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Outer Space Xn:

The moduli space of marked graphs (of rank n)
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Rn = the rose of rank n

x1

x2

x3

xn

...

Fn = the free group of rank n
= < x1, x2, x3, ..., xn >

Out(Fn) = Aut(Fn) / Inn(Fn)

={homotopy equivalences of Rn}

homotopy

= π1(Rn)
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Notation for

Out(Fn) = Aut(Fn)/ Inn(Fn)

=
{homotopy equivalences of Rn}

homotopy

φ = an element of Out(Fn)

Φ = a representative in Aut(Fn)

or a representative homotopy equivalence

or Rn 7→ Rn
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Fully irreducible: φ ∈ Out(Fn) is fully irreducible

if no proper, nontrivial free factor of Fn has a con-

jugacy class which is periodic under φ.

Example of a fully irreducible φ ∈ Out(F3):

Represented by the automorphism

Φ:


A → B

B → C

C → BA

Try to prove:

• No nontrivial conjugacy class is periodic (easy).

• In particular, no rank 1 free factor has a periodic

conjugacy class.

• No rank 2 free factor has a periodic conjugacy

class (trickier).
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A graph of rank 3
with a metric
and a marking

a

b

c

d

e

f

a

d
b

b

e
c

a

db

a

f

b

e

G

R3
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Definition of a marked graph (of rank n):
A graph G with no vertices of valence 1, equipped
with:

• A geodesic metric, determined (up to isotopy)
by assigning a length to each edge.

• A homotopy equivalence

ρG : Rn → G

called (the marking).

Definition of a marked homotopy equivalence:
A homotopy equivalence f : G→ G′ of marked graphs
such that

G

f

��

Rn

ρG
55lllllllllllllllllll

ρG′ ))RRRRRRRRRRRRRRRRRRR

G′

commutes up to homotopy.
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Definition of a marked homotopy equivalence:

A homotopy equivalence f : G→ G′ of marked graphs

such that

G

f

��

Rn

ρG
55lllllllllllllllllll

ρG′ ))RRRRRRRRRRRRRRRRRRR

G′

commutes up to homotopy.

Types of marked homotopy equivalences:

• Marked isometry (preserves metric).

• Marked homothety (multiplies metric by a con-

stant).

• Marked homeomorphism (preserves topology).

16



Deprojectivized Outer Space X̂n:

• One element for each marked graph,

up to marked isometry.

Outer Space Xn:

• One element for each marked graph,

up to marked homothety.

Cone stratification of X̂n,
Simplex stratification of Xn:

• One cone (simplex) for each marked graph G,

up to marked homeomorphism.
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Cone stratification of X̂n,
Simplex stratification of Xn:

• One cone (simplex) for each marked graph G,

up to marked homeomorphism.

• Open cone parameterized by (0,∞)k,

one coordinate for each of the k edges of G.

• Closed cone parameterized by [0,∞)k minus one

face for each nonforest subgraph of G:

– Edge lengths may be zero on a subforest,

collapsing each component of the subforest

to a point.

– Edge lengths may not be zero on a loop, else

the homotopy type changes.
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Topology of X̂r:

• Closed cones inherit topology from parameter-
ization.

• Weak topology w.r.t. collection of closed cones.

Topology of Xr:

• Quotient topology w.r.t. projection X̂r → Xr.

• Quotients of open cells form open simplex de-
composition.

• Quotients of closed cells form closed (but non-
compact) simplex decomposition

• Weak topology w.r.t. collection of closed sim-
plices.
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Action of Out(Fn) on Xn (from the right):
Change of marking.

Given: φ ∈ Out(Fn)

Choose: homotopy equivalence

Φ: Rn → Rn

representing φ.

Define action of φ on X̂r and on Xr:

• For each marked graph ρG : Rn → G

• Define marked graph ρG·φ = ρG ◦Φ: Rn → G

Rn

G

Rn
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Action of Out(Fn) on Xn (from the right):
Change of marking.

Given: φ ∈ Out(Fn)

Choose: homotopy equivalence

Φ: Rn → Rn

representing φ.

Define action of φ on X̂r and on Xr:

• For each marked graph ρG : Rn → G

• Define marked graph ρG·φ = ρG ◦Φ: Rn → G

Rn ρG·φ

))RRRRRRRRRRRRRRRRRRR

Φ

��

G

Rn
ρG

55lllllllllllllllllll
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Outer space and its boundary in terms of trees:

• First understand points in Xr in terms of uni-

versal covers of marked graphs.

• Universal cover of a rank n marked graph (up

to marked homothety) is:

– An R-tree, on which Fn acts, freely, simpli-

cially, minimally (up to Fn-equivariant homo-

thety)

• A point in the compactification X r = Xr ∪ ∂Xr
is:

– An R-tree, on which Fn acts, minimally, “very

small” (up to Fn-equivariant homothety)
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Fold line in Outer Space:

Continuous path in Xr interpolated by edge isometries

Periodic fold lines:

Arise from train track maps
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Edge isometry: a marked homotopy equivalence

f : G→ G′,

such that for each edge E of G,

f
∣∣∣ int(E) is a local isometry

Fold line: a continuous, 1-parameter family of

marked graphs

t 7→ Gt

for which there is a family of edge isometries

hts : Gs → Gt

satisfying the semiflow condition

hts ◦ hsr = htr

Gr Gs Gt
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Fold line: a continuous, 1-parameter family of

marked graphs

t 7→ Gt, −∞ < t < +∞

for which there is a family of edge isometries
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satisfying the semiflow condition

hts ◦ hsr = htr
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Edge isometry: a marked homotopy equivalence

f : G→ G′,

such that for each edge E of G,

f
∣∣∣ int(E) is a local isometry

Fold line: a continuous, 1-parameter family of

marked graphs

t 7→ Gt, −∞ < t < +∞

for which there is a family of edge isometries

hts : Gs → Gt, −∞ < s < t < +∞

satisfying the semiflow identity

hts ◦ hsr = htr, −∞ < r < s < t < +∞

Gr
hsr //

htr

77Gs
hts //Gt
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Train track maps: Given:

• φ ∈ Out(Fn)

• marked graph G

• homotopy equivalence g : G→ G

g is an (affine) train track representative of φ if:

• g takes vertices to vertices

• g changes marking consistent with φ:

g ◦ ρG ∼ ρG ◦Φ

• ∃λ > 1 such that ∀i ≥ 1 and ∀E an edge of G,

gi
∣∣∣ int(E) is a local homothety with stretch λi
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Example of a train track map:

On the 3-petalled rose:

Φ:


A → B

B → C

C → BA

Only “illegal turns” (turns which are not locally

injective under all powers) are:

AC,CA,CB,BC,BA,AB

No edge has an image containing one of these illegal

turns.

So, Φ is a train track map.
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Φ:


A → B

B → C

C → BA

Sufficient condition for φ ∈ Out(F3) to be fully

irreducible:

Check that the map MΦ on H1(G;Z) induced by

the train track map Φ

MΦ =

0 1 0
0 0 1
1 −1 0


has no eigenvalue on the unit circle.

(This sufficient condition only works in rank 3).

Eigenvalues(MΦ) = {0.6823278040,

− 0.3411639019± 1.161541400i}
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Theorem (Bestvina, Handel). For every fully irre-

ducible φ ∈ Out(Fr) there exists an affine train track

representative

g : G→ G
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Theorem (Bestvina, Handel). For every fully irre-

ducible φ ∈ Out(Fr) there exists an affine train track

representative

g : G→ G

From this we shall obtain:

A φ-periodic fold line
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A φ-periodic fold line: Given:

• Fully irreducible φ ∈ Out(Fn),

• Affine train track representative g : G→ G,

Get:

• discrete 1-parameter family of marked graphs

Gi =
1

λi
G · φi, i ∈ Z

• family of edge isometries

hji : Gi → Gj

• satisfying the semiflow identity

hkj ◦ hji = hki, i < j < k ∈ Z
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From this “discrete” fold line:

• Gi = 1
λi
G · φi, i ∈ Z

• hji : Gi → Gj for i < j ∈ Z

• hkj ◦ hji = hki for i < j < k ∈ Z

To get a continuous fold line:
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From this “discrete” fold line:

• Gi = 1
λi
G · φi, i ∈ Z

• hji : Gi → Gj for i < j ∈ Z

• hkj ◦ hji = hki for i < j < k ∈ Z

To get a continuous fold line:

• Interpolate hi+1,i : Gi → Gi+1 by a fold path.

• Fit together to give a φ-periodic fold line.
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Aφ
The Axis Bundle for φ:

Periodic fold lines for powers of φ

all bundled together
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The axis bundle:

• Choices in the construction of a periodic fold

line for power of φ:

– Positive power φk

– Train track map g : G→ G representing φk

– The interpolations of hi+1,i : Gi → Gi+1.

• Want something independent of choices.

Define the axis bundle Aφ ⊂ Xr to be:

• The closure of the union of all φi-periodic fold

lines for i ≥ 1.
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The axis bundle:

• Choices in the construction of periodic fold lines

– Positive power φk

– The train track map g : G→ G

– The interpolations of hi+1,i : Gi → Gi+1.
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The axis bundle:

• Choices in the construction of periodic fold lines

– The train track map g : G→ G

– The interpolations of hi+1,i : Gi → Gi+1.

• Want something independent of choices.
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Theorem. For each fully irreducible φ ∈ Out(Fn),

with source T− ∈ ∂Xr and sink T+ ∈ ∂Xr:

• Aφ is proper homotopy equivalent to R

• The two ends of Aφ converge in X r to T−, T+.

• Aφ depends naturally on (T−, T+)

Natural dependence implies:

• Aφi = Aφ for i ≥ 1

• If ψ ∈ Out(Fn) commutes with a (nonzero)

power of φ then

ψ(Aφ) = Aφ
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• Aφ depends naturally on (T−, T+)

Natural dependence implies:

• Aφi = Aφ for i ≥ 1

• If ψ ∈ Out(Fn) commutes with a (nonzero)

power of φ then

ψ(Aφ) = Aφ
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Theorem. For each fully irreducible φ ∈ Out(Fn),

with source T− ∈ ∂Xr and sink T+ ∈ ∂Xr:

• Aφ is proper homotopy equivalent to R

• The two ends of Aφ converge in X r to T−, T+.

• Aφ depends naturally on (T−, T+)

Natural dependence implies:

• Aφi = Aφ for i ≥ 1

• If ψ ∈ Out(Fn) commutes with a (nonzero)

power of φ then

ψ(Aφ) = Aφ
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Theorem. For each fully irreducible φ ∈ Out(Fn),

with source T− ∈ ∂Xr and sink T+ ∈ ∂Xr:

• Aφ is proper homotopy equivalent to R

• The two ends of Aφ converge in X r to T−, T+.

• Aφ depends naturally on (T−, T+)

Natural dependence implies:

• Aφi = Aφ for i ≥ 1

• If ψ ∈ Out(Fn) commutes with a (nonzero)

power of φ then

ψ(Aφ) = Aφ
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Theorem. For each fully irreducible φ ∈ Out(Fn),

with source T− ∈ ∂Xr and sink T+ ∈ ∂Xr:

• Aφ is proper homotopy equivalent to R

• The two ends of Aφ converge in X r to T−, T+.

• Aφ depends naturally on (T−, T+)

Natural dependence implies:

• Aφi = Aφ for i ≥ 1

• If ψ ∈ Out(Fn) commutes with a (nonzero)

power of φ then

ψ(Aφ) = Aφ
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Theorem. For each fully irreducible φ ∈ Out(Fn),

with source T− ∈ ∂Xr and sink T+ ∈ ∂Xr:

• Aφ is proper homotopy equivalent to R

• The two ends of Aφ converge in X r to T−, T+.

• Aφ depends naturally on (T−, T+)

Natural dependence implies:

• Aφi = Aφ for i ≥ 1

• If ψ ∈ Out(Fn) commutes with a (nonzero)

power of φ then

ψ(Aφ) = Aφ
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Theorem. For each fully irreducible φ ∈ Out(Fn),

with source T− ∈ ∂Xr and sink T+ ∈ ∂Xr:

• Aφ is proper homotopy equivalent to R

• The two ends of Aφ converge in X r to T−, T+.

• Aφ depends naturally on (T−, T+)

Natural dependence implies:

• Aφi = Aφ for i ≥ 1

• If ψ ∈ Out(Fn) commutes with a (nonzero)

power of φ then

ψ(Aφ) = Aφ
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Natural dependence on (T−, T+):

Theorem. For each fully irreducible φ ∈ Out(Fn),

with source T− ∈ ∂Xr and sink T+ ∈ ∂Xr,
Aφ is the union of all fold lines (periodic or not),

whose negative end converges to T−,

and whose positive end converges to T+.
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Natural dependence on (T−, T+):

Theorem. For each fully irreducible φ ∈ Out(Fn),

with source T− ∈ ∂Xr and sink T+ ∈ ∂Xr,
Aφ is the union of all fold lines (periodic or not),

whose negative end converges to T−,

and whose positive end converges to T+.
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So far two characterizations of when G ∈ Xr is in

the axis bundle Aφ:

• (3) G is a limit of points on φi-periodic fold

lines, i ≥ 1.

• (1) G is on a fold line with ends T−, T+.

These are both “global” or “extrinsic” conditions:

existence of certain fold lines passing through or

near G.

Need a “local” or “intrinsic” condition on G.
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• (3) G is a limit of points on φi-periodic fold

lines, i ≥ 1.

• (1) G is on a fold line with ends T−, T+.

For the cognoscenti, alternate condition depends

on the lamination theory of Bestvina, Feighn, and

Handel:

Λ− = Λ−(φ), the expanding lamination of φ:

• Limits of iterates of edges of a train track map.

• Minimal lamination whose leaves have length

zero in T−.

82



• (3) G is a limit of points on φi-periodic fold

lines, i ≥ 1.

• (1) G is on a fold line with ends T−, T+.

Alternate characterization of G ∈ Aφ:

• (2) G ∈ Xr is a weak train track, meaning G has

a normalization in X̂r so that:

– there exists an edge isometry G̃ → T+ such

that every leaf of Λ− realized in G̃ embeds

in T+.

Main point to take from this definition: each weak

train track has a “canonical” normalization, and

hence has a “canonical” length.
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Where’s the hard work?

• For all G ∈ Xr, TFAE:

(1) G is on a fold line with ends T−, T+

(2) G is a weak train track.

(3) G is a limit of points on φi-periodic fold

lines, i ≥ 1.

• Proving that Aφ is proper homotopy equivalent

to R.
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Main technical result from which others flow:

Proposition 1 (The S − T Lemma (Prop. 5.4 but

it doesn’t look like this)).

For every L > 0 there exists a train track S of length

> L such that for each weak train track T of length

< L, there is an edge isometry S 7→ T .

In other words: From a certain sufficiently long S,

can fold to anything sufficiently short.

Proof that (2) =⇒ (1): every weak train track lies

on a fold line going from T− to T+.

• Every train track S is on a periodic fold line

(proved earlier).

• Every periodic fold line goes from T− to T+

(apply Source-Sink dynamics).
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Construction of a fold line from T− through T to

T+:

• Fold from T− to S by part of a periodic fold

line;

• Fold from S to T by interpolating the edge

isometry S 7→ T ;

• Fold from T to T+ by interpolating the edge

isometry T 7→ T+.

86



Proving that Aφ is proper homotopy equivalent to

R:

• Length map Aφ → (0,∞) is a proper map:

– Use the S−T lemma: those T , foldable from

S, with length in a compact interval [a, b],

forms a compact set.

• Skora’s method, which has been used to prove

contractibility of Xr, X r, etc., can also be used

to prove that the length map Aφ → (0,∞) is a

proper homotopy equivalence.
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