The Ending Lamination Conjecture: the Proof of the Model Theorem

Jeffrey Brock

Brown University

Joint work with

R. Canary - Michigan

Y. Minsky – Yale

Main Goal

To describe the model manifold and some elements of the proof of the model theorem.

Model Theorem. (B-C-M) If a complete hyperbolic 3-manifold $M \cong S \times \mathbb{R}$ has end-invariant v, there is a model M_v depending only on v and a piecewise L_S -bi-Lipschitz diffeomorphism $f: M_v \to M$.

Models and Rigidity

- How does a bi-Lipschitz model help with ELC?
- \blacksquare Any two manifolds M and M' with

$$\nu(M) = \nu = \nu(M')$$

are bi-Lipschitz to the model M_V .

- Hence, there is a bi-Lipschitz diffeomorphism $\phi: M \to M'$.
- By Sullivan's rigidity theorem, ϕ is homotopic to an isometry.

The General Case

- In the general case we pass to a cover corresponding to each end and obtain a model for this end.
- The bi-Lipschitz model maps extend across the remaining compact piece.
- This proves the ending lamination conjecture.

The Punctured Torus (Minsky)

- When T is a punctured torus, $\pi_1(T) = \langle a, b \rangle$, require $\rho([a,b])$ to be parabolic.
- The end-invariants lie in $\mathbb{H}^2 \cup \mathbb{R} \cup \infty$.
- $v \in \mathbb{Q}$ represents a cusp, $v \in \mathbb{R} \setminus \mathbb{Q}$ represent laminations of "slope" v.

The Punctured Torus

The lift of a lamination on the punctured torus to \mathbb{H}^2 .

Laminations

Our end-invarants will be simple closed curves or laminations.

Definition. A geodesic lamination on a hyperbolic surface X is a closed subset foliated by geodesics.

The Farey Graph

The Farey graph encodes the model.

Building Blocks

Blocks like these are stacked end to end.

After pairing sides, the remaining tori are Dehn-filled using continued fractions for *v*.

The General Case

- What should the right model be in general?
- Thin parts can have a non-uniform shape, since there are geometric limits of quasi-Fuchsian manifolds with *new* infinite volume ends (B-'97).
- This phenomenon leads to polynomial volume growth of $M_{>\varepsilon}$.

Examples

Mapping Tori:

■ When ψ : $S \rightarrow S$ is pseudo-Anosov,

$$T_{\psi} = S \times [0,1]/(x,0) \sim (\psi(x),1)$$

is hyperbolic (Thurston).

- Cover M_{ψ} corresponding to S, is *periodic*.
- lacksquare Model is quasi-isometric to \mathbb{R} .

Iteration on a Bers slice

- But a non pseudo-Anosov φ can produce non-uniform geometry.
- Surfaces X and $\varphi^n(X)$ are close on one subsurface and far on another.
- Perverse geometric limits.

The General Case

- To account for non-uniformity, one employs a kind of generalized continued fractions.
- Each essential subsurface of *S* inherits a projection coefficient via the geometry of the complex of curves.
- Work of Masur and Minsky organizes these data into a *hierarchy* H_V of geodesics in *curve* $complexes \mathcal{C}(T)$, $T \subseteq S$.
- \blacksquare H_V is the combinatorial blueprint for the model.

The Complex of Curves

- The *complex of curves* $\mathscr{C}(S)$ organizes the essential simple closed curves on S.
- *O-skeleton:* isotopy classes of essential simple closed curves on *S*.
- *k-simplices:* spanned by families of k+1 curves $\alpha_1, \ldots, \alpha_{k+1}$ with $i(\alpha_i, \alpha_i) = 0$.

The Complex of Curves

Simplices in the complex of curves.

Exceptional case

■ When *S* is a one-holed torus or four-holed sphere, edges connect vertices whose curves intersect minimally.

Theorem. (Masur-Minsky) In each case, $\mathscr{C}(S)$ is negatively curved in the sense of Gromov.

Theorem. (Klarreich) $\partial \mathscr{C}(S) = \mathscr{E}\mathscr{L}(S)$.

Hierarchies

- Masur-Minsky exhibit a geodesic g_v in $\mathscr{C}(S)$ associated to $v = (v^-, v^+)$ joining v^- to v^+ .
- A *hierarchy* H_V of geodesics in $\mathscr{C}(T)$, $T \subset S$, gives a kind of thickening of g_V in $\mathscr{C}(S)$.
- The model manifold M_V is built from blocks, one for each edge of a geodesic in H_V whose underlying surface is a one-holed torus or four-holed sphere.

Hierarchies

A hierarchy in the two-holed torus case

The *spokes* of the wheels are pants decompositions.

Subsurface Projections

Roughly speaking, the laminations determine curves in *H* via a surgery procedure: *subsurface projection*.

Subsurface Projections

Roughly speaking, the laminations determine curves in *H* via a surgery procedure: *subsurface projection*.

The result is the projection $\pi_Y(v)$ where $Y \subset S$ and v is the ending lamination.

Structure of H_{V}

■ Here, if *Y* is the one-holed torus bounded by α_0 ,

$$\alpha_{-1} \sim \pi_Y(\nu^-)$$
 and $\alpha_1 \sim \pi_Y(\nu^+)$

where $v = (v^-, v^+)$ is the end-invariant.

Projection Distances

- Such *projections* control the structure of H_V and the geometry of M.
- In particular each *vertex* $\gamma \in H_V$ has an associated coefficient:

$$\boldsymbol{\omega}(\boldsymbol{\gamma}) = [d_{\boldsymbol{\gamma}}(\boldsymbol{v}^{-}, \boldsymbol{v}^{+})]_{\kappa} + i \sum_{\substack{Y \subset S \\ \boldsymbol{\gamma} \subset \partial Y}} [d_{\boldsymbol{Y}}(\boldsymbol{v}^{-}, \boldsymbol{v}^{+})]_{\kappa}$$

Such coefficients predict short lengths:

$$|\omega(\gamma)|$$
 large $\Longrightarrow \ell_M(\gamma)$ small.

Building the Model

- The combinatorics of the sequence of pants decompositions produced by H_V give instructions to build a model manifold M_V .
- One block is added for each *elementary move*.
- \blacksquare a priori bounds: each $\gamma \in H_V$ satisfies

$$\ell_M(\gamma) < L$$
.

Theorem. (Minsky) There is a Lipschitz model map

$$f: M_V \to M$$
.

Combinatorial Thick Part

■ Then one can form the *combinatorial* ε -thick part $M_V[\varepsilon]$ by filling in tubes for $\gamma \in H_V$ with

$$|\omega(\gamma)| < 1/\varepsilon$$
.

- Minsky proves the model map can be made *tube* preserving on $M_{\nu}[\varepsilon]$.
- In fact one has more:

$$|\omega(\gamma)|$$
 large $\iff \ell_M(\gamma)$ small.

Building the Model

Geometric limits control bounded regions.

Conclusion

- The combinatorial ε -thick part $M_V[\varepsilon]$ decomposes into regions $\{R_i\}$ consisting of a finite number of blocks f_V is homotopic to a map restricting to an embedding on ∂R_i .
- Using a geometric limit argument, we obtain bi-Lipschitz control on each region.
- The maps glue together to give a bi-Lipschitz map $F_V: M_V[\varepsilon] \to M$ that is a bi-Lipschitz embedding on each region.

Conclusion

- By a degree argument, F_V is a homeomorphism, and f_V is homotopic to F_V on ∂R . Thus f_V is homotopic to F_V .
- Finally, we extend F_V over models for ε -Margulis tubes to obtain the bi-Lipschitz homeomorphism

$$\overline{F_{\mathcal{V}}}\colon M_{\mathcal{V}}\to M.$$

■ This proves the Model Theorem.

An Alternate Approach

(with Bromberg, Evans, Souto)

- Applying cone-manifold techniques of [B-Bromberg], each M can be realized as a limit of geometrically finite M_i in $\mathscr{V}(S)$.
- Given M, M' with v(M) = v(M'), suffices to find two sequences $M_i \to M$ and $M'_i \to M'$ with bi-Lipschitz diffeomorphisms

$$\phi_i\colon M_i o M_i'$$

and extract a limit.

Drilling

• When the combinatorics determine arbitrarily short geodesics in H_V , we obtain uniformly bi-Lipschitz geometrically finite approximates.

Drilling

- A covering argument due to Bromberg-Souto makes these methods applicable to bounded geometry as well.
- Apparently, one sacrifices the model for this approach.
- Limit is realized as a Dehn-filling of a gluing, or combination of cusped quasi-Fuchsian bounded geometry manifolds determined by H_V , so...
- model may be recoverable.