fit
Robustness issues
Multivariate longitudinal data
Non Gaussian longitudinal data

Efficient algorithms




