Estimation of
(iii)the marginal mean of response curve in the presence of dependent censoring by time varying factors

James Robins, Eric Tchetgen, Lingling Li, Aad van der vaart.

$$
\begin{gathered}
\text { Obs Data }:(Y, X, R) \\
Y=\text { binary response } \\
X=\text { high } \operatorname{dim} \text { vect of cont baseline confounders } \\
R=\text { binary treatment indicator }
\end{gathered}
$$

Parameter of Interest:
Average Treatment Effect $=E[Y(1)]-E[Y(0)]$

Identifiable Under Assumtion of No Unmeasured Confounders

$$
\begin{aligned}
& (Y(1), Y(0)) \text { ind } R \mid X \\
& p[R=1 \mid X, Y(1)]
\end{aligned}
$$

as Functional

$$
\psi_{1}-\psi_{0}
$$

of Obserevd data Distribution

$$
\begin{gathered}
\text { One Occassion } \\
O=(R Y, X, R) \\
L=(Y, X, R) \\
Y=\text { binary response } \\
X=\text { high dim vector of always observed cov } \\
R=\text { binary mis } \sin \text { gness indicator } \\
\psi=E[Y] \\
\operatorname{pr}[R=1 \mid Y(1), X]=\operatorname{pr}[R=1 \mid, X], \text { MAR } \\
\psi=E[b(X)]=E\left[\frac{R}{\omega(X)} Y\right] \\
b(X)=E[Y \mid X, R=1] \\
\omega(X)=p r[R=1 \mid X]=E[R \mid X]
\end{gathered}
$$

In desined missiness, $\omega(X)$ known by design so HT estimator of ψ

$$
n^{-1} \sum_{i} \frac{I\left(R_{i}=r\right)}{\omega_{r}\left(X_{i}\right)} Y_{i}
$$

is unbiased (not efficient) , AN, $n^{1 / 2}-$ consistent.

Allows for asymptotically $1-\alpha$ Wald confidence for the ATE ψ

In observational studies $\omega(X)$ is unknown.

How do we proceed?

Longitudinal Studies:

Dependent Right Censoring -Monotone Missingness:
TemporaX Obs Data: ($\left.X_{0}, R_{0}, R_{0} X_{1}, R_{1}, R_{0} R_{1} Y\right)$

$$
\begin{aligned}
Y= & \text { binary response } \\
& \psi=E[Y]
\end{aligned}
$$

CAR

$$
\begin{gathered}
E\left[R_{0}=1 \mid X_{0},\left(Y, X_{1}\right)\right]=E\left[R_{0}=1 \mid X_{0}\right] \\
E\left[R_{1} \mid X_{0}, X_{1}, R_{0}=1, Y\right]=E\left[R_{1} \mid X_{0}, X_{1}, R_{0}=1\right] \\
b_{1}\left(X_{0}, X_{1}\right)=E\left[Y \mid X_{0}, X_{1}\right] \\
=E\left[Y \mid X_{0}, X_{1}, R_{1}=1, R_{0}=1\right] \\
b_{0}\left(X_{0}\right)=E\left[Y \mid X_{0}\right]= \\
E\left[b_{1}\left(X_{0}, X_{1}\right) \mid X_{0}, R_{0}=1\right] \\
\omega_{1}\left(X_{0}, X_{1}\right)=E\left[R_{1} \mid X_{0}, X_{1}, R_{0}=1\right] \\
\omega_{0}\left(X_{0}\right)=E\left[R_{0} \mid X_{0}\right]
\end{gathered}
$$

$$
\begin{aligned}
& =\int b_{1}\left(X_{0}, X_{1}\right) f\left(X_{1} \mid R_{0}=1, X_{0}\right) f\left(X_{0}\right) d X_{0} d X_{1} \\
& =E\left[\frac{R_{1} R_{0}}{\omega_{1}\left(X_{0}, X_{1}\right) \omega_{0}\left(X_{0}\right)} Y\right] \\
& =E\left[b_{0}\left(X_{0}\right)\right]
\end{aligned}
$$

Sequential known design $\omega_{1}\left(X_{0}, X_{1}\right), \omega_{0}\left(X_{0}\right)$ known

$$
n^{-1} \sum_{i}\left[\frac{R_{1 i} R_{0 i}}{\omega_{1}\left(X_{0 i}, X_{1 i}\right) \omega_{0}\left(X_{0 i}\right)} Y_{i}\right]
$$

is unbiased AN, $n^{1 / 2}-$ consistent

Back to Point Exposure Study: All models in book with van der laan on complex longitudinal data

Our goal is to construct confidence intervals fin the nonparametric model subject only to smoothness restrictions.

Specifically we will use the following smoothness restrictions.

Def: Define $h(X)$ to be Holder β with radius c if
(i)all partial derivatives up to order int $[\beta]$ exist and
(ii) all int $[\beta]$ partial derivatives $m(X)$ satisfy

$$
|m(x)-m(z)|<c\|x-z\|^{\beta-i n t[\beta]}
$$

for some known constant c.

Our goal is to construct asymptotic $1-\alpha$ confidence intervals (length shrinking to 0 fastest rate) given model that $b(X), \omega(X), f(X)$ lie in the Holder balls

$$
\left(\beta_{b}, c_{b}\right)\left(\beta_{\omega}, c_{\omega}\right),\left(\beta_{f}, c_{f}\right)
$$

Not possible if no bounds on smothness given. Robins and Ritov (1997) no uniform consistent estimates of ψ
without restrictions on either $\left(\beta_{b}, c_{b}\right)$ or $\left(\beta_{\omega}, c_{\omega}\right)$.

Uniform consistency required for Cl

In practice sensitivity analysis as adaption not possible for Cl .

Training on Prior Smoothness. Criteria Other than Derivatives

Approx: If a $h(X)$ is a Holder β^{*}, optimal approximation bias based on k terms is

$$
E\left[\left\{h(X)-\bar{h}_{k}(X)\right\}^{2}\right]=O\left(k^{-2 \beta^{*} / d}\right)
$$

if

$$
\bar{Z}_{k}=\bar{z}_{k}(X)=\left(z_{1}(X) \ldots . z_{k}(X)\right)
$$

is polynomial, spline or compact wavelet basis with appropriate no. of vanishing moments. .

$$
\bar{h}_{k}(X)=\eta_{P L S}^{T} \bar{z}_{k}(X)
$$

Est: If $h(X)$ is a regression function or density, the optimal rate of estimation i.e. $|\widehat{h}(X)-h(X)|$ is $n^{\frac{-\beta^{*}}{2 \beta^{*}+d}}$ in L_{p} norms

Because Holder β^{*} functions are dense in L_{2}, we have nonparametric model.

We will use the theory of higher order influence functions to construct our intervals.

Obtain adaptive estimate $\hat{\theta}=(\widehat{b}, \widehat{\omega}, \widehat{f})$,
Conider plug in
$\psi(\widehat{\theta})=\int \widehat{f}(x) \widehat{b}(x) d x$.
Bias can be first order.

Usual Solution Use: $\widehat{\psi}_{1}=\psi(\widehat{\theta})+I F_{1}(\widehat{\theta})$

$$
\begin{aligned}
I F_{1}(\hat{\theta}) & =n^{-1} \sum_{i} \frac{R_{i}}{\hat{\omega}\left(X_{i}\right)}\left(Y_{1}-\widehat{b}\left(X_{i}\right)\right)+\widehat{b}\left(X_{i}\right)-\psi(\widehat{\theta}) \\
\widehat{\psi}_{1} & =n^{-1} \sum_{i} \frac{R_{i}}{\widehat{\omega}\left(X_{i}\right)}\left(Y_{1}-\widehat{b}\left(X_{i}\right)\right)+\widehat{b}\left(X_{i}\right) \\
& E\left[\widehat{\psi}_{1}-\psi(\theta) \mid \hat{\theta}\right] \\
& =E\left[\left\{b\left(X_{i}\right)-\widehat{b}\left(X_{i}\right)\right\}\left\{\omega\left(X_{i}\right)-\widehat{\omega}\left(X_{i}\right)\right\} / \widehat{\omega}\left(X_{i}\right)\right]
\end{aligned}
$$

Doubly robust.

But Confidence intervals $\widehat{\psi}_{1}$

$$
\begin{aligned}
& \widehat{\psi}_{1} \pm \operatorname{var}\left[I F_{1}(\widehat{\theta})\right]^{1 / 2} z_{\alpha} \\
& \text { Width }=O\left(n^{-1 / 2}\right)
\end{aligned}
$$

fail unless

$$
\left\{b\left(X_{i}\right)-\widehat{b}\left(X_{i}\right)\right\}\left\{\omega\left(X_{i}\right)-\widehat{\omega}\left(X_{i}\right)\right\} \leq O_{p}\left(n^{-1 / 2}\right)
$$

$$
\begin{aligned}
\left\{b\left(X_{i}\right)-\widehat{b}\left(X_{i}\right)\right\}\left\{\omega\left(X_{i}\right)-\widehat{\omega}\left(X_{i}\right)\right\} & \leq O_{p}\left(n^{-1 / 2}\right) \\
& \Leftrightarrow \\
n^{\frac{-\beta_{\omega}^{*}}{2 \beta_{\omega}^{*}+d}} n^{\frac{-\beta_{b}^{*}}{2 \beta_{b}^{*}+d}} & \leq n^{-1 / 2}
\end{aligned}
$$

This requires

$$
\begin{aligned}
\beta_{b}^{*} & =\beta_{\omega}^{*} \geq .5 d, \text { then } \\
n^{\frac{-\beta^{*}}{2 \beta^{*}+d}} & =n^{\frac{-.5 d}{2(.5) d+d}}=n^{-1 / 4}
\end{aligned}
$$

If this fails what then????

Use $\widehat{\psi}_{m}=\psi(\hat{\theta})+I F_{m}(\hat{\theta})$ where $I F_{m}(\hat{\theta})$ higher order IF and we sample split

$$
\widehat{\psi}_{m} \pm \operatorname{var}[\operatorname{IF}(\widehat{\theta})]^{1 / 2} z_{\alpha}
$$

$$
\begin{aligned}
& I F_{2}(\widehat{\theta})=I F_{1}(\hat{\theta})+I F_{2,2}(\hat{\theta}) \\
& I F_{2,2}(\widehat{\theta})=[n(n-1)]^{-1} \sum_{i \neq j} h_{2}\left(O_{i}, O_{j} ; \hat{\theta}\right) \\
& h_{2}\left(O_{i}, O_{j} ; \hat{\theta}\right) \\
&=\frac{R_{i}}{\hat{\omega}\left(X_{i}\right)}\left(Y_{i}-\widehat{b}\left(X_{i}\right)\right) \bar{Z}_{k i}^{T} \bar{Z}_{k j} \times \\
&\left(\frac{R_{j}}{\hat{\omega}\left(X_{j}\right)}-1\right)
\end{aligned}
$$

Must choose $k=k_{2}(n)$ such that

$$
\operatorname{var}\left\{I F_{2}(\hat{\theta})\right\}
$$

$$
=O\left(\max \left\{\frac{1}{n} \frac{k}{n}, \frac{1}{n}\right\}\right)
$$

$$
=
$$

$$
E\left[I F_{2,2}(\widehat{\theta})-\psi\right]^{2}
$$

$$
=\max \left\{\left[n^{-\frac{-2 \beta_{f}^{*}}{2 \beta_{f}^{*}+d}}+n^{\frac{-2 \beta_{\omega}^{*}}{2 \beta_{\omega}^{*}+d}}\right] n^{\frac{-2 \beta_{\omega}^{*}}{2 \beta_{\omega}^{*}+d}} n^{\frac{-2 \beta_{b}^{*}}{2 \beta_{b}^{*}+d}}, k^{-2\left(\beta_{b}^{*}+\beta_{\omega}^{*}\right) / d}\right\}
$$

$$
=\max \left\{E B^{2}, T B^{2}\right\}
$$

$E B$.

$$
\begin{aligned}
& =E\left[\left\{b\left(X_{i}\right)-\widehat{b}\left(X_{i}\right)\right\}^{2}\left\{\omega\left(X_{i}\right)-\widehat{\omega}\left(X_{i}\right)\right\}^{4} / \widehat{\omega}\left(X_{i}\right)^{4}\right] \\
& +E\left[[\frac { \{ f (X _ { i }) - \widehat { f } (X _ { i }) \} } { \widehat { f } (X _ { i }) }] ^ { 2 } \{ b (X _ { i }) - \widehat { b } (X _ { i }) \} ^ { 2 } \left\{\frac{\omega\left(X_{i}\right)-\widehat{\omega}}{\widehat{\omega}\left(X_{i}\right)}\right.\right.
\end{aligned}
$$

$$
\begin{gathered}
\text { If } \beta_{b}^{*} / d=\beta_{\omega}^{*} / d<1 / 4 \Rightarrow k>n \\
C I \text { does not shrink at } n^{-1 / 2} \\
\text { Price of valid intervals }
\end{gathered}
$$

If $1 / 2>\beta_{b}^{*} / d=\beta_{\omega}^{*} / d>1 / 4 \Rightarrow k<n$ if β_{f}^{*} is large $C I$ does shrink at $n^{-1 / 2}$ for some $m, m=2$ if $\beta_{f}^{*} / d>$. Need higher order $I F$ to get first order effciiency

$$
\begin{aligned}
& I F_{3}(\widehat{\theta})=I F_{2}(\hat{\theta})+I F_{3,3}(\widehat{\theta}) \\
& I F_{3,3}(\widehat{\theta})=[n(n-1)(n-2)]^{-1} \sum_{i \neq j \neq s} h_{3}\left(O_{i}, O_{j}, O_{s} ; \hat{\theta}\right) \\
& h_{3}\left(O_{i}, O_{j}, O_{s} ; \hat{\theta}\right) \\
&=\frac{R_{i}}{\widehat{\omega}\left(X_{i}\right)}\left(Y_{i}-\widehat{b}\left(X_{i}\right)\right) \times \\
& \bar{Z}_{k i}^{T}\left\{\bar{Z}_{k s} \bar{Z}_{k s}^{T}-I\right\} \bar{Z}_{k j} \times \\
&\left(\frac{R_{j}}{\widehat{\omega}\left(X_{j}\right)}-1\right)
\end{aligned}
$$

Must choose $k=k_{3}(n)$ such that $\operatorname{var}\left\{I F_{3}(\hat{\theta})\right\}$
$=O\left(\frac{1}{n} \frac{k}{n} \frac{k}{n}\right)$
$=$
$E\left[I F_{3,3}(\widehat{\theta})-\psi\right]^{2}$
$=\max \left\{\left[n^{-\frac{-4 \beta_{f}^{*}}{4 \beta_{f}^{*}+d}}+n^{\frac{-4 \beta_{\omega}^{*}}{4 \beta_{\omega}^{*}+d}}\right] n^{\frac{-2 \beta_{\omega}^{*}}{2 \beta_{\omega}^{*}+d}} n^{\frac{-2 \beta_{b}^{*}}{2 \beta_{b}^{*}+d}}, k^{-2\left(\beta_{b}^{*}+\beta_{\omega}^{*}\right) / d}\right\}$
$E B$.

$$
\begin{aligned}
& =E\left[\left\{b\left(X_{i}\right)-\widehat{b}\left(X_{i}\right)\right\}\left\{\omega\left(X_{i}\right)-\widehat{\omega}\left(X_{i}\right)\right\}^{3} / \widehat{\omega}\left(X_{i}\right)^{3}\right] \\
& +E\left[[\frac { \{ f (X _ { i }) - \widehat { f } (X _ { i }) \} } { \widehat { f } (X _ { i }) }] ^ { 2 } \{ b (X _ { i }) - \widehat { b } (X _ { i }) \} \left\{\frac{\omega\left(X_{i}\right)-\widehat{\omega}(}{\widehat{\omega}\left(X_{i}\right)}\right.\right.
\end{aligned}
$$

The advantage of $I F_{3}(\hat{\theta})$ is that if $I F_{2}(\hat{\theta})$ has estimation bias dominate truncation bias
then $I F_{3}(\hat{\theta})$ with smaller $E B$
can improve rate of convergence.

Mapping from smoothness assumptions to optimal Cl?

What smoothness or other size controlling assumptions.

Given a sufficiently smooth p-dimensional parametric submodel $\tilde{\theta}(\varsigma)$ mapping $\varsigma \in R^{p}$ injectively into Θ, define

$$
\psi_{\backslash i_{1} \ldots i_{m}}(\theta)=\left.(\psi \circ \tilde{\theta})_{\backslash i_{1} \ldots i_{m}}(\varsigma)\right|_{\varsigma=\tilde{\theta}^{-1}(\theta)}
$$

and

$$
f_{\backslash i_{1} \ldots i_{m}}(\mathbf{O} ; \theta)=\left.(f \circ \tilde{\theta})_{\backslash i_{1} \ldots i_{m}}(\varsigma)\right|_{\varsigma=\tilde{\theta}^{-1}(\theta)}
$$

where each $i_{s} \in\{1, \ldots, p\}$

$$
f(\mathbf{O} ; \theta) \triangleq \prod_{i=1}^{n} f\left(O_{i} ; \theta\right)
$$

Canonical (Hoeffding) Representation of Order 1 and 2 Mean 0 U-stat-

$$
\begin{gathered}
U_{1}(\theta)=\sum_{i \neq j} u_{1}\left(O_{i}\right), E\left[u_{1}\left(O_{i}\right)\right]=0: \\
u(\cdot, \cdot) \text { not necc sym }
\end{gathered}
$$

$$
\begin{gathered}
U_{2}(\theta)=\sum_{i \neq j} u\left(O_{i}, O_{j}\right), E\left[u\left(O_{i}, O_{j}\right)\right]=0: \\
u(\cdot, \cdot) \text { not neck sym } \\
U_{2}(\theta)=\sum_{i} d\left(O_{i}, \theta\right)+\sum_{i \neq j} m\left(O_{i}, O_{j}\right), \\
E_{\theta}\left[d\left(O_{i}, \theta\right)\right]=0, \\
E\left[m\left(O_{i}, O_{j}\right) \mid O_{i}\right]=E\left[m\left(O_{i}, O_{j}\right) \mid O_{j}\right]=0, \\
m(\cdot, \cdot) \text { not necc sym } \\
\sum_{i} d\left(O_{i}, \theta\right) \text { and } \sum_{i \neq j} m\left(O_{i}, O_{j}\right) \text { uncork }
\end{gathered}
$$

Canonical Representation of Order 3 Mean 0 U-stat-

$$
\begin{gathered}
U_{3}(\theta)=U_{2}(\theta)+\sum_{i \neq j \neq X} t\left(O_{i}, O_{j}, O_{X}\right) \\
E\left[t\left(O_{i}, O_{j}, O_{X}\right) \mid O_{i}, O_{j}\right]=E\left[t\left(O_{i}, O_{j}, O_{X}\right) \mid O_{i}, O_{X}\right] \\
=E\left[t\left(O_{i}, O_{j}, O_{X}\right) \mid O_{j}, O_{X}\right]=0, \\
t(\cdot, \cdot, \cdot) \text { not necc sym } \\
\sum_{i \neq j \neq X} m\left(O_{i}, O_{j}, O_{X}\right) \text { and } U_{2}(\theta) \text { uncork }
\end{gathered}
$$

Formula for higher order scores associated with $\widetilde{\theta}(\varsigma)$

$$
\begin{aligned}
S_{i_{1} \ldots i_{m}}(\theta) & =f_{/ i_{1} \ldots i_{m}}(\mathbf{O} ; \theta) / f(\mathbf{O} ; \theta) \\
f(\mathbf{O} ; \theta) & =\prod_{i=1}^{n} f\left(O_{i} ; \theta\right)
\end{aligned}
$$

of order m in terms of the subject specific scores (Waterman and Lindsay (1996)
$S_{i_{1} \ldots i_{m}, j}(\theta)=f_{/ i_{1} \ldots i_{m}, j}\left(O_{j} ; \theta\right) / f_{j}\left(O_{j} ; \theta\right), j=1, \ldots, n$
(Waterman and Lindsay (1996) .

$$
S_{i_{1}}=\sum_{j} S_{i_{1}, j}
$$

$$
S_{i_{1} i_{2}}=\sum_{j} S_{i_{1} i_{2}, j}+\sum_{X \neq j} S_{i_{1}, j} S_{i_{2}, X}
$$

$$
S_{i_{1} i_{2}, j}(\theta)=S_{i_{1}, j}(\theta) S_{i_{2}, j}(\theta)+\partial S_{i_{1}, j}(\theta(\varsigma)) /\left.\partial \varsigma_{i_{2}}\right|_{\widetilde{\theta}(\varsigma)=\theta}
$$

$$
\begin{aligned}
& S_{i_{1} i_{2} i_{3}} \\
&= S_{j} \\
& \sum_{i_{1} i_{2} i_{3}, j}+\sum_{X \neq j} S_{i_{1} i_{2}, j} S_{i_{3}, X}+S_{i_{3} i_{2}, j} S_{i_{1}, X}+S_{i_{1} i_{3}, j} S_{i_{2}, X}, j \\
& S_{i_{2}, X} S_{i_{3}, t}
\end{aligned}
$$

Definition of a kth order influence function: A Ustatistic $U_{k}(\theta)=u_{k}(\mathbf{O} ; \theta)$ of order k, dimension and finite variance is said to be an k th order influence function for $\psi(\theta)$ if (i)

$$
E_{\theta}\left[U_{k}(\theta)\right]=0, \theta \in \Theta
$$

(ii) for $m=1,2, \ldots, k$, and every $\tilde{\theta}(\varsigma), p=1,2, .$.

$$
\psi_{\backslash i_{1} \ldots i_{m}}(\theta)=E_{\theta}\left[U_{k}(\theta) S_{i_{1} \ldots i_{m}}(\theta)\right]
$$

$p=k$ sufficient. We say that $\psi(\theta)$ is k th order pathwise differntiable

Theorem: If the model is nonparametric .then there is at most one mth order estimation influence function $I F_{m}^{\text {est }}(\theta)$, the efficient m th order IF.

Lemma: $\quad I F_{m}^{e s t}(\theta)=I F_{m-1}^{e s t}(\theta)+I F_{m m}^{e s t}(\theta)$,
$I F_{m m}^{e s t}(\theta)=\sum_{\left\{i_{1} \neq i_{2} \neq \ldots \neq i_{m} ; i_{X} \in\{1,2, \ldots, n\}, X \in=1, \ldots, m\right\}} d_{m}\left(O_{i_{1}}\right.$, where $d_{m}\left(O_{i_{1}}, O_{i_{2}}, \ldots, O_{i_{m}}\right)$ is canonical
$\operatorname{Var}\left[I F_{m}^{e s t}(\theta)\right]$ increases with m
$\operatorname{Var}\left[I F_{m}^{e s t}(\theta)\right] / \operatorname{Var}\left[I F_{m}^{e s t}(\hat{\theta})\right]=1+o(1)$

The following Extended Information Theorem is closely related to result in McLeish and Small (1994).

Theorem: Given $U_{k}(\theta)$, for all $\widetilde{\theta}(\varsigma)$ for $s \leq k$

$$
\begin{aligned}
& \partial^{s} E_{\theta}\left[U_{k}(\theta(\varsigma))\right] / \partial \varsigma_{i_{1} \ldots} \partial \varsigma_{i_{s}} \\
&=-E_{\theta}\left[U_{k}(\theta) S_{i_{1} \ldots i_{s}}(\theta)\right] \\
&=-\psi \backslash i_{1} \ldots i_{s} \\
& E_{\theta}[\theta) \\
& {\left[U_{k}(\hat{\theta})\right]=}-[\psi(\hat{\theta})-\psi(\theta)]+O_{p}\left(\|\hat{\theta}-\theta\|^{k+1}\right)
\end{aligned}
$$

since as functions of $\hat{\theta}$, the functions $E_{\theta}\left[U_{k}(\hat{\theta})\right]$ and $-[\psi(\hat{\theta})-\psi(\theta)]$ have the same Taylor expansion around θ up to order k

$$
\widehat{\psi}_{m}=\psi(\hat{\theta})+I F_{m}(\hat{\theta})
$$

where $\hat{\theta}$ is an initial estimator of θ.from a separate sample (no Donsker like needed).

But, by extended info equality
$E_{\theta}[\operatorname{IF}(\widehat{\theta})]=-[\psi(\widehat{\theta})-\psi(\theta)]+O_{p}\left(\|\hat{\theta}-\theta\|^{m+1}\right)$
so (conditional) bias of $\hat{\psi}_{m}$ is
$\left\{\psi(\hat{\theta})+E_{\theta}[\operatorname{IF}(\hat{\theta})]-\psi(\theta)\right\}=O_{p}\left(\|\hat{\theta}-\theta\|^{m+1}\right), \downarrow m$
$\operatorname{Var}\left[\widehat{\psi}_{m}\right]$ increases with m
$I F_{m}(\hat{\theta})$ and $\hat{\psi}_{m}=\psi(\hat{\theta})+I F_{m}(\hat{\theta})$ are AN given $\hat{\theta}$ often normal.

Shortest conservative uniform asymptotic confidence intervals based on

$$
\widehat{\psi}_{m_{c o n f}} \pm \operatorname{var}\left[\operatorname{IF} F_{m_{\text {conf }}}(\widehat{\theta}) \mid \widehat{\theta}\right]^{1 / 2} z_{\alpha}
$$

where $k_{\text {conf }}$ is the smallest k with $\operatorname{var}\left[U_{k}(\theta)\right]$ higher order (or equal if constants dealt with) than the squared bias.

Example: Problem: If $I F_{1}(\theta)$ depends on θ through a nonparametric $\rho(\theta)$ where $\rho(\theta)$ infinte dimensional
$I F_{m}(\theta)$ does not exist for $m \geq 2$

Example:
$I F_{1}(\widehat{\theta})=n^{-1} \sum_{i} \frac{R_{i}}{\widehat{\omega}\left(X_{i}\right)}\left(Y_{1}-\widehat{b}\left(X_{i}\right)\right)+\widehat{b}\left(X_{i}\right)-\psi(\widehat{\theta})$

Use sieves ie $k=k(n)$ dimensional submodels for $b(X)$, $\omega\left(X_{i}\right)$. Then $I F_{m}$ exists for all m.

Bur then truncation bias
$T B_{k}=E\left[\left\{b\left(X_{i}\right)-\bar{b}_{k}\left(X_{i}\right)\right\}\left\{\omega\left(X_{i}\right)-\bar{\omega}_{k}\left(X_{i}\right)\right\} / \bar{\omega}_{k}\left(X_{i}\right)\right]$
added to estimation bias $\|\widehat{\theta}-\theta\|^{m+1}$
where $\bar{b}_{k}\left(X_{i}\right)$ is the limit of the model

Specifically $b(X)=b^{*}\left(Z_{k}^{T} B_{k}\right), \omega(X)=\omega^{*}\left(Z_{k}^{T} \alpha_{k}\right)$
where $Z_{k} a$ basis in R^{d} as $k \rightarrow \infty$

