Axes in Outer Space

Michael Handel and Lee Mosher

May 19, 2006

Group:	Isom (\mathbf{H}^n)	$\mathcal{MCG}(S)$	$Out(F_n)$
Space:	Hyperbolic	Teichmüller	Outer
Notation:	\mathbf{H}^n	$\mathcal{T}(S)$	\mathcal{X}_n

Group:	Isom (\mathbf{H}^n)	$\mathcal{MCG}(S)$	$Out(F_n)$
Space:	Hyperbolic	Teichmüller	Outer
Notation:	\mathbf{H}^n	$\mathcal{T}(S)$	\mathcal{X}_n
Boundary:	S_{∞}^{n-1}	\mathcal{PMF}	$\partial \mathcal{X}_n$

Group:	Isom (\mathbf{H}^n)	$\mathcal{MCG}(S)$	$Out(F_n)$
Space:	Hyperbolic	Teichmüller	Outer
Notation:	\mathbf{H}^n	$\mathcal{T}(S)$	\mathcal{X}_n
Boundary:	S_{∞}^{n-1}	\mathcal{PMF}	$\partial \mathcal{X}_n$
North-South elements:	loxodromic	pseudo- Anosov	fully irreducible

Group:	Isom (\mathbf{H}^n)	$\mathcal{MCG}(S)$	$Out(F_n)$
Space:	Hyperbolic	Teichmüller	Outer
Notation:	\mathbf{H}^n	$\mathcal{T}(S)$	\mathcal{X}_n
Boundary:	S_{∞}^{n-1}	\mathcal{PMF}	$\partial \mathcal{X}_n$
North-South elements:	loxodromic	pseudo- Anosov	fully
Axis for North-South elements:	✓	✓	???

Outer Space \mathcal{X}_n :

The moduli space of marked graphs (of rank n)

 R_n = the rose of rank n F_n = the free group of rank n= $\langle x_1, x_2, x_3, ..., x_n \rangle$ = $\pi_1(R_n)$

Out(F_n) = Aut(F_n) / Inn(F_n) ={homotopy equivalences of R_n } homotopy

Notation for

$$Out(F_n) = Aut(F_n)/Inn(F_n)$$

$$= \frac{\{homotopy \ equivalences \ of \ R_n\}}{homotopy}$$

 $\phi =$ an element of $\operatorname{Out}(F_n)$ $\Phi =$ a representative in $\operatorname{Aut}(F_n)$ or a representative homotopy equivalence $R_n \mapsto R_n$ Fully irreducible: $\phi \in \text{Out}(F_n)$ is fully irreducible if no proper, nontrivial free factor of F_n has a conjugacy class which is periodic under ϕ .

Fully irreducible: $\phi \in \text{Out}(F_n)$ is *fully irreducible* if no proper, nontrivial free factor of F_n has a conjugacy class which is periodic under ϕ .

Example of a fully irreducible $\phi \in \text{Out}(F_3)$:

Represented by the automorphism

$$\Phi : \begin{cases} A & \to B \\ B & \to C \\ C & \to \overline{B}A \end{cases}$$

Fully irreducible: $\phi \in \text{Out}(F_n)$ is fully irreducible if no proper, nontrivial free factor of F_n has a conjugacy class which is periodic under ϕ .

Example of a fully irreducible $\phi \in \text{Out}(F_3)$:

Represented by the automorphism

$$\Phi : \begin{cases} A & \to B \\ B & \to C \\ C & \to \overline{B}A \end{cases}$$

Try to prove:

- No nontrivial conjugacy class is periodic (easy).
- In particular, no rank 1 free factor has a periodic conjugacy class.
- No rank 2 free factor has a periodic conjugacy class (trickier).

A graph of rank 3

A graph of rank 3 with a metric

A graph of rank 3 with a metric and a marking

Definition of a marked graph (of rank n):

A graph G with no vertices of valence 1, equipped with:

- A geodesic metric, determined (up to isotopy) by assigning a length to each edge.
- A homotopy equivalence

$$\rho_G \colon R_n \to G$$

called (the marking).

Definition of a marked graph (of rank n):

A graph G with no vertices of valence 1, equipped with:

- A geodesic metric, determined (up to isotopy)
 by assigning a length to each edge.
- A homotopy equivalence

$$\rho_G \colon R_n \to G$$

called (the marking).

Definition of a marked homotopy equivalence:

A homotopy equivalence $f: G \to G'$ of marked graphs such that

commutes up to homotopy.

Definition of a marked homotopy equivalence:

A homotopy equivalence $f: G \to G'$ of marked graphs such that

commutes up to homotopy.

Types of marked homotopy equivalences:

- Marked isometry (preserves metric).
- Marked homothety (multiplies metric by a constant).
- Marked homeomorphism (preserves topology).

Deprojectivized Outer Space $\widehat{\mathcal{X}}_n$:

• One element for each marked graph, up to marked isometry.

Deprojectivized Outer Space $\widehat{\mathcal{X}}_n$:

 One element for each marked graph, up to marked isometry.

Outer Space \mathcal{X}_n :

 One element for each marked graph, up to marked homothety.

Deprojectivized Outer Space $\widehat{\mathcal{X}}_n$:

 One element for each marked graph, up to marked isometry.

Outer Space \mathcal{X}_n :

 One element for each marked graph, up to marked homothety.

Cone stratification of $\widehat{\mathcal{X}}_n$, Simplex stratification of \mathcal{X}_n :

• One cone (simplex) for each marked graph G, up to marked homeomorphism.

Cone stratification of $\widehat{\mathcal{X}}_n$, Simplex stratification of \mathcal{X}_n :

- One cone (simplex) for each marked graph G, up to marked homeomorphism.
- Open cone parameterized by $(0, \infty)^k$, one coordinate for each of the k edges of G.
- Closed cone parameterized by $[0, \infty)^k$ minus one face for each nonforest subgraph of G:
 - Edge lengths may be zero on a subforest, collapsing each component of the subforest to a point.
 - Edge lengths may not be zero on a loop, else the homotopy type changes.

Topology of $\widehat{\mathcal{X}}_r$:

- Closed cones inherit topology from parameterization.
- Weak topology w.r.t. collection of closed cones.

Topology of \mathcal{X}_r :

- Quotient topology w.r.t. projection $\widehat{\mathcal{X}_r} \to \mathcal{X}_r$.
- Quotients of open cells form open simplex decomposition.
- Quotients of closed cells form closed (but noncompact) simplex decomposition
- Weak topology w.r.t. collection of closed simplices.

Action of $\operatorname{Out}(F_n)$ on \mathcal{X}_n (from the right): Change of marking.

Action of $\operatorname{Out}(F_n)$ on \mathcal{X}_n (from the right): Change of marking.

Given: $\phi \in \text{Out}(F_n)$

Action of $\operatorname{Out}(F_n)$ on \mathcal{X}_n (from the right): Change of marking.

Given: $\phi \in \text{Out}(F_n)$

Choose: homotopy equivalence

 $\Phi: R_n \to R_n$

representing ϕ .

Action of $Out(F_n)$ on \mathcal{X}_n (from the right): Change of marking.

Given: $\phi \in \text{Out}(F_n)$

Choose: homotopy equivalence

 $\Phi: R_n \to R_n$

representing ϕ .

Define action of ϕ on $\widehat{\mathcal{X}}_r$ and on \mathcal{X}_r :

Action of $Out(F_n)$ on \mathcal{X}_n (from the right): Change of marking.

Given: $\phi \in \text{Out}(F_n)$

Choose: homotopy equivalence

$$\Phi: R_n \to R_n$$

representing ϕ .

Define action of ϕ on $\widehat{\mathcal{X}}_r$ and on \mathcal{X}_r :

ullet For each marked graph $ho_G\colon R_n o G$

Action of $Out(F_n)$ on \mathcal{X}_n (from the right): Change of marking.

Given: $\phi \in \text{Out}(F_n)$

Choose: homotopy equivalence

$$\Phi: R_n \to R_n$$

representing ϕ .

Define action of ϕ on $\widehat{\mathcal{X}}_r$ and on \mathcal{X}_r :

- ullet For each marked graph $ho_G\colon R_n o G$
- Define marked graph $\rho_{G \cdot \phi} = \rho_G \circ \Phi \colon R_n \to G$

ullet First understand points in \mathcal{X}_r in terms of universal covers of marked graphs.

- ullet First understand points in \mathcal{X}_r in terms of universal covers of marked graphs.
- Universal cover of a rank n marked graph (up to marked homothety) is:
 - An R-tree,

- First understand points in \mathcal{X}_r in terms of universal covers of marked graphs.
- Universal cover of a rank n marked graph (up to marked homothety) is:
 - An ${f R}$ -tree, on which F_n acts,

- First understand points in \mathcal{X}_r in terms of universal covers of marked graphs.
- Universal cover of a rank n marked graph (up to marked homothety) is:
 - An R-tree, on which F_n acts, freely,

- First understand points in \mathcal{X}_r in terms of universal covers of marked graphs.
- Universal cover of a rank n marked graph (up to marked homothety) is:
 - An ${f R}$ -tree, on which F_n acts, freely, simplicially,

- First understand points in \mathcal{X}_r in terms of universal covers of marked graphs.
- Universal cover of a rank n marked graph (up to marked homothety) is:
 - An ${\bf R}$ -tree, on which F_n acts, freely, simplicially, minimally (up to F_n -equivariant homothety)

- ullet First understand points in \mathcal{X}_r in terms of universal covers of marked graphs.
- Universal cover of a rank n marked graph (up to marked homothety) is:
 - An ${\bf R}$ -tree, on which F_n acts, freely, simplicially, minimally (up to F_n -equivariant homothety)
- A point in the compactification $\overline{\mathcal{X}}_r = \mathcal{X}_r \cup \partial \mathcal{X}_r$ is:

Outer space and its boundary in terms of trees:

- First understand points in \mathcal{X}_r in terms of universal covers of marked graphs.
- Universal cover of a rank n marked graph (up to marked homothety) is:
 - An ${\bf R}$ -tree, on which F_n acts, freely, simplicially, minimally (up to F_n -equivariant homothety)
- A point in the compactification $\overline{\mathcal{X}}_r = \mathcal{X}_r \cup \partial \mathcal{X}_r$ is:
 - An R-tree, on which F_n acts, minimally, "very small" (up to F_n -equivariant homothety)

Continuous path in \mathcal{X}_r interpolated by edge isometries

Periodic fold lines:

Arise from train track maps

$$f\colon G\to G',$$

$$f: G \to G',$$

such that for each edge E of G,

$$f \mid \mathsf{int}(E)$$
 is a local isometry

$$f\colon G\to G',$$

such that for each edge E of G,

$$f \mid \mathsf{int}(E)$$
 is a local isometry

Fold line: a continuous, 1-parameter family of marked graphs

$$t \mapsto G_t, \qquad -\infty < t < +\infty$$

$$f\colon G\to G',$$

such that for each edge E of G,

$$f \mid \mathsf{int}(E)$$
 is a local isometry

Fold line: a continuous, 1-parameter family of marked graphs

$$t \mapsto G_t, \qquad -\infty < t < +\infty$$

for which there is a family of edge isometries

$$h_{ts}: G_s \to G_t, \qquad -\infty < s < t < +\infty$$

$$f\colon G\to G',$$

such that for each edge E of G,

$$f \mid \mathsf{int}(E)$$
 is a local isometry

Fold line: a continuous, 1-parameter family of marked graphs

$$t \mapsto G_t, \qquad -\infty < t < +\infty$$

for which there is a family of edge isometries

$$h_{ts} \colon G_s \to G_t, \qquad -\infty < s < t < +\infty$$

satisfying the semiflow identity

$$h_{ts} \circ h_{sr} = h_{tr}, \qquad -\infty < r < s < t < +\infty$$

$$G_r \xrightarrow{h_{sr}} G_s \xrightarrow{h_{ts}} G_t$$

Train track maps: Given:

- $\phi \in \operatorname{Out}(F_n)$
- ullet marked graph G
- homotopy equivalence $g: G \rightarrow G$

g is an (affine) train track representative of ϕ if:

Train track maps: Given:

- $\phi \in \mathsf{Out}(F_n)$
- ullet marked graph G
- homotopy equivalence $g: G \rightarrow G$

g is an (affine) train track representative of ϕ if:

ullet g takes vertices to vertices

Train track maps: Given:

- $\phi \in \text{Out}(F_n)$
- ullet marked graph G
- homotopy equivalence $g: G \to G$

g is an (affine) train track representative of ϕ if:

- g takes vertices to vertices
- g changes marking consistent with ϕ :

$$g \circ \rho_G \sim \rho_G \circ \Phi$$

Train track maps: Given

- $\phi \in \operatorname{Out}(F_n)$
- ullet marked graph G
- homotopy equivalence $g: G \to G$

g is an (affine) train track representative of ϕ if:

- g takes vertices to vertices
- g changes marking consistent with ϕ :

$$g \circ \rho_G \sim \rho_G \circ \Phi$$

• $\exists \lambda > 1$ such that $\forall i \geq 1$ and $\forall E$ an edge of G, $g^i \mid \mathrm{int}(E)$ is a local homothety with stretch λ^i

Example of a train track map:

On the 3-petalled rose:

$$\Phi \colon \begin{cases} A & \to B \\ B & \to C \\ C & \to \overline{B}A \end{cases}$$

Only "illegal turns" (turns which are not locally injective under all powers) are:

$$AC, \overline{CA}, CB, \overline{BC}, BA, \overline{AB}$$

No edge has an image containing one of these illegal turns.

So, Φ is a train track map.

$$\Phi : \begin{cases} A & \to B \\ B & \to C \\ C & \to \overline{B}A \end{cases}$$

Sufficient condition for $\phi \in \text{Out}(F_3)$ to be fully irreducible:

Check that the map M_{Φ} on $H_1(G; \mathbf{Z})$ induced by the train track map Φ

$$M_{\Phi} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

has no eigenvalue on the unit circle. (This sufficient condition only works in rank 3).

Eigenvalues
$$(M_{\Phi}) = \{0.6823278040, -0.3411639019 \pm 1.161541400i\}$$

Theorem (Bestvina, Handel). For every fully irreducible $\phi \in \text{Out}(F_r)$ there exists an affine train track representative

$$g: G \to G$$

Theorem (Bestvina, Handel). For every fully irreducible $\phi \in \text{Out}(F_r)$ there exists an affine train track representative

$$g: G \to G$$

From this we shall obtain:

A ϕ -periodic fold line

- Fully irreducible $\phi \in \operatorname{Out}(F_n)$,
- ullet Affine train track representative $g\colon G\to G$,

- Fully irreducible $\phi \in \operatorname{Out}(F_n)$,
- ullet Affine train track representative $g\colon G\to G$,

First get a ϕ -periodic "discrete" fold line:

G

- Fully irreducible $\phi \in \operatorname{Out}(F_n)$,
- ullet Affine train track representative $g\colon G\to G$,

First get a ϕ -periodic "discrete" fold line:

$$G \cdot \phi^i, \qquad i \in \mathbf{Z}$$

- Fully irreducible $\phi \in \text{Out}(F_n)$,
- ullet Affine train track representative $g\colon G\to G$,

First get a ϕ -periodic "discrete" fold line:

$$\frac{1}{\lambda^i}G \cdot \phi^i, \qquad i \in \mathbf{Z}$$

- Fully irreducible $\phi \in \text{Out}(F_n)$,
- ullet Affine train track representative $g\colon G\to G$,

First get a ϕ -periodic "discrete" fold line:

$$G_i = \frac{1}{\lambda^i} G \cdot \phi^i, \qquad i \in \mathbf{Z}$$

- Fully irreducible $\phi \in \text{Out}(F_n)$,
- ullet Affine train track representative $g\colon G\to G$,

First get a ϕ -periodic "discrete" fold line:

$$G_i = \frac{1}{\lambda^i} G \cdot \phi^i, \qquad i \in \mathbf{Z}$$

For $i < j \in \mathbf{Z}$, g^{j-i} induces an edge isometry

$$h_{ji}\colon G_i\to G_j$$

- Fully irreducible $\phi \in \text{Out}(F_n)$,
- ullet Affine train track representative $g\colon G\to G$,

First get a ϕ -periodic "discrete" fold line:

$$G_i = \frac{1}{\lambda^i} G \cdot \phi^i, \qquad i \in \mathbf{Z}$$

For $i < j \in \mathbb{Z}$, g^{j-i} induces an edge isometry

$$h_{ji}\colon G_i\to G_j$$

For $i < j < k \in \mathbb{Z}$, the identity

$$g^{k-j} \circ g^{j-i} = g^{k-i}$$

induces the semiflow identity

$$h_{kj} \circ h_{ji} = h_{ki}$$

From this "discrete" fold line:

•
$$G_i = \frac{1}{\lambda^i} G \cdot \phi^i, \qquad i \in \mathbf{Z}$$

•
$$h_{ji} \colon G_i \to G_j$$
 for $i < j \in \mathbf{Z}$

•
$$h_{kj} \circ h_{ji} = h_{ki}$$
 for $i < j < k \in \mathbf{Z}$

To get a continuous fold line:

From this "discrete" fold line:

•
$$G_i = \frac{1}{\lambda^i} G \cdot \phi^i, \qquad i \in \mathbf{Z}$$

•
$$h_{ji} : G_i \to G_j$$
 for $i < j \in \mathbf{Z}$

•
$$h_{kj} \circ h_{ji} = h_{ki}$$
 for $i < j < k \in \mathbf{Z}$

To get a continuous fold line:

- Interpolate $h_{i+1,i}: G_i \to G_{i+1}$ by a fold path.
- ullet Fit together to give a ϕ -periodic fold line.

${\cal A}_{\phi}$ The Axis Bundle for ϕ :

Periodic fold lines for powers of ϕ all bundled together

- Choices in the construction of a periodic fold line for power of ϕ :
 - Positive power ϕ^k
 - Train track map $g\colon G\to G$ representing ϕ^k
 - The interpolations of $h_{i+1,i}: G_i \to G_{i+1}$.

- Choices in the construction of a periodic fold line for power of ϕ :
 - Positive power ϕ^k
 - Train track map $g \colon G \to G$ representing ϕ^k
 - The interpolations of $h_{i+1,i}: G_i \to G_{i+1}$.
- Want something independent of choices.

- Choices in the construction of periodic fold lines
 - Positive power ϕ^k
 - The train track map $g: G \rightarrow G$
 - The interpolations of $h_{i+1,i}: G_i \to G_{i+1}$.
- Want something independent of choices, and independent of the power of ϕ .

Define the axis bundle $\mathcal{A}_{\phi} \subset \mathcal{X}_r$ to be:

- Choices in the construction of periodic fold lines
 - The train track map $g: G \rightarrow G$
 - The interpolations of $h_{i+1,i}: G_i \to G_{i+1}$.
- Want something independent of choices.

Define the axis bundle $\mathcal{A}_{\phi} \subset \mathcal{X}_r$ to be:

ullet The closure of the union of all ϕ^i -periodic fold lines for $i\geq 1$.

ullet ${\cal A}_\phi$ is proper homotopy equivalent to ${f R}$

- ullet ${\cal A}_\phi$ is proper homotopy equivalent to ${f R}$
- The two ends of \mathcal{A}_{ϕ} converge in $\overline{\mathcal{X}}_r$ to T_-, T_+ .

- ullet ${\cal A}_{\phi}$ is proper homotopy equivalent to ${f R}$
- The two ends of \mathcal{A}_{ϕ} converge in $\overline{\mathcal{X}}_r$ to T_-, T_+ .
- ullet ${\cal A}_{\phi}$ depends naturally on (T_-,T_+)

- ullet ${\cal A}_{\phi}$ is proper homotopy equivalent to ${f R}$
- The two ends of \mathcal{A}_{ϕ} converge in $\overline{\mathcal{X}}_r$ to T_-, T_+ .
- \mathcal{A}_{ϕ} depends naturally on (T_{-}, T_{+})

Natural dependence implies:

- ullet ${\cal A}_\phi$ is proper homotopy equivalent to ${f R}$
- The two ends of \mathcal{A}_{ϕ} converge in $\overline{\mathcal{X}}_r$ to T_-, T_+ .
- A_{ϕ} depends naturally on (T_{-}, T_{+})

Natural dependence implies:

$$ullet$$
 $\mathcal{A}_{\phi^i}=\mathcal{A}_{\phi}$ for $i\geq 1$

- ullet ${\cal A}_\phi$ is proper homotopy equivalent to ${f R}$
- The two ends of \mathcal{A}_{ϕ} converge in $\overline{\mathcal{X}}_r$ to T_-, T_+ .
- A_{ϕ} depends naturally on (T_{-}, T_{+})

Natural dependence implies:

- ullet $\mathcal{A}_{\phi^i}=\mathcal{A}_{\phi}$ for $i\geq 1$
- If $\psi \in \text{Out}(F_n)$ commutes with a (nonzero) power of ϕ then

$$\psi(\mathcal{A}_{\phi}) = \mathcal{A}_{\phi}$$

Natural dependence on (T_-, T_+) :

Theorem. For each fully irreducible $\phi \in \text{Out}(F_n)$, with source $T_- \in \partial \mathcal{X}_r$ and sink $T_+ \in \partial \mathcal{X}_r$, \mathcal{A}_{ϕ} is

Natural dependence on (T_-, T_+) :

Theorem. For each fully irreducible $\phi \in \text{Out}(F_n)$, with source $T_- \in \partial \mathcal{X}_r$ and sink $T_+ \in \partial \mathcal{X}_r$, \mathcal{A}_{ϕ} is the union of all fold lines (periodic or not), whose negative end converges to T_- , and whose positive end converges to T_+ .

So far two characterizations of when $G \in \mathcal{X}_r$ is in the axis bundle \mathcal{A}_{ϕ} :

- (3) G is a limit of points on ϕ^i -periodic fold lines, $i \geq 1$.
- (1) G is on a fold line with ends T_-, T_+ .

These are both "global" or "extrinsic" conditions: existence of certain fold lines passing through or near G.

Need a "local" or "intrinsic" condition on G.

- ullet (3) G is a limit of points on ϕ^i -periodic fold lines, $i\geq 1$.
- (1) G is on a fold line with ends T_-, T_+ .

For the cognoscenti, alternate condition depends on the lamination theory of Bestvina, Feighn, and Handel:

 $\Lambda_{-} = \Lambda_{-}(\phi)$, the expanding lamination of ϕ :

- Limits of iterates of edges of a train track map.
- Minimal lamination whose leaves have length zero in T_- .

- (3) G is a limit of points on ϕ^i -periodic fold lines, $i \geq 1$.
- (1) G is on a fold line with ends T_-, T_+ .

Alternate characterization of $G \in \mathcal{A}_{\phi}$:

- (2) $G \in \mathcal{X}_r$ is a *weak train track*, meaning G has a normalization in $\widehat{\mathcal{X}}_r$ so that:
 - there exists an edge isometry $\widetilde{G} \to T_+$ such that every leaf of Λ_- realized in \widetilde{G} embeds in T_+ .

Main point to take from this definition: each weak train track has a "canonical" normalization, and hence has a "canonical" length.

Where's the hard work?

- For all $G \in \mathcal{X}_r$, TFAE:
 - (1) G is on a fold line with ends T_-, T_+
 - (2) G is a weak train track.
 - (3) G is a limit of points on ϕ^i -periodic fold lines, $i \geq 1$.
- ullet Proving that \mathcal{A}_{ϕ} is proper homotopy equivalent to $\mathbf{R}.$

Main technical result from which others flow:

Proposition 1 (The S-T Lemma (Prop. 5.4 but it doesn't look like this)).

For every L > 0 there exists a train track S of length > L such that for each weak train track T of length < L, there is an edge isometry $S \mapsto T$.

In other words: From a certain sufficiently long S, can fold to anything sufficiently short.

Proof that (2) \Longrightarrow (1): every weak train track lies on a fold line going from T_{-} to T_{+} .

- ullet Every train track S is on a periodic fold line (proved earlier).
- Every periodic fold line goes from T_{-} to T_{+} (apply Source-Sink dynamics).

Construction of a fold line from T_{-} through T to T_{+} :

- ullet Fold from T_- to S by part of a periodic fold line;
- ullet Fold from S to T by interpolating the edge isometry $S\mapsto T;$
- ullet Fold from T to T_+ by interpolating the edge isometry $T\mapsto T_+.$

Proving that \mathcal{A}_{ϕ} is proper homotopy equivalent to \mathbf{R} :

- ullet Length map $\mathcal{A}_\phi o (0,\infty)$ is a proper map:
 - Use the S-T lemma: those T, foldable from S, with length in a compact interval [a,b], forms a compact set.
- Skora's method, which has been used to prove contractibility of \mathcal{X}_r , $\overline{\mathcal{X}}_r$, etc., can also be used to prove that the length map $\mathcal{A}_\phi \to (0,\infty)$ is a proper homotopy equivalence.