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OUTLINE

• Multi-state models

• Incomplete data

• Some applications and illustrations

• Estimation and analysis

• Gaps in methodology



MULTI-STATE MODELS

• Individuals in some population may occupy states 1, 2, . . . , k over some
period of time

• Consider process {Y (t), t ≥ 0} where Y (t)ε {1, 2, . . . , k} is the state
occupied at time t.

• Transition probabilities (TP) are denoted

Pij(t, t + s) = Pr {Y (t + s) = j|Y (t) = i}

• State prevalence or occupancy probabilities (if Y (0) = 1)

Pj(t) = Pr {Y (t) = j|Y (0) = 1}

TP’s do not in general specify the process fully.



• Transition intensity functions: let H(t) denote the process history
{Y (u), 0 ≤ u < t} up to time t. Then for i 6= j

λij (t|H(t)) = lim
s↓0

Pr {Y (t + s) = j|Y (t−) = i,H(t)}

s

Markov processes: λij (t|H(t)) = λij(t)

Semi-Markov processes: λij (t|H(t)) = λij [B(t−)]

where B(t) = time since individual entered current state.



INCOMPLETE DATA

• Intermittent observation: subject i seen only at times
aij (j = 0, 1, . . . ,mi), so that only Yi(aij)’s are known. Transitions
between those times are unobserved.

• Initial conditions: information in H(ai0), needed for intensity function
modelling, may be missing.

• End of followup and loss to followup

• Missing covariate values

• Measurement error (transition times, covariates)

- effects of intermittent observation



SOME APPLICATIONS AND ILLUSTRATIONS

• Disease processes
e.g. simple illness - death process

- onset of disease (e.g. diabetes, CD)

- organ transplantation (1 - waiting list, 2 - transplanted, 3 - dead)

1 −→ 2
↘ ↙

3



• Interactions between events

- two events A and B (e.g. menopause, breast cancer)

0 −→ B
↓ ↓
A −→ AB

- recurrent events and a failure time (e.g. strokes, death)

e.g. Children with hydrocephalus and cerebrospinal fluid shunts.
Shunt failures (due to infections, obstruction, other causes)
that necessitate (partial) shunt replacement.
Some patients die.



0 −→ 1 −→ 2 −→ 3 −→
↘ ↘ ↙ ↙

F

Obstruction
↗
−→ Infection

New Shunt
−→ Other failure
↘

Death



• Dependent loss to followup

- Intermittent observation of subjects; subject has not been seen at
recent observation times.

- When to declare subject lost to followup (LTF) ?
- Status re LTF may depend on process history.

1 −→ 2
↘ ↙

LTF

• Cumulative cost models

- Can associate a cost rate with different states
- Useful in connection with medical costs etc.
- Cumulative quality of life measures



ESTIMATION AND ANALYSIS

• Can write down likelihood functions with intensity-based models and
complete observation (Andersen et al. 1993)

- Allows maximum likelihood inference on intensities
- For some models (Markov, Semi-Markov), survival analysis software

can be used for estimation
(e.g. Therneau and Grambsch 2000; Lawless 2003).

- Survival models and software that handle time-varying covariates
can deal with a wider range of multi-state models

- Inference about transition probabilities or state duration
distributions may be complicated



• Markov models (see Andersen et al. 1993)

- Nonparametric estimation of transition probabilities
(Aalen-Johansen estimate)

- can fit proportional intensities models with Cox model methods
λij(t|x) = λij0(t) exp(β′x)

- Parametric models can be fitted with survival or general
optimization software

- Key point: upon entry to a new state, consider the time T of exit
from that state, and what other state is then entered. This is a
competing risks failure time problem.

Markov models: T is left-truncated at time of entry to new state.

Semi-Markov models: “clock” starts at T = 0 at time of entry to new
state.



• Intermittent Observation

- Much more difficult to handle, aside from time- homogeneous Markov
models (Gentleman et al. 1994, R function panel)

- With equi-spaced observation times, models for longitudinal discrete
(categorical) responses can be employed.

- There is a severe shortage of methodology (and computational
support) in this area.

• Missing covariates, measurement errors re events or covariates.

- Almost nothing has been done



SOME GAPS IN METHODOLOGY

• Consider studies with intermittent observation of subjects

- Statistics Canada Survey of Labour and Income Dynamics (SLID):
persons seen once a year for 6 years

- Followup of persons attending disease clinics

• Brief looks at dependent loss-to-followup; goodness of fit; missing
covariates and response-selective observation; measurement error;
modelling issues



Periodic Inspections and Non-Independent LTF

• Suppose individuals are inspected at times a0 < a1 < a2 < · · · < ak

but that an individual may be found to be LTF at any time
aj(j = 1, . . . , k), and never seen henceforth.

• Independent inspections: next inspection time after aj−1 depends only
on event history and covariates up to aj−1.

• What if LTF at aj is related to the event history over (aj−1, aj], even
after conditioning on covariates and event history up to aj−1?

• Illustration of effects in event history setting: consider transitions from
some state to another state, say state 1 to state 2.

Consider effect of state-dependent LTF rates.



� �

�
� � �

λ(t)

α1(t) α2(t)

• Want to estimate λ(t)

• At inspection time aj, the time of a 1 → 2 transition during (aj−1, aj]
can be determined.

• When a person is found to be LTF (in state 3) at aj, the time they
became LTF cannot be determined.

• LTF is non-independent in this setting if α1(t) 6= α2(t).



• Define for s ≤ t

Pij(s, t)=P (in state j at time t| in state i at time s)

• For aj−1 < t ≤ aj, if we treated LTF as independent (non-differential,
i.e. α1(t) = α2(t)), then non-parametrically we end up estimating not
λ(t) but

P [entry to state 2 at t| in state 1 at t−, in states 1 or 2 at aj]

=
P11(aj−1,t−)λ(t)P22(t,aj)

P11(aj−1,t−)[P11(t−,aj)+P12(t−,aj)]

= λ(t)
{

P22(t,aj)

P11(t,aj)+P12(t,aj)

}

= λ∗(t)



• If α2(t) > α1(t), λ̂(t) is biased downward.

e.g. α1(t) = α1, α2(t) = α2, λ(t) = λ. Then for α2 − α1 small,

λ∗(t) w

{

1
1+(α2−α1)(aj−t)

}

λ(t) aj−1 < t ≤ aj

• For correct estimation of λ(t) we need (estimates of) α1(t), α2(t) or
at least their difference. (Can then use ML or weighted GEE’s)

- Can be estimated if there are data on transitions to LTF from both
states 1 and 2 (e.g. unemployment studies)

- If not, then look at sensitivity of inferences for λ(t) to variations in
α2(t) − α1(t).

• Tracing studies: trace some persons LTF



• Other issues in observational studies

- Persons not seen for a long time
(assignment of a LTF time? dependent LTF?)

- Delayed reporting of terminal events
e.g. Children with CSF shunts

- See following plot of time of entry to study (time of initial shunt
surgery) vs. length of followup as of December 1997, for children
getting CSF shunts.

Rheumatic disease clinics: Farewell et al. (2003)
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Goodness of Fit

• Model expansion (tests model of interest vs a larger model)

- effective methods ?

• Comparison of empirical and model-based estimates

e.g. Aguirre-Hernandez and Farewell (2002) - Pearson test based on
pseudo observed transition counts for Markov models

• Another idea: look at state prevalence probabilities

Pj(t) = Pr {Y (t) = j|Y (0) = 1}

- Need an empirical (nonparametric) estimate of Pj(t) that can be
compared with the model-based one.



• One possibility: let Tj and Wj denote times of entry and exit from
state j (assume can be occupied just once). Then

Pj(t) = Pr(Tj ≤ t) − Pr(Wj ≤ t)

Estimate Pr(Tj ≤ t) and Pr(Wj ≤ t) nonparametrically (Turnbull
estimates)

• This and alternatives when there is continuous observation of subjects:
Cook and Lawless (2003).

• A possible alternative: develop nonparametric estimates of Pj(t) for
Markov models (robust in continuous observation case)

- how to do when observation of individuals is intermittent ?



Longitudinal Multi-phase Observation

• Subjects seen at times a0 < a1 < a2 < . . ., at which the current states
Y (aj) and covariates x(aj) are observed.

• A subset of subjects is selected at aj , and harder-to-obtain covariates
z(aj) are measured; the probability a subject is included in this subset
depends on their current (and maybe past) values for Y and x.

• Objective is to model Pr {Y (t + s)|H(t), x(t), z(t)}.

Feasibility ?

Simple case: disease incidence studies



Measurement Error

• In many studies, the time of events or values of covariates in the time
interval (aj−1, aj] can be retrospectively ascertained at the observa-
tion time aj.

• Same for initial conditions at time a0

• Often subject to measurement errors.

How to deal with this ?

e.g. Survey of Labour and Income Dynamics (SLID)

- When person is “enrolled”, suppose they are unemployed. Should
data be collected on when they became unemployed?



Some Modelling Issues

• Hard to fit non-Markov models in many settings with intermittently
observed states.

• Ability to check model assumptions depends on gaps between
observation times.

• Robut methods related to longitudinal discrete response models
(e.g. Carroll, Lin, many others)

- categorical response Y (t), covariates x(t) with unequally spaced
observation times

- marginal methods that focus on Pr {Y (t)|(x(t)} are quite well
developed

- conditional modelling that considers Pr {Y (t)|H(t), x(t)} has not
received so much attention

• Hidden Markov and other latent process models
(e.g. Satten and Longini, 1996)
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