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Broad Goal

I. To give an overview of the classification of all

hyperbolic 3-manifolds with finitely generated

fundamental group,

II. outline other recent developments in our

understanding of dynamical features of Kleinian

groups, and

III. describe new directions for future research.
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Hyperbolic 3-manifolds

A Riemannian 3-manifold M is hyperbolic if it

admits a complete metric of constant sectional

curvature −1.

The hyperbolic 3-space, H
3 is the unique simply

connected hyperbolic 3-manifold.
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HYPERBOLIC SPACE

Geometry Center graphic
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Geometrization

“...yeah – I thought it

might go something like

that...”

W. Thurston conjectured all

3-manifolds admit a

geometric decomposition.

Most are hyperbolic.

Our motivation: to classify

hyperbolic manifolds using

simple invariants.
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Topology

Geometry

Conformal Dynamical Systems
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Hyperbolic Isometries

φ ∈ Isom+(H3) = PSL2(C) is either

loxodromic ∼ glide rotation.

parabolic ∼ single fixed point at ∞.

elliptic ∼ rotation about an axis.
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The Deformation Space

When N3 is compact and int(N) admits some

complete hyperbolic metric,

consider the space

V (N) =
{ρ : π1(N) → Isom+

H
3 | ρ disc., 1-1}

conjugacy

Then M = H
3/ρ(π1(N)) is homotopy

equivalent to N for ρ ∈ V (N).

If N closed or ∂N = tT 2, V (N) = {∗} (Mostow,

Prasad), so these are classified.
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The Infinite Volume Case
When M has infinite volume, there is a rich

deformation theory.

Points in the interior of V (N) are parameterized

by Teichmüller spaces of ∂N.

A simple example:
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Fuchsian Manifolds

A Fuchsian group ΓX ⊂ Isom+
H

2 determines a

Fuchsian 3-manifold MX = H
3/ΓX .
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Quasi-Fuchsian Groups

ΓX is the image of ρ : π1(S) → Isom+(H3),

where ρ ∈ V (S) = V (S× I).

A slight perturbation of ρ to ρ ′ yields a

quasi-Fuchsian manifold.
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Quasi-Fuchsian Groups

Each quasi-Fuchsian group Γ
preserves a quasi-circle Λ, a

fractal Jordan curve.

Bowen: H.dim(Λ) ∈ (1,2).

Ω+/Γ = X and Ω−/Γ = Y .

The manifold Q(X ,Y ) inter-

polates from X to Y , its con-

formal boundary.
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Quasi-Fuchsian Groups

A more severe quasi-circle.
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Quasi-Fuchsian Groups

Equivariantly bend along the lifts.
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Quasi-Fuchsian Space

The space QF(S) of quasi-Fuchsian

representations sits in V (S).

Theorem. (Bers) The simultaneous uniformization

Q : Teich(S)×Teich(S) → QF(S)

is a homeomorphism.

The quasi-Fuchsian representations are

parameterized by their conformal boundary.
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How?

Central Question:

How does the pair (X ,Y ) determine Q(X ,Y )?
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Topology

What is the topological type H
3/ρ(π1(S))?

Theorem. (Marden) Each Q(X ,Y ) is homeomorphic

to S×R.
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Topology

What about ρ ∈ V (N)?

M

E1

E2

E3
Compact Core
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The Tameness Conjecture

Marden’s Conjecture. Each hyperbolic 3-manifold M

with finitely generated fundamental group is

homeomorphic to the interior of a compact 3-manifold.

Such an M is said to be topologically tame –

in particular, M is homeomorphic to int(M ).
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The Convex Core Boundary

The invariant quasi-circle for the quasi-Fuchsian

group Γ represents the limit set Λ(Γ), the set of

limit points of the action of Γ on Ĉ.

The convex core is the quotient

hull(Λ(Γ))/Γ.

The boundary ∂hull(Λ(Γ)) is a pleated surface

in H
3.
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The Convex Core Boundary
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Geometric Finiteness

M = H
3/ρ(π1(N)) is geometrically finite if the

convex core has finite volume.

E1

E3

etds

Convex Core

t

M = H
3/ρ(π1(N))
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Danger at the Boundary

Geometrically finite manifolds are

parameterized by Teich(∂0N).

(Ahlfors, Bers, Abikoff, Maskit, Marden, Kra, Sullivan)

The normal projection from the convex core

boundary gives a product structure for the ends,

guaranteeing tameness (Marden), but...

A sequence with divergent parameters in

Teich(∂0N) can converge to ρ∞ ∈ V (N).
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Ending Laminations

Thurston: What is the quotient

M = H
3/ρ∞(π1(N))

topologically, and what are the correct new parameters

for its ends?

Ending Lamination Conjecture. Hyperbolic

structures are determined by their topology and their

end-invariants...?
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Degenerate Ends

When vol(core(M)) = ∞, we say M is degenerate.

If there are geodesics exiting an end homotopic

to simple curves on ∂M their limit on ∂M is an

ending lamination.

Thurston showed such ends are products, or

tame when π1(N) is indecomposable.

In principle, ends of M could fail to be products

(Whitehead manifolds).
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Inside the Degenerate Core

Inside the convex core of a degenerate manifold.
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Ends are Tame
Theorem. (Bonahon ’86) If π1(N) is indecomposable

each M ∈ V (N) is tame.

And more recently,

Theorem. (Agol..., Calegari-Gabai ’04) Each

M ∈ V (N) is tame.

Applying a theorem of Canary, all tame ends have

well-defined end-invariants (surfaces/laminations).
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Ending Laminations

Theorem. (B-Canary-Minsky – Model Theorem)

A hyperbolic structure on S×R has a bi-Lipschitz

model determined by its end-invariants.

The end-invariant ν(E) is a limit of bounded length

geodesics in E, pulled back to ∂M .
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Models and Rigidity

How does a bi-Lipschitz model help with ELC?

Any two manifolds M and M′ with

ν(M) = ν = ν(M′)

are bi-Lipschitz to the model Mν .

Hence, there is a bi-Lipschitz diffeomorphism

φ : M → M′.

By Sullivan’s rigidity theorem, φ is homotopic

to an isometry.
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The General Case
In the general case we pass to a cover

corresponding to each end and obtain a model

for this end.

The bi-Lipschitz model maps extend across the

remaining compact piece.

This proves the ending lamination conjecture.
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Classification
Combining the ending lamination and tameness

theorems, we have..

Theorem. (The Classification Theorem) Each

hyperbolic 3-manifold with finitely generated

fundamental group is determined up to isometry by the

topology of its compact core, its cusps, and its end

invariants.

This classifies finitely generated discrete subgroups

of PSL2(C), Kleinian groups.
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Dynamical Consequences

Combining classification with work of

Kleineidam-Souto, Namazi-Souto and Lecuire...

Theorem. (The Density Conjecture) Each

M ∈ V (N) is a limit of geometrically finite manifolds.

Previously, the indecomposable cusp-free case was

obtained by B-Bromberg...

...and more recently, Bromberg-Souto gave

complete proof along these lines.
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Geometric Consequences

The model verifies a conjecture of McMullen.

Theorem. (Volume Growth) Let Bthick(x,R) denote

the ball of radius R in the path metric on the Margulis

thick part of the convex core of M = H
3/ρ(π1(S)).

Then

vol(Bthick(x,R)) ≤CRd

where C and d depend only on S.

Here, the model reveals new effective geometric

information.
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