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Obs Data : (Y, X, R)
Y = binary response
X = high dim wvect of cont baseline confounders

R = binary treatment indicator

Parameter of Interest:

Average Treatment Ef fect = E[Y (1)]—E[Y (0)]

Identifiable Under Assumtion of No Unmeasured Con-
founders

(Y (1),Y (0)) ind R|X
p[R=1|X,Y (1)]

as Functional

Y1 — Yo

of Obserevd data Distribution



One Occassion
O =(RY,X,R)
L=(Y,X,R)
Y = binary response
X = high dim wvector of always observed cov
R = binary maissin gness indicator
Y =E[Y]

pr[R=1Y (1), X] =pr[R =1, X], MAR

b= Bp(X)] =B |

o)

b(X)=FE[Y|X,R=1
w(X)=pr[R=1|X]=F[R|X]

In desined missiness, w (X) known by design so HT es-
timator of

—1
n Y,
Z wr (X;) ‘

is unbiased (not efficient) , AN, nl/2 — consistent.



Allows for asymptotically 1-a Wald confidence for the
ATE o

In observational studies w (X') is unknown.

How do we proceed?



Longitudinal Studies:

Dependent Right Censoring -Monotone Missingness:

TemporaX Obs Data : (Xg, Rg, RoX1, R1, RgR1Y)
Y = binary response

Y = E[Y]

CAR

E[Ry = 1| X0, (Y, X1)] = E'[Ro = 1| X¢]
E[R1|Xo0, X1, Ro = 1,Y] = E[R1]|X0, X1, Rop = 1]

b1 (X0, X1) = E[Y[Xo, X1]
— E[Y|Xo, X1, R = 1, Rg = 1]
bo (Xo) = E[Y|Xo] =
E'[by (Xo, X1) | Xo, Ro = 1]
w1 (Xo, X1) = F[R1] X0, X1, Rop = 1]
wo (Xo) = E'[Ro|Xo]



v
= [ b1 (X0, X1) £ (X1|Ro = 1, Xo) f (Xo) dXod X,
B R1Rg

- [wl (X0, X1) wo (Xo)Y]

= E[bo (Xo)]

Sequential known design w1 (Xg, X1),wg (Xg) known

nly [ R1;Ro; Yz]
~ w1 (Xo4, X14) wo (Xo5)

Is unbiased AN, nl/2 _ consistent



Back to Point Exposure Study: All models in book

with van der laan on complex longitudinal data



Our goal is to construct confidence intervals fin the non-
parametric model subject only to smoothness restrictions.



Specifically we will use the following smoothness re-
strictions.

Def: Define h (X) to be Holder 3 with radius c if

(i)all partial derivatives up to order int[3] exist and

(i) all int[B3] partial derivatives m (X) satisfy
im(z) —m(2)| < cllz — z||5—mt[5]

for some known constant c.



Our goal is to construct asymptotic 1-a confidence in-
tervals (length shrinking to O fastest rate ) given model

that b(X ),w (X), f (X) lie in the Holder balls

(Brcb) (Bur ), (Byrep )

Not possible if no bounds on smothness given. Robins
and Ritov (1997) no uniform consistent estimates of

without restrictions on either (8, ¢p) or (Bw, cw) -
Uniform consistency required for Cl

In practice sensitivity analysis as adaption not possible for

Cl.

Training on Prior Smoothness . Criteria Other than Deriv-
atives



Approx: If a h (X) is a Holder 8*, optimal approxima-
tion bias based on k terms is

E [{h (X) — hy (X)}2] =0 (k—277/4)

Zp =7 (X) = (21 (X) .2z (X))

is polynomial, spline or compact wavelet basis with ap-
propriate no. of vanishing moments. .

Ry (X) = nprsZk (X)



Est: If h(X) is a regression function or density , the
—~ —5*
optimal rate of estimation i.e.‘h (X)—h (X)) i 1205 1d

In Lp norms

Because Holder 3* functions are dense in Lo, we have

nonparametric model.

We will use the theory of higher order influence functions

to construct our intervals.



Obtain adaptive estimate 6 = (g,@, f) :
Conider plug in

¥ (0) = J 7 (2)b(2) do.

Bias can be first order.

Usual Solution Use: @Zl = (5) + I FY (@)

I1Fy (é\) = n_lga f}i’fb) (Yl — /B(XZ)) + /I;(XZ) — (é\)

=Y (1 - B ) +5(X)

E 41— ¢ (0)10)
= B [{b(X) - b (X))} {eo (X)) — @ (X0)} /@ (X)]

Doubly robust.



But Confidence intervals 1
Y1 £ var [IFl (§>]1/2 Zo
Width =0 (n™1/?)

fail unless

{b (X;) — E(Xi)} {w(X;) =& (X;)} < Op (n—1/2>



{b(X;) = b(X) }w (X;) — & (X,)} < Op (n7V/?)
a—
N
n2Botdp 28 td < p=1/2

This requires

By = B, > .5d, then

_ _ 5d
n2F+d — 2(5)d+d — p—1/4

If this fails what then?7?7?7?



Use @m = (@)—I—IFm (HA) where [ Fiy, (5) higher order
IF and we sample split

sz + var [IFm (5)] 1/2 Zo

1 F> (é) 1 Fy (é) + [F7 - (g)
[

IFy5(0) =[n(n—1)]" ;ﬁz (04,05 0)
i ]
h2 (Oia Oj; 5)
R;

o~ _T_
5 (X)) (Y = b(X3)) Z1iZ ;%

(@ &j) ) 1)




Must choose k = ky (n) such that
var {IF2 (5)}

1k 1
)

nn n

~ 2
E [IF2,2 (9) _ ¢]
f _25* ] _ * )
___f 285 | -2y %P
= max{ |n T 4 p28Hd n285+dn 2P+ p—2(85+65)/d

— max {\E_BZ,TBZ} |
EB .
o _{b (X;) — E(XZ-)}2 {w(X;) — @ (X))} /@ (Xi)4]

[rea) - Feal (WX -3
e { F(X) {b(Xi)_b(Xi)}{ 5 (X))



If Bf/d=8}/d<1/4=k>n

C'I does not shrink at n—1/2

Price of valid intervals

If 1/2>8y/d = B, /d>1/4 =k <nif B} is large
CT does shrink at n /2 for some m,m = 2 if B;@/d > .
Need higher order I F' to get first order effciiency



IF3(0)

1 F5 (5) + [F33 (5)
IF33(0) = |

n(n—1)(n—2)]"1 Y h3(0;0;,0s0)
i#j#s

hs (O;, 05, 0s; 0)
_ N
C0(Xy)

Z}, {ZKSZZS —1 } Zy,

(@ &j) ) 1)

(Y = b(X;)) x

jX




Must choose k = k3 (n) such that

var {1F5 (0)}

1kk
ot
nnn
A~ 2
E|IF33(0) — )
([ __iﬂ;; _4533_ 28 _iﬁg o \
— max{ |n Pt paBEAd | p2Bird Bt =265 +85)/d |
\ L . y,
EB

= B [{b(X) = b (X))} {0 (X)) — & (X))} /@ (x)7]

[r ) - Fea)]’ ) w0 (X)) — @ (
e { F(x) {“X”_“&”{ 5 (%)

The advantage of [ F3 (5) is that if 1F» (@) has estima-
tion bias dominate truncation bias

then 1 F3 (5) with smaller EB



can improve rate of convergence.



Mapping from smoothness assumptions to optimal CI?

What smoothness or other size controlling assumptions.



Given a sufficiently smooth p — dimensional parametric
submodel é(g) mapping ¢ € RP injectively into ©, define

Wiy iigy (0) = (¢ ° é) \i1...im () ls=5-1(0)

and

Piy...im (O3 0) = (f 0 6)\i1...im (<) |czg_l(@)

where each 15 € {1, ---,p}

£(0;0) = ﬁ f(0;; 0)
i—1



Canonical (Hoeffding) Representation of Order 1 and 2
Mean 0 U-stat-

Uy (6) = > u1(0;), Eug (0;)] =0:
i#]

u (-, +) not necc sym

Us (8) = gu (05,05), E [u(0;,05)] =0:
i#]

u(-,+) not necc sym

Uz (6) = Zd(oz,e) + > m(0;,05),
i)
Ey [d (0, 0)] —J 0,
E [m (Oi,Oj) |OZ} — B [m (Oi,Oj) |0j] _
m (-,+) not necc sym

d(OZ,H) and m (O;, O, ) uncorr
J
7]



Canonical Representation of Order 3 Mean 0 U-stat-

Us(0) =U2(0)+ Y. t(0;,0;0x)
i#j#X
E [t (oz-,oj,oX) |0i,oj] — B [t (oi,oj,ox) |oz-,oX]
= E[t(05,05,0x)10;,0x]| =0,
t(-,-,-) not necc sym
> m (Oi, Oj, OX) and Us (6) uncorr
i#j#X



Formula for higher order scores associated with 6 (<)
Siv.im (0) = [1iy. i, (0:0) /[ (O 0)
n
£(0:0) =[] £ (0 0)
1=1

of order m in terms of the subject specific scores (Wa-
terman and Lindsay (1996)

Siveim,j (0) = Friy. i, (Oj; 9) /1 <Oj; 9) i=1..n
(Waterman and Lindsay (1996) .

=2 Siyg
J

21%2 ZS@1@2]+ Z 11,] Zz,X
X#]

Silzz,] (0) = Zl,j (0) Szz,] (0) + aSzl,] (0 (<)) /a§i2|§(g):9



) 7..7
.S/il’ x
) .]
' 227
.S’i/3’
. 7]
N Z. . ,j j
| ) ) S/L3,
E S'l’ x t
.



Definition of a kth order influence function: A U-
statistic Uz, (0) = uy, (O;0) of order k, dimension and
finite variance is said to be an kth order influence function

for ¢ (0) if (i)
Eg[U,L(0)] =0,0 € ©
(i) for m =1,2,...,k, and every 0 (s), p=1,2, ..

Wiy im (0) = Eg |Ug (0) Siy...iyy (0)]

p = k sufficient. We say that 1 (0) is kth order pathwise
differntiable



Theorem: If the model is nonparametric .then there

Is at most one mth order estimation influence function
IF25t (), the efficient mth order IF.

Lemma: [ESS(0) = IFSSt, (0) + IFES, (),

TEG (0) = Yqiy gt #imiix€{1,2,...m}, X €=1,...,m} dm (Oz’p

where dpm, (Oil, Oiyy -y Oz-m) Is canonical

Var _IFﬁft (0) increases with m

Var|IFgst (0)| /Var[TFgt (0)] =1+ 0(1)



The following Extended Information Theorem is closely
related to result in McLeish and Small (1994).

Theorem: Given Uy, (0), for all 6 () for s < k

O°Ey [Uy (6 (<))] /0siy... 0%,
= —Fy [Uk (0) Siy..is (9)}
= —th\j;..i, (0)

B (U (9)] = = [ (9) — v (0)] +Op (|(a_ 9(1“1)

AN

since as functions of 6, the functions Ey [Uk («9)] and

_ W (5) — ) (6)] have the same Taylor expansion around
6 up to order k



m = (0) + 1Fm (0)

where 0 is an initial estimator of 0.from a separate sample
(no Donsker like needed).

But, by extended info equality

By [TFn (8)] = = [0 (0) — v @)]+0u (|o - o)

so (conditional ) bias of ¥, is

{9 (0) + By [1Fn ()] — v (0)} = op<H9 9Hm+1> L

AN

Var[wm } increases with m



AN

IFm( ) and Py = (5) + IF, (9) are AN given 0

often normal.

Shortest conservative uniform asymptotic confidence in-

tervals based on

&mconf + var []chonf ( ) ’9]1/2

where k.., ¢ is the smallest k with var [Uy (6)] higher
order (or equal if constants dealt with) than the squared
bias.



Example: Problem: If I1F7 (0) depends on 6 through a

nonparametric p (6) where p (6) infinte dimensional

I Fiy, (0) does not exist for m > 2

Example:

1F; (§) = n—lzi:@ f};) (v1 —b(X;))+b(X;)—v (0)

Use sieves ie k = k (n) dimensional submodels for b (X)),
w (X;). Then I Fyy, exists for all m.

Bur then truncation bias

TBy, = B [{b(X;) — b (X) } {w (X3) — @, (X0)} fw5, (X3))

i i ) ~ m-+1
added to estimation bias HG — GH

where b, (X;) is the limit of the model



Specifically b(X) = b* (ZL By) ,w (X) = w* (2] ay,)

where Z;. a basis in R% as k — oo



