Producing IMRT plans robust to uncertainty in lung motion

Timothy Chan
John Tsitsiklis
Massachusetts Institute of Technology

Thomas Bortfeld
Massachusetts General Hospital

Fields Institute IMRT Workshop April 4, 2006

The Main Idea

- We consider beamlet weight/intensity optimization in IMRT
- Uncertainty is introduced in the form of irregular breathing motion (intrafraction)
- How do we ensure that we generate "good" plans in the face of such uncertainty?

Tumor motion

• What do we do if motion is irregular?

Outline

- Uncertainty induced by irregular breathing
- Robust optimization background
- Robust IMRT formulation

How to mitigate uncertainty

- In general, one can use a margin
 - The good: uniform dose to tumor
 - The bad (and ugly): healthy tissue overly irradiated
- What if the uncertainty is induced by motion?
 - Model the motion and include it intelligently in the optimization:
 "motion pdf"
 - Assumption: "the motion ... is reproducible and stable during the treatment delivery"
 - This motivates the use of robust optimization
 - As opposed to uncertainty due to motion, we focus on uncertainty in the motion itself

Robust Optimization

- Optimizing objective function over constraints with uncertain data (modeled)
- Goal: Want an optimal "robust" solution (feasible under all realizations of uncertainty)
- Our formulation is linear (e.g. objective: mean or max dose; constraints: dose >= ...)

Robust Optimization

- Uncertainty: imprecise measurements, future info, etc.
- Want optimal solution to remain feasible under all realizations of uncertain data

min
$$\mathbf{c}'\mathbf{x}$$
 st $\mathbf{A}\mathbf{x} \geq \mathbf{b} \quad \forall \mathbf{A} \in \mathcal{U}$

- Want *robust counterpart* to be efficiently solvable
- Complexity depends heavily upon choice of uncertainty set
- Classification, image reconstruction, scheduling, options pricing, supply chain, portfolio selection, truss design ...

Linear IMRT model

• Basic problem: Minimize total dose delivered, subject to tumor receiving at least some prescribed dose

• To incorporate motion, convolve pmf with *D* matrix...

Warm-up to robust formulation

• Nominal problem:

• Introduce uncertainty in p...

Model of uncertainty

PMF from motion data

• We can get a pmf from sinusoidal data by "horizontal binning"

• We can get "error bars" as upper/lower envelopes of many pmfs

Robust formulation

$$\begin{aligned} & \min & & \sum_{v \in \mathcal{V}} \sum_{b \in \mathcal{B}} \sum_{x \in X} \Delta_{v,x,b} p(x) w_b \\ & \text{st} & & \sum_{b \in \mathcal{B}} \sum_{x \in X} \Delta_{v,x,b} p(x) w_b + \beta_v(\boldsymbol{w}) \geq \theta_v & \forall \, v \in \mathcal{T} \\ & & & w_b \geq 0 & \forall \, b \in \mathcal{B} \end{aligned}$$

where

$$eta_v(oldsymbol{w}) = \min \sum_{\substack{b}} \sum_{x \in U} \Delta_{v,x,b} \widehat{p}(x) w_b$$
 st $\sum_{\substack{b}} \widehat{p}(x) = 0$ $-p(x) \leq \widehat{p}(x) \leq \overline{p}(x) \quad orall \, x \in U$

Robust counterpart stays LP

Robust formulation

$$\beta_{v}(\boldsymbol{w}) = -\sum_{b \in \mathcal{B}} \sum_{j>j^{*}} (\Delta_{v,x(j),b} - \Delta_{v,x(j^{*}),b}) \underline{p}(x(j)) w_{b}$$
$$-\sum_{b \in \mathcal{B}} \sum_{j$$

• Idea: Protect against voxels in tumor from spending too much time in low dose region and too little time in high dose region of static dose distribution

Motivation re-visited

Nominal problem

$$\begin{array}{ll} \min & \sum\limits_{v \in \mathcal{V}} \sum\limits_{b \in \mathcal{B}} \sum\limits_{x \in X} \Delta_{v,x,b} p(x) w_b \\ \text{st} & \sum\limits_{b \in \mathcal{B}} \sum\limits_{x \in X} \Delta_{v,x,b} p(x) w_b \geq \theta_v \quad \forall \, v \in \mathcal{T} \\ & w_b \geq 0 \qquad \qquad \forall \, b \in \mathcal{B} \end{array}$$

Margin illustration

Robust formulation results

- Robust problem
 - Protects against uncertainty unlike nominal formulation
 - Spares healthy tissue better than margin formulation

Numerical results

	Nominal	Robust	Margin
Total dose delivered	85.29 %	91.43 %	100.00 %
Dose to normal tissue	31.41 %	61.94 %	100.00 %

Continuum of Robustness

- Can prove this mathematically
- Flexible tool allowing planner to modulate his/her degree of conservatism based on the case at hand

Conclusions

- Introduced linear, robust formulation and "Continuum of Robustness"
- Illustrated results of robust formulation and compared it to nominal and margin
- Extensions: 3D, serial organs, other uncertainty
- Take home: Robust framework is flexible with advantages of both nominal and margin

This page intentionally left blank

Linear formulation implemented

$$\begin{array}{ll} \min & \sum\limits_{v \in \mathcal{N}} \sum\limits_{b \in \mathcal{B}} \sum\limits_{x \in X} \Delta_{v,x,b} p(x) w_b \\ \mathrm{st} & \sum\limits_{b \in \mathcal{B}} \sum\limits_{x \in X} \Delta_{v,x,b} p(x) w_b - \sum\limits_{b} \sum\limits_{x \in U} \Delta_{v,x,b} \underline{p}(x) w_b + \sum\limits_{x \in U} \underline{p}(x) q_v - \sum\limits_{x \in U} r_{v,x} \geq \theta_v & \forall \, v \in \mathcal{T} \\ & (\overline{p}(x) + \underline{p}(x)) q_v - r_{v,x} \leq \sum\limits_{b} \Delta_{v,x,b} (\overline{p}(x) + \underline{p}(x)) w_b & \forall \, v \in \mathcal{T}, \forall \, x \in U \\ & q_v \text{ free} & \forall v \in \mathcal{T}, \forall \, x \in U \\ & r_{v,x} \geq 0 & \forall \, v \in \mathcal{T}, \forall \, x \in U \\ & w_b \geq 0 & \forall \, b \in \mathcal{B} \end{array}$$

What about...

- We live in a non-linear world
 - Modeling tool, can approximate non-linear equations
- Complexity of robust plan
 - Add constraints to limit complexity
- Amplitude uncertainty
 - Choose U and error bars appropriately
- Rigid-body motion
 - Include pmf p_v for each voxel v
- Overly general approach
 - Can include distributional "guesses"

Nominal 4 subplots

Margin 4 subplots

Robust 4 subplots

Numerical results

Relative increase in	Margin : Nominal	Robust : Nominal	Margin : Robust
Total dose delivered	17.25 %	7.20 %	9.37 %
Dose to normal tissue	218.35 %	97.18 %	61.45 %

Numerical Results

- Nominal realized total: 59.336
- Margin realized total: 69.5719
- Robust realized total: 63.6094
- Nominal realized normal: 5.8287
- Margin realized normal: 18.5557
- Robust realized normal: 11.4928

Linear optimization basics

• Linear objective (eg. Mean or max dose) and linear constraints (eg. Dose >= ..)

$$\begin{array}{lll} \text{min} & \mathbf{c'x} & \text{max} & \mathbf{p'b} \\ \text{st} & \mathbf{Ax} = \mathbf{b} & \text{st} & \mathbf{p'A} \leq \mathbf{c'} \\ & \mathbf{x} \geq \mathbf{0} & \mathbf{p} \text{ free} \end{array}$$

- Special case of "convex programming"
- Dantzig 1947 (OR's Hounsfield?)
- 1950's: explosion of mathematical programming (non-linear, networks, large-scale, stochastic, integer)

Linear optimization

- Dantzig 1947 (OR's Hounsfield?)
- Well-established algorithms to solve LPs to optimality
 - Simplex or interior points
- Beautiful theory of duality
 - Bounds and sensitivity analysis
- Robust versions remain tractable
- Computational progress
 - First LP solved in 1947 (9 cons. 77 vars.) took 120 person-days
 - First image reconstruction? Many hours scan, days to reconstruct 1972
 - Now can solve problems up to $\sim 10^8$ variables and constraints
 - Eg. 2003: production planning 400,000 cons. 1.6M vars. 59.1 s

Robust Optimization

- LINEAR: Soyster 1973, Ben-Tal and Nemirovski 2000, Bertsimas and Sim 2004, Ben-Tal et al 2004
- DISCRETE: Bertsimas and Sim 2003
- CONIC: Ben-Tal et al 2002, Bertsimas and Sim 2006
- CONVEX: Ben-Tal and Nemirovski 1998, Ben-Tal et al 2006
- SDP: Ben-Tal and Nemirovski 2000, El Ghaoui et al 1998
- MDP: Nilim and El Ghaoui 2004
- Classification, image reconstruction, scheduling, options pricing, inventory, supply chain, portfolio selection, control, truss design, ...

Continuum of Robustness

- Can prove this mathematically
- Flexible tool allowing planner to modulate his/her degree of conservatism based on the case at hand