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A Pencil beam or beamlet

Fluence of i’th
Beamlet, denoted bi

Source

Port or ‘beam’ of 8 beamlets



(From:  Chui et al., Medical Physics
(2001) 28:2441-2449.) 

Fluence map example 
(a map of the bi’s)

Optimization of beamlet fluence weights results in a 
‘fluence map’ for each treatment head position



(From:  Kung and Chen, Medical 
Physics (2000) 27:1617-1622.) 

Beam’s Eye 
View of 
target volume

First delivered field
“segment”

Second segment.

An IMRT dose distribution is constructed from a 
superposition of open static fields of variable fluence
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The ‘objective function’The ‘objective function’

• Typically, the objective function is a sum of 
terms, some of which represent normal 
tissue structures and one or more terms 
represents the target.
– This is called a ‘linear sum objective function’
– The different terms have different multiplying 

weights (constants) in front, representing 
relative importance
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Linearly weighted objective functionsLinearly weighted objective functions
• Individual terms (or goal 

functions) are added to 
comprise the objective 
function.

• Typically, each anatomy 
structure of importance has 
one or more goal terms.

• Goals are evaluated for each 
voxel contained in a structure.
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Iterative solution
• Start with a set of initial 

beamlet weights.
• Search along a series of 

directions in beamlet weight 
space.

• Stop when
– cost is zero 
– cost not improved
– fixed number of iterations 

exceeded

• When done, beamlet weights 
are ‘optimized.’

Finish

Do Line Search

Select Search 
Direction

Calculate Cost

Start

Convergence 
Criterion Met?

No

Yes



A ‘state of the art’ IMRT treatment 
planning system...
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• Accepts constraints
– Max dose
– Min dose
– Dose-volume constraints:  no more than x% of an organ 

can receive y% dose (e.g., “V20 can be no larger 
than...”).

• Tries to match or exceed goal DVH parameters
– for target volumes
– for normal tissues
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The CMS XiO Prescription PageThe CMS XiO Prescription Page



The weight paradox: hard-to-control tradeoffs 
and the lack of clear priorities
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• Normal tissue weights should be large enough so 
the mathematical engine tries to reduce dose to 
those structures

• Target weights should be much larger than normal 
tissue weights so that good target coverage is not 
compromised...but...

• There is no perfect compromise
– Very high target weights: engine neglects normal 

tissues
– Not very high target weights: engine does not preserve 

target dose characteristics
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State-of-the-art workflow:  “Are we 
finished yet?”
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Physician:  “Here is what I’d like.”  
Later....Dosimetrist:  “I tried it, and tried to 

fix it.  Here it is.”
Physician thinks “Is that the best they can 

do?”  Says:  “How busy are you?  Can you 
try to improve this part?”

Dosimetrist:  “Pretty busy.  But I’ll try if you 
want me to.” 
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Thus, current IMRT systems are highly 
inefficient, and lead to planning 

iterations with no clear guidelines for 
establishing that a ‘clinically superior’ 

plan cannot be achieved.
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4. Controlling dose distribution 
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Motivation IMotivation I

• Many IMRT treatment planning algorithms, 
but…

• Few comparisons
• Tools for comparison and common data 

access are missing
• Common datasets are missing
• Few (no?) comparisons of techniques.

• Many IMRT treatment planning algorithms, 
but…

• Few comparisons
• Tools for comparison and common data 

access are missing
• Common datasets are missing
• Few (no?) comparisons of techniques.
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• Little interaction with the field of 
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• Optimization in Radiation Therapy meeting (Palta, 
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• ORART Collaborative Working Group (NCI/NSF 
funded)
– “ORART Toolbox” for sharing treatment planning data
– ORART Test-suite data sets
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ApproachApproach

• Construct common collaboratory 
framework:  graphical and analytical plan 
review tools.

• Provide a common approach to generating 
test beamlet dosimetry data.

• Compile common benchmark suite of 
anonymized patient plans and IMRT 
prescription challenges.

• All publicly available and open-source.
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• CERR for plan review and analysis 
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• Dose comparison tools
• IMRT beamlet calculations
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CERRCERR

• Has been downloaded nearly 1,000 times in the 
last year by users from 37 different countries

• Is used by clinical trial QA physicists in Sweden, 
UK, Japan, US, Netherlands.

• Is used by optimization researchers.
• E.g., PMH project by Tim Craig et al. to compute 

probabilistically desirable target volumes.
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This figures shows the three target volumes: ‘CTV 1 3mm’, ‘CTV 2
3mm’, and ‘CTV 3 3mm’.



Prescription (Eisbruch)
• The prescription for this case was adapted from detailed 

suggestions by Avi Eisbruch:

• 72 Gy to the CTV 1 3mm structure.

• 64 Gy to the CTV 2 3mm structure,

• 60 Gy to the CTV 3 3mm structure.

• The mean dose to the parotid glands should be held as low as 
possible, 

• but not at the expense of an adequate target dose distribution.  
Preferably, one parotid gland at least should be held below 26 Gy.

• The mean dose to the oral cavity should be held as low as 
possible,  but not at the expense of an adequate target dose 
distribution. 



• The mandible should receive no more than 70 Gy max dose.

• The max to the cord should be 45 Gy (hard constraint),

• The max to the cord_3mm should be 50 Gy (hard constraint),

• The max to the brainstem (brainstem) should be 54 Gy (hard 
constraint).

• The max to the brainstem expansion (brainstem_3mm) should be 
58 Gy (hard constraint).

• An adequate target dose distribution will have:
– Min  93% of prescribed dose
– Max <115%

• Of course, it is impossible not to have heterogeneities near the
integrated boost volume.



You can easily derive new structures using the structure fusion tool, 
under the structures menu (‘Derive new structure’).
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• Software routines giving Matlab/CERR users 
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• Based on written CWG specification.
• Integrated with CERR.
• Generation of beamlet data
• Dosimetry data access within Matlab 
• Multiple output formats (binary and ASCII-

based).
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Access to beamlet data in MatlabAccess to beamlet data in Matlab



The green target is the CTV 3 
3mm.  Other structures created 
included left and right parotids 
minus the CTV 3 3mm, as I gave 
the CTV priority.  



Simple quadratic programming example of beam 
weights



Obviously there are some relatively hot regions outside the ‘CTV 3 
3mm’ (the anchor zone weight perhaps could be increased).  The max 
dose is 83.6 Gy. 



Here are the DVHs.  Not that great, but it’s something to beat up on.  
In particular the most spared parotid still gets about 28 Gy mean dose.



(third-party)

The ORART benchmark ‘paradigm’The ORART benchmark ‘paradigm’
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The problem of scatter tailsThe problem of scatter tails

• The scatter tails of beamlets take up most of 
the non-zero volume of the influence 
matrices

• But they contribute little to the ability to 
shape dose

• Yet it is important to factor in the influence 
of scatter…

• So how do we do it?
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Beamlet with 4 cm tail Beamlet with 1 cm tail

Beamlets are usually simplified for the optimization phase



The Iterative scatter correction methodThe Iterative scatter correction method

• Estimate the scatter dose using full dose (primary plus 
scatter) beamlet matrices and best current estimate of beam 
weights.

• Adjust prescription dose, on a voxel by voxel basis, to 
reflect the expected scatter contribution.

• Solve for optimal beam weights using primary-only 
beamlet matrices.

• Recompute full dose using stored beamlets.
• If full dose is close enough to prescription, terminate; 

otherwise go to step 1.
• Typically, two iterations are sufficient.
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(Zakarian et al., ASTRO 2004; also MSKCC)
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Adaptive grid generationAdaptive grid generation

• STEP 1:  The contours are extracted.  Gridding is more 
aggressive near the more significant structures. A weighted 
distance transform is used to generate the feature map

• STEP 2:  Generate mesh. Floyd-Steinberg error diffusion 
algorithm, modified to include dithering.

• STEP 3:  Delaunay triangulation is used to generate the mesh 
structure.

• STEP 4:  refinement by a regularized Laplacian (second 
derivative) smoothing,
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2D error-diffused method2D error-diffused method



Extension to 3-DExtension to 3-D



Other approachesOther approaches

• Use coarse gridding on a regular grid for 
some structures

• Adaptive coalescing of voxels in old 
NOMOS planning system

• Aggressively cutoff beamlet low fluence 
contributions

• Randomly keep only some beamlet
elements (DKFZ proposal)
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Challenge #4: Controlling dose 
distribution characteristics & 

tradeoffs
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Controlling dose falloff:  the Anchor 
zone method

Controlling dose falloff:  the Anchor 
zone method



No anchor zone

Hot spot outside target 74 Gy
Hot spot outside target 
goes up to 80 Gy.

Anchor zone

AZ
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• Normal tissue weights should be large enough so 
the mathematical engine tries to reduce dose to 
those structures

• Target weights should be much larger than normal 
tissue weights so that good target coverage is not 
compromised...but...

• There is no perfect compromise
– Very high target weights: engine neglects normal 

tissues
– Not very high target weights: engine does not preserve 

target dose characteristics
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• The efficient control and use of linearly 
weighted objective functions is problematic

• We need a new paradigm with more control 
over tradeoffs…
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objectives constraints

step 1

target coverage, 
cardinal OARs

step 3

dose falloff

step 2

additional OARs

minimize F1=Σall voxels j (Dj – Dpres)2  and

maximize Dmin for all targets

� Dmax for spinal cord, brainstem, cord+3mm,
brainstem+3mm, mandible, and
hotspot zone

minimize Dmean for parotid glands
and oral cavity

as in step 1 and

� max value for F1 for all targets

� min value for Dmin for all targets

� max value for Dmax for all targets

as achieved in step 1

minimize Dmean in anchor zone, cord,

brainstem and mandible

as in step 2 and

� max value for Dmean for parotid glands
and oral cavity   

as achieved in step 2

anchor zone = (Union of targets + 5cm) – (Union of targets + 0.5cm)

hotspot zone = skin – (Union of targets + 0.5cm)



prescription
• PTV1: 72 Gy
• PTV2: 54 Gy
• PTV3: 49.5 Gy

Maximum doses:
spinal cord 45 Gy
spinal cord + 3mm 50 Gy
brainstem 54 Gy
brainstem + 3mm 58 Gy
mandible – PTV1 70 Gy
hotspot zone 50 Gy



slip factor

no slip: then step 2 and step 3 yield the same solution as in step 1

ð introduce slipfactor 1+s (here: s=0.2) for the dose variance in the targets
(i.e. ~10% in standard deviation)

for all targets (i=1..3):

objective function: Fi=Σall voxels j (Dj – Dpres)2  / #voxels

objective value after step 1: Fi(1)

constraint in step 2:  Fi ≤ (1+s) Fi(1)

constraint in step 3:  Fi ≤ (1+s)2 Fi(1)

all other constraints: no slip











Challenge #5: Making tradeoffs 
responsive to outcomes models
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But what do these simple equations have 
to do with outcomes?

But what do these simple equations have 
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Can we use prescription goals which are 
more likely to be related to outcomes?

Can we use prescription goals which are 
more likely to be related to outcomes?



Functional lossInflammatory/ 
ulcerative

Acute Late

Endpoint type

Examples

Analysis methods
Function of hot spot 
absolute areas or 
volumes exceeding 
threshold doses 
(Bradley et al.; 
Thames et al.).  

Function of mean dose 
or fractional volume 
exceeding threshold 
doses.

• Mucositis
• Diarrhea
• Skin rash
• Esophagitis

• Rectal bleeding
• Sporadic
pneumonitis

• Skin rash
• Brain necrosis

• Xerostomia
• Cognitive deficits
• Growth inhibition
• Chronic small bowel toxicity
• Rad. Induced liver disease
• Lung fibrosis

Local response endpoints Collective response endpoints



Elements of the “standard” NTCP 
volume effect model: EUD and LKB

Elements of the “standard” NTCP 
volume effect model: EUD and LKB

• Sigmoidal dose response curve, 
parameters include
– Slope parameter
– TD50 parameter (tolerance dose for 

50% response)

• Equivalent uniform dose equation.  
Typically a power-law (Lyman-
Kutcher-Burman, Mohan, 
Niemierko, NKI)
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Generalized Equivalent Uniform 
Dose is just a power-law weighted 

average of the dose

Generalized Equivalent Uniform 
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‘a’ is the localizing parameter.



(From Moiseenko, Deasy, Van Dyk, 2005) 
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Can gEUD replace dose-volume 
metrics?

Can gEUD replace dose-volume 
metrics?



(Clark et al., unpublished)
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• Correlation between gEUD and outcome 
may be as good as for dose-volume 
constraints and outcome

• Example: gEUD(a = 3.2) has as good a 
Spearman’s correlation with severe acute 
esophagitis as do DV constraints (0.42).
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• May often be useful for driving treatment planning 
for normal tissue or target objectives.

• Cannot completely replace the concept of 
tolerance based on a small, defined volume, 
irradiated to a high dose (ulcerative lesions).

• ‘Upper-mean-tail’ functions may be better for that.
– Mean of the hottest x% of a volume.
– Is a linear function
– Cannot preserve linearity if we go to min of hottest x%
– Idea needs to be tested against outcomes datasets
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• IMRTP planning can be made to be much 
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goals, and dosimetrically reliable.

• IMRTP research can benefit greatly by 
using shared benchmark test cases
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