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background

• there are over and/or under estimates in the slope parameter
estimation in logistic and Cox proportional-hazards models in
the occupational/environmental exposure-health studies

at least two issues are involved:

- all exposure measurements are not available

- the true exposures are not available, but we only have observed
exposures with errors
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group-based strategy

• group-based strategy is widely used in occupational health
research

1. estimate the group-mean for a sample of workers from each
group (department, job, task)

2. assign all workers in a group with the estimated value of
exposure for that group

3. assess health outcome for each subject individually

• a single-impute “fill-in” method with group means
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objective

• the objective of this study is to see the impact of using the
group-based strategy in logistic and Cox proportional-hazard
models



6

classical and Berkson error models

• classical error model
X = Z + u

where Z: true exposure, X: observed exposure, (Z, u):
independent

• Berkson error model
Z = X + e

where Z: true exposure, X: observed exposure, (X, e):
independent, which leads to E[Z|X] = X

(Berkson, 1950)
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classical exposure error model

• log- transformation

Xgij = log(exposure) = µg + γgi + εgij

Xgij = µgi + εgij , where µgi = µg + γgi

µgi ∼ N (µg, σ
2
B) and εgij ∼ N (0, σ2

W )

where g groups (1, · · · , G), i workers (1, · · · , Kg) and

j days (1, · · · , Ngi)

where µgi and εgij are mutually independent .
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result 1: Berkson error model

from the conditional distribution:

E[µgi|X̄g] = X̄g +
(

nσ2
B

nσ2
B+σ2

W
− 1

)
(X̄g − µg) ≈ X̄g

if the number of workers (k) is large enough (X̄g ≈ µg)

• Berkson error model:

µgi = X̄g + egi

with E[egi|X̄g] = 0 and E[µgi|X̄g] ≈ X̄g if k is large enough.

(note that this is not a true Berkson model)
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result 2: error variance

if E[µgi|X̄g] = X̄g

1. cov(X̄g, µgi) = V (X̄g)

2. cov(X̄g, egi) = 0

3. cov(µgi, egi) = V (µgi|X̄g) = V (egi) = σ2
e

V (µgi|X̄g) = (1− 1
k )σ2

B − 1
nkσ2

W ≈ σ2
B

V (µgi|X̄g) = σ2
e ≈ σ2

B

if the number of workers (k) is large enough
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results 3: attenuation Equations

• logistic Model

β∗1 ≈
β1√

c2β2
1σ2

B + 1

(Burr, 1988; Reeves, 1998)

• Cox proportional-hazards model

α∗ ≈ α

(1 + 1
2α2σ2

B)
√

c2α2σ2
B + 1

where c = 0.588: connection value between Logistic and Probit
functions when 0.1 < p < 0.9
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details for logistic Model

• logistic Model

- P (i = 1|Z) = Λ(β0 + β1Z), where Λ(t) = 1
1+exp(−t))

- P (i = 1|Z) = Λ(β0 + β1Z) ≈ Φ[c(β0 + β1Z)] if 0.1 < p < 0.9,
where Φ(t): c.d.f for the standard Normal distribution

- E[P (i = 1|Z)|X] = E[Λ(β0 + β1Z)|X]
≈ E{Φ[c(β0 + β1Z)]|X} ≈ Φ[c(β∗0 + β∗1X)]
≈ Λ(β∗0 + β∗1X), where Z|X ∼ N (X,σ2

e).

β∗1 ≈
β1√

c2β2
1σ2

B + 1

since σ2
e ≈ σ2

B
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details for Cox proportional-hazards Model

• Cox proportional hazards model

h(t|Z) = h0(t) exp(αZ)

a. survival function in the logistic model : exp(β∗0 + β∗1X)
(after Taylor series expansion)

b. survival function in Cox proportional hazards model:
λT exp

(
αX + 1

2σ2
e

)

• estimates of β∗1 and α∗ are approximately equivalent when
survival functions of both models with the observed exposures
are approximately equivalent

• i.e. a ≈ b =⇒ exp(β∗1X) ≈ exp
(
(α− α∗)X + α∗X + 1

2α2σ2
e

)

(Prentice, 1982; Green, 1983; Li et al., 2004)
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details for Cox proportional-hazards Model

=⇒ exp(β∗1X) ≈ exp
(
α∗X + 1

2α2σ2
e

)

• apply Taylor series expansion and derivation within small error
variance, σ2

e

α∗ ≈ β∗1
(1 + 1

2α2σ2
e)

• β1 ≈ α and σ2
e ≈ σ2

B

α∗ ≈ α

(1 + 1
2α2σ2

B)
√

c2α2σ2
B + 1

where c = 0.588
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simulations

• proc phreg and proc logistic in SAS

– groups: G = 5

– true parameters: β0 = −4 and β1 = 0.2, 0.4, 0.6

– baseline hazard: λ = 0.01

– true group means: µg = 1.1, 2.1, · · · , 5.1

– within-worker standard deviation: σW = 0, 0.5, 1.5, 3

– population: N = 1000 workers each group and K = 10 days

measurements for each worker

– sample size: k = 10, 50, 100 workers each group and n = 2 days

measurements for each worker

– Number of replications: rep= 1000 times

bias =
1

rep

repX
r=1

(β̂r − β) MSE =
1

rep

repX
r=1

(β̂r − β)2
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Figure 1: β = 0.6, k = 100, σW = 0.5 (dot-dash), 1.5 (dash), 3 (dot)
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Figure 2: β = 0.6, σW = 0.5, k = 100 (dot-dash), 50 (dash), 10 (dot)
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Figure 3: β = 0.6, k = 10, σW = 0.5 (dot-dash), 1.5 (dash), 3 (dot)
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consequences

• with a true Berskon error structure

- there is no or little attenuation in logistic and Cox
proportional- hazards models if the sample size is moderately
large (Deddens et al, 1994; Armstrong. 1990, 1998)

• grouping with the mean values (full observations)

- unbiased estimate (Prais et al., 1953)

• a calibration method ( i.e. use E[Z|X] instead of X)

- adjusting measurement error (Rosner, 1989; Spiegelman, 2001)
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consequences

• with the group-based strategy

- there is attenuation with large between-worker variance

- it is severe in Cox proportional-hazard models

may be...

- leads to an approximate Berkson (it is not a true Berkson)

- don’t have full observations

- a calibration method may fail to adjust when the error variance
is large
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Bayesian method in logistic models

• the attempt to adjust attenuation when the between-worker
variance is large in logistic models: the group-based strategy in
a Bayesian framework

• two-steps procedure:

1. complete data with assigned group-means of the sample

2. estimates the slope parameter in a Bayesian framework
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Bayesian method in logistic models

• three sub-models

1. response model: logistic regression model: [i|Z, β]

2. measurement error model :

- classical error [X|Z, parameters]

- Berkson error [Z|X, parameters]

3. exposure model:

- classical error: [Z| parameters]

- Berkson error: [X], which is not needed in this framework

where Z: true and X: observed.

(Gilks et al., 1996; Gossl et.al, 2001; Gelman et al., 2004)
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Bayesian method in logistic models

since the group-based strategy leads to an approximate
Berkson error structure

• Bayesian framework for Berkson type error

1. response model: logistic regression model: [i|Z, β]

2. measurement error model :

- Berkson error [Z|X,σB ]; µgi|X̄g ∼ N (X̄g, σ
2
B)

• prior for β : f(β) = 1 and σB is known

• initial value : β̂ from GLM

• MH algorithm with random walk proposals
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Bayesian method: results

β = 0.6, σW = 1.5, n = 2 repeated measurements and K = 1000 per

group with burn=1000 and size=10000, (90% credible interval)

σB = 1 k = 100 k = 50

BBG 0.592 (0.53-0.66) 0.539 (0.48-0.60)

GBS 0.567 (0.52-0.62) 0.518 (0.47-0.57)

σB = 1.5 k = 100 k = 50

BBG 0.572 (0.51-0.64) 0.617 (0.55-0.69)

GBS 0.518 (0.47-0.56) 0.549 (0.50-0.59)

σB = 2 k = 100 k = 50

BBG 0.617 (0.53-0.71) 0.435 (0.38-0.49)

GBS 0.502 (0.46-0.54) 0.392 (0.36-0.43)
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Figure 5: trajectory and histogram of estimates of MH algorithm
when β = 0.6 and σB = 1, σW = 1.5, k = 100
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further research

• unknown variance components

• different sample size in each group in the simulations

• Bayesian method for Cox proportional-hazard models

• Bayesian imputation methods
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Thank you!
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Questions or Comments?

The New Yorker, March 21, 2005, page 71


