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Outer Space X,

The moduli space of marked graphs (of rank n)



AVl

Rn = therose of rank n

Fn = thefree group of rank n
=< X]_, X2, X3, suuy Xn>

= T4(Rn)

Out(Fp) = Aut(Fn) / Inn(Fp)
={ homotopy equivaences of Rn}

homotopy



Notation for

Qut(Fn) = Aut(Fn)/Inn(Fy)
__{homotopy equivalences of Ry}

homotopy
¢ = an element of Out(Fy)
d =  a representative in Aut(Fy)

or a representative homotopy equivalence
R, — Ry



Fully irreducible: ¢ € Out(Fy) is fully irreducible
if no proper, nontrivial free factor of F,, has a con-
jugacy class which is periodic under ¢.



Fully irreducible: ¢ € Out(Fy) is fully irreducible
if no proper, nontrivial free factor of F,, has a con-
jugacy class which is periodic under ¢.

Example of a fully irreducible ¢ € Out(F3):
Represented by the automorphism

(A — B
db:. B —=C
¢ — BA




Fully irreducible: ¢ € Out(Fy) is fully irreducible
if no proper, nontrivial free factor of F,, has a con-
jugacy class which is periodic under ¢.

Example of a fully irreducible ¢ € Out(F3):
Represented by the automorphism

(A — B
b:. B —C
¢ — BA

Try to prove:

e No nontrivial conjugacy class is periodic (easy).

e In particular, no rank 1 free factor has a periodic
conjugacy class.

e NO rank 2 free factor has a periodic conjugacy
class (trickier).
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A graph of rank 3
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A graph of rank 3
with ametric
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A graph of rank 3

with a metric
and a marking
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Definition of a marked graph (of rank n):
A graph G with no vertices of valence 1, equipped
with:

e A geodesic metric, determined (up to isotopy)
by assigning a length to each edge.

e A homotopy equivalence

e Rn — G
called (the marking).
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Definition of a marked graph (of rank n):
A graph G with no vertices of valence 1, equipped

with:

e A geodesic metric, determined (up to isotopy)
by assigning a length to each edge.

e A homotopy equivalence
e Rn — G
called (the marking).

Definition of a marked homotopy equivalence:
A homotopy equivalence f: G — G’ of marked graphs

such that

G
e
R f
Pq! o

commutes up to homotopy.
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Definition of a marked homotopy equivalence:
A homotopy equivalence f: G — G’ of marked graphs
such that

G
e
Rn f
Pq! o

commutes up to homotopy.

Types of marked homotopy equivalences:

e Marked isometry (preserves metric).

e Marked homothety (multiplies metric by a con-
stant).

e Marked homeomorphism (preserves topology).
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Deprojectivized Outer Space X,,:

e One element for each marked graph,
up to marked isometry.
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Deprojectivized Outer Space X,,:

e One element for each marked graph,
up to marked isometry.

Outer Space X,:

e One element for each marked graph,
up to marked homothety.
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Deprojectivized Outer Space X,,:

e One element for each marked graph,
up to marked isometry.

Outer Space X,:

e One element for each marked graph,
up to marked homothety.

Cone stratification of X,
Simplex stratification of A);:

e One cone (simplex) for each marked graph G,
up to marked homeomorphism.
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Cone stratification of X,
Simplex stratification of X,

e One cone (simplex) for each marked graph G,
up to marked homeomorphism.

e Open cone parameterized by (O,oo)k,
one coordinate for each of the k edges of G.

e Closed cone parameterized by [0, c0)* minus one
face for each nonforest subgraph of G-

— Edge lengths may be zero on a subforest,
collapsing each component of the subforest
to a point.

— Edge lengths may not be zero on a loop, else
the homotopy type changes.
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Topology of X,:

e Closed cones inherit topology from parameter-
ization.

e \Weak topology w.r.t. collection of closed cones.
Topology of AX,:
e Quotient topology w.r.t. projection X, — X.

e Quotients of open cells form open simplex de-
composition.

e Quotients of closed cells form closed (but non-
compact) simplex decomposition

e \Weak topology w.r.t. collection of closed sim-
plices.

22



Action of Out(Fy) on X, (from the right):
Change of marking.
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Action of Out(Fy) on X, (from the right):
Change of marking.

Given: ¢ € Out(Fy)
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Action of Out(Fy) on X, (from the right):
Change of marking.

Given: ¢ € Out(Fy)

Choose: homotopy equivalence

D Rn — Rn
representing ¢.
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Action of Out(Fy) on X, (from the right):
Change of marking.

Given: ¢ € Out(Fy)

Choose: homotopy equivalence

D Rn — Rn
representing ¢.

Define action of ¢ on X, and on X,:
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Action of Out(Fy) on X, (from the right):
Change of marking.

Given: ¢ € Out(Fy)

Choose: homotopy equivalence

D Rn — Rn
representing o¢.

Define action of ¢ on X, and on X;:

e For each marked graph pg: Rn — G
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Action of Out(Fy) on X, (from the right):
Change of marking.

Given: ¢ € Out(Fy)

Choose: homotopy equivalence
D Rn — Rn

representing o¢.

Define action of ¢ on X, and on X;:
e For each marked graph pg: Rn — G

e Define marked graph pg.p = pgo®: Rn — G

R

%

o) G

o

R
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Outer space and its boundary in terms of trees:

e First understand points in X, in terms of uni-
versal covers of marked graphs.
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Outer space and its boundary in terms of trees:

e First understand points in A, in terms of uni-
versal covers of marked graphs.

e Universal cover of a rank n marked graph (up
to marked homothety) is:

— An R-tree,
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Outer space and its boundary in terms of trees:

e First understand points in A, in terms of uni-
versal covers of marked graphs.

e Universal cover of a rank n marked graph (up
to marked homothety) is:

— An R-tree, on which F;, acts,

31



Outer space and its boundary in terms of trees:

e First understand points in A, in terms of uni-
versal covers of marked graphs.

e Universal cover of a rank n marked graph (up
to marked homothety) is:

— An R-tree, on which Fj acts, freely,
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Outer space and its boundary in terms of trees:

e First understand points in A, in terms of uni-
versal covers of marked graphs.

e Universal cover of a rank n marked graph (up
to marked homothety) is:

— An R-tree, on which Fj, acts, freely, simpli-
Cially,
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Outer space and its boundary in terms of trees:

e First understand points in A, in terms of uni-
versal covers of marked graphs.

e Universal cover of a rank n marked graph (up
to marked homothety) is:

— An R-tree, on which Fj, acts, freely, simpli-
cially, minimally (up to Fp-equivariant homo-
thety)
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Outer space and its boundary in terms of trees:

e First understand points in X, in terms of uni-
versal covers of marked graphs.

e Universal cover of a rank n marked graph (up
to marked homothety) is:

— An R-tree, on which Fj, acts, freely, simpli-
cially, minimally (up to Fp-equivariant homo-
thety)

e A point in the compactification X, = X, U 0X;
IS:
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Outer space and its boundary in terms of trees:

e First understand points in X, in terms of uni-
versal covers of marked graphs.

e Universal cover of a rank n marked graph (up
to marked homothety) is:

— An R-tree, on which Fj acts, freely, simpli-
cially, minimally (up to F,-equivariant homo-
thety)

e A point in the compactification X, = X U 0X;
IS:

— An R-tree, on which F,, acts, minimally, ‘“very
small” (up to Fp-equivariant homothety)
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Fold line in Outer Space:

Continuous path in X interpolated by edge isometries

Periodic fold lines:

Arise from train track maps
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Edge isometry: a marked homotopy equivalence

f:G— &,
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Edge isometry: a marked homotopy equivalence
f:G— &,
such that for each edge E of G,

f ‘ int(E) is a local isometry
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Edge isometry: a marked homotopy equivalence
f:G— &,
such that for each edge E of G,

f ‘ int(E) is a local isometry

Fold line: a continuous, l-parameter family of
marked graphs

t — Gy, —00 <t < 400
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Edge isometry: a marked homotopy equivalence
f:G— &,
such that for each edge E of G,

f ‘ int(E) is a local isometry

Fold line: a continuous, l-parameter family of
marked graphs

t — Gy, —00 <t < 400

for which there is a family of edge isometries

his. Gs — Gy, —o0 < s<t< 4+
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Edge isometry: a marked homotopy equivalence
f:G— &,
such that for each edge E of G,

f ‘ int(E) is a local isometry

Fold line: a continuous, 1l-parameter family of
marked graphs

t — Gy, —o0 <t < 400

for which there is a family of edge isometries
his: Gs — Gy, —o0o < s<t< oo
satisfying the semiflow identity
hts © hsr = hyp, —oo < r<s<t<—+oo

hsr hts

Gr G's

htr

Gy
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Train track maps: Given:

o ¢ e Out(rfy)

e marked graph GG

e homotopy equivalence g: G — G

g is an (affine) train track representative of ¢ if:

50



Train track maps: Given:

o ¢ e Out(rfy)

e marked graph GG

e homotopy equivalence g: G — G

g is an (affine) train track representative of ¢ if:

e ¢ takes vertices to vertices
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Train track maps: Given:
o ¢ c Out(Fy)
e marked graph GG
e homotopy equivalence g: G — G
g is an (affine) train track representative of ¢ if:
e ¢ takes vertices to vertices

e g changes marking consistent with ¢:

gopg~ pgo®
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Train track maps: Given
o ¢ € Out(ry)
e marked graph G
e homotopy equivalence g: G — G
g is an (affine) train track representative of ¢ if:
e ¢ takes vertices to vertices
e g changes marking consistent with ¢:

gopg~ pgo®

e dX > 1 such that Vi > 1 and VE an edge of G,

int(E)is a local homothety with stretch \*

gi
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Example of a train track map:
On the 3-petalled rose:

(A — B
. (B —C
C — BA

Only ‘“illegal turns” (turns which are not locally
injective under all powers) are:

AC,CA,CB,BC,BA,AB

No edge has an image containing one of these illegal
turns.
So, ¢ is a train track map.
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(A — B
b:. (B —C
¢ — BA

Sufficient condition for ¢ € Out(F3) to be fully
irreducible:

Check that the map Mg on Hq(G;Z) induced by
the train track map &

has no eigenvalue on the unit circle.
(This sufficient condition only works in rank 3).

Eigenvalues(Mqg ) = {0.6823278040,
—0.3411639019 +£1.161541400:}
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Theorem (Bestvina, Handel). For every fully irre-
ducible ¢ € Out(F;) there exists an affine train track
representative

g. G—-G
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Theorem (Bestvina, Handel). For every fully irre-

ducible ¢ € Out(F;) there exists an affine train track
representative

g. G—-G

From this we shall obtain:

A ¢-periodic fold line
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A ¢-periodic fold line: Given:

e Fully irreducible ¢ € Out(Fy),

e Affine train track representative g: G — G,
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A ¢-periodic fold line: Given:

e Fully irreducible ¢ € Out(Fy),

e Affine train track representative g: G — G,

First get a ¢-periodic “discrete’” fold line:

G
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A ¢-periodic fold line: Given:

e Fully irreducible ¢ € Out(Fy),

e Affine train track representative g: G — G,

First get a ¢-periodic “discrete’” fold line:

G - ¢, i €Z
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A ¢-periodic fold line: Given:

e Fully irreducible ¢ € Out(Fy),

e Affine train track representative g: G — G,

First get a ¢-periodic “discrete’” fold line:

1

ya-qﬁ’i, i €Z
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A ¢-periodic fold line: Given:

e Fully irreducible ¢ € Out(Fy),

e Affine train track representative g:. G — G

First get a ¢-periodic “discrete’” fold line:
1

GZ—AZ.G-qbi, icZ
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A ¢-periodic fold line: Given:

e Fully irreducible ¢ € Out(FEy),

e Affine train track representative g: G — G

First get a ¢-periodic “discrete’” fold line:

1 : ,
G’LZEGQSZ) 1€ 7

For i< jeZ, ¢2-* induces an edge isometry

hjz'i Gi — Gj
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A ¢-periodic fold line: Given:

e Fully irreducible ¢ € Out(FEy,),

e Affine train track representative g: G — G,

First get a ¢-periodic “discrete’” fold line:

1 . |
Gi= G ¢, i€ Z

Fori< j€eZ, ¢?~* induces an edge isometry
hjii Gz' — Gj
For i < 3 <k €%, the identity
ghi o gi—i = ghi
induces the semiflow identity
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From this ‘“discrete” fold line:
¢ Gi=+G-¢, 1€ Z
° hﬁGz—>G] fori<jeZ
° hk]Ohﬂ:hkz fori<ji< kel

To get a continuous fold line:
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From this “discrete” fold line:
¢ Gi=+G-¢, i€ Z
® hj;: G, — G fori<jeZ
® hpjohj=hy fori<j<keZ
To get a continuous fold line:
e Interpolate h;q ;: G; — G;41 by a fold path.

e Fit together to give a ¢-periodic fold line.
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Ap
The Axis Bundle for ¢:

Periodic fold lines for powers of ¢
all bundled together
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The axis bundle:
e Choices in the construction of a periodic fold
line for power of o:
— Positive power ¢
— Train track map g: G — G representing ¢F

— The interpolations of h; 41 ;: G; — G41.
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T he axis bundle:

e Choices in the construction of a periodic fold
line for power of ¢:
— Positive power ¢

— Train track map g: G — G representing ¢*

— The interpolations of h; 11 ;: G; — G;41.

e \WWant something independent of choices.
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T he axis bundle:

e Choices in the construction of periodic fold lines
— Positive power ¢*
— The train track map g: G — G

— The interpolations of h; 11 ;: G; — G4 1.

e \Want something independent of choices, and
independent of the power of ¢.

Define the axis bundle A¢ C X, to be:

70



T he axis bundle:

e Choices in the construction of periodic fold lines
— The train track map g: G — G

— The interpolations of h; 11 ;: G; — G41.

e \WWant something independent of choices.

Define the axis bundle A¢ C X, to be;:

e The closure of the union of all ¢'*-periodic fold
lines for ¢+ > 1.
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Theorem. For each fully irreducible ¢ € Out(Fy),
with source T € X, and sink Ty € 0Xy:
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Theorem. For each fully irreducible ¢ € Out(Fy),
with source T € X, and sink Ty € 0Xy:

° A¢ is proper homotopy equivalent to R
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Theorem. For each fully irreducible ¢ € Out(Fy),
with source T € X, and sink Ty € 0Xy:

° A¢ is proper homotopy equivalent to R

e The two ends of A, converge in Xr to T, T,.
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Theorem. For each fully irreducible ¢ € Out(Fy),
with source T € X, and sink Ty € 0Xy:

° A¢ is proper homotopy equivalent to R
e The two ends of Ay converge in Xy to T, T,.

e Ay depends naturally on (T—,T,)
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Theorem. For each fully irreducible ¢ € Out(Fy),
with source T € X, and sink Ty € 0Xy:

° A¢ is proper homotopy equivalent to R
e The two ends of Ay converge in Xy to T, T,.
e Ay depends naturally on (T—,T,)

Natural dependence implies:
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Theorem. For each fully irreducible ¢ € Out(Fy),
with source T € 0X, and sink T € OXy.:

° A¢ is proper homotopy equivalent to R

e The two ends of Ay converge in Xy to T, T,.

e Ay depends naturally on (T—,T4)
Natural dependence implies:

o Ay = Ay fori>1
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Theorem. For each fully irreducible ¢ € Out(Fy),
with source T € X, and sink Ty € 0Xy:

° A¢ is proper homotopy equivalent to R
e The two ends of Ay converge in Xy to T, T,.
e Ay depends naturally on (T—,T,)
Natural dependence implies:
° A¢i:A¢ fort>1

o If v € Out(F,) commutes with a (nonzero)
power of ¢ then

P(Ag) = Ay
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Natural dependence on (7,7} ):

Theorem. For each fully irreducible ¢ € Out(Fy),
with source T € X, and sink T € 04y,
.A¢ IS
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Natural dependence on (7,7} ):

Theorem. For each fully irreducible ¢ € Out(Fy),
with source T € X, and sink T € 04y,

Ay is the union of all fold lines (periodic or not),
whose negative end converges to T_,

and whose positive end converges to T, .
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So far two characterizations of when G € A} is in
the axis bundle A<b:

e (3) G is a limit of points on ¢*periodic fold
lines, « > 1.

e (1) G is on a fold line with ends T, T, .

These are both “global” or “extrinsic'” conditions:

existence of certain fold lines passing through or
near G.

Need a “local” or “intrinsic”’ condition on .
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e (3) G is a limit of points on ¢*periodic fold
lines, ¢« > 1.

e (1) G is on a fold line with ends T, T .

For the cognoscenti, alternate condition depends
on the lamination theory of Bestvina, Feighn, and

Handel:

AN_ = N_(¢), the expanding lamination of ¢:
e Limits of iterates of edges of a train track map.

e Minimal lamination whose leaves have length
zero in 1.
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e (3) G is a limit of points on ¢*periodic fold
lines, « > 1.

e (1) G is on a fold line with ends T, T .

Alternate characterization of G & A¢:

e (2) G € X is a weak train track, meaning G has
a normalization in X, so that:

— there exists an edge isometry G — T4 such

that every leaf of A_ realized in G embeds
in T+.

Main point to take from this definition: each weak
train track has a ‘“canonical” normalization, and
hence has a “canonical” length.
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Where's the hard work?

e For all G € &, TFAE:
(1) G is on a fold line with ends T, T
(2) G is a weak train track.
(3) G is a limit of points on ¢!periodic fold

lines, + > 1.

e Proving that A(b IS proper homotopy equivalent
to R.

84



Main technical result from which others flow:

Proposition 1 (The S—T Lemma (Prop. 5.4 but
it doesn’t look like this)).

For every L > O there exists a train track S of length
> L such that for each weak train track I' of length
< L, there is an edge isometry S — T.

In other words: From a certain sufficiently long S,
can fold to anything sufficiently short.

Proof that (2) == (1): every weak train track lies
on a fold line going from T_ to TY.

e Every train track S is on a periodic fold line
(proved earlier).

e Every periodic fold line goes from T_ to T,
(apply Source-Sink dynamics).
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Construction of a fold line from T_ through T to
T_|_:

e Fold from 7_ to S by part of a periodic fold
line:;

e Fold from S to T by interpolating the edge
isometry S +— T

e Fold from T to T by interpolating the edge
isometry T +— T .
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Proving that A¢ IS proper homotopy equivalent to
R:

e Length map Ay — (0,00) is a proper map:

— Use the S—T lemma: those T, foldable from
S, with length in a compact interval [a,b],
forms a compact set.

e Skora's method, which has been used to prove
contractibility of X,, X, etc., can also be used
to prove that the length map A, — (0,00) is a
proper homotopy equivalence.
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