Axes in Outer Space

Michael Handel and Lee Mosher

May 19, 2006

Dictionary of Spaces:

Group:	$\operatorname{Isom}\left(\mathbf{H}^{n}\right)$	$\mathcal{M C G}(S)$	$\operatorname{Out}\left(F_{n}\right)$
Space:	Hyperbolic	Teichmüller	Outer
Notation:	\mathbf{H}^{n}	$\mathcal{T}(S)$	\mathcal{X}_{n}

Dictionary of Spaces:

Group:	$\operatorname{Isom}\left(\mathbf{H}^{n}\right)$	$\mathcal{M C G}(S)$	$\operatorname{Out}\left(F_{n}\right)$
Space:	Hyperbolic	Teichmüller	Outer
Notation:	\mathbf{H}^{n}	$\mathcal{T}(S)$	\mathcal{X}_{n}
Boundary:	S_{∞}^{n-1}	$\mathcal{P \mathcal { M F }}$	$\partial \mathcal{X}_{n}$

Dictionary of Spaces:

Group:	$\operatorname{Isom}\left(\mathbf{H}^{n}\right)$	$\mathcal{M C G}(S)$	$\operatorname{Out}\left(F_{n}\right)$
Space:	Hyperbolic	Teichmüller	Outer
Notation:	\mathbf{H}^{n}	$\mathcal{T}(S)$	\mathcal{X}_{n}
Boundary:	S_{∞}^{n-1}	$\mathcal{P \mathcal { M F }}$	$\partial \mathcal{X}_{n}$
North-South elements:	Ioxodromic	pseudo- Anosov	fully irreducible

Dictionary of Spaces:

Group:	$\operatorname{Isom}\left(\mathbf{H}^{n}\right)$	$\mathcal{M C G}(S)$	$\operatorname{Out}\left(F_{n}\right)$
Space:	Hyperbolic	Teichmüller	Outer
Notation:	\mathbf{H}^{n}	$\mathcal{T}(S)$	\mathcal{X}_{n}
Boundary:	S_{∞}^{n-1}	$\mathcal{P \mathcal { M F }}$	$\partial \mathcal{X}_{n}$
North-South elements:	Ioxodromic	pseudo- Anosov	fully irreducible Axis for North-South elements:
$\sqrt{ }$	$\sqrt{ }$	$? ? ?$	

Outer Space \mathcal{X}_{n} :

The moduli space of marked graphs (of rank n)

$$
\begin{aligned}
R_{n} & =\text { the rose of rank } n \\
F_{n} & =\text { the free group of rank } n \\
& =\left\langle x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\rangle \\
& =\pi_{l}\left(R_{n}\right)
\end{aligned}
$$

$\operatorname{Out}\left(F_{n}\right)=\operatorname{Aut}\left(F_{n}\right) / \operatorname{Inn}\left(F_{n}\right)$
$=\left\{\right.$ homotopy equivalences of $\left.R_{n}\right\}$

Notation for

$$
\begin{aligned}
\operatorname{Out}\left(F_{n}\right) & =\operatorname{Aut}\left(F_{n}\right) / \operatorname{Inn}\left(F_{n}\right) \\
& =\frac{\left\{\text { homotopy equivalences of } R_{n}\right\}}{\text { homotopy }}
\end{aligned}
$$

$\phi=\quad$ an element of $\operatorname{Out}\left(F_{n}\right)$
$\Phi=$ a representative in $\operatorname{Aut}\left(F_{n}\right)$
or a representative homotopy equivalence

$$
R_{n} \mapsto R_{n}
$$

Fully irreducible: $\phi \in \operatorname{Out}\left(F_{n}\right)$ is fully irreducible if no proper, nontrivial free factor of F_{n} has a conjugacy class which is periodic under ϕ.

Fully irreducible: $\phi \in \operatorname{Out}\left(F_{n}\right)$ is fully irreducible if no proper, nontrivial free factor of F_{n} has a conjugacy class which is periodic under ϕ.

Example of a fully irreducible $\phi \in \operatorname{Out}\left(F_{3}\right)$: Represented by the automorphism

$$
\Phi: \begin{cases}A & \rightarrow B \\ B & \rightarrow C \\ C & \rightarrow \bar{B} A\end{cases}
$$

Fully irreducible: $\phi \in \operatorname{Out}\left(F_{n}\right)$ is fully irreducible if no proper, nontrivial free factor of F_{n} has a conjugacy class which is periodic under ϕ.

Example of a fully irreducible $\phi \in \operatorname{Out}\left(F_{3}\right)$: Represented by the automorphism

$$
\Phi: \begin{cases}A & \rightarrow B \\ B & \rightarrow C \\ C & \rightarrow \bar{B} A\end{cases}
$$

Try to prove:

- No nontrivial conjugacy class is periodic (easy).
- In particular, no rank 1 free factor has a periodic conjugacy class.
- No rank 2 free factor has a periodic conjugacy class (trickier).

A graph of rank 3

A graph of rank 3 with a metric

12

A graph of rank 3

Definition of a marked graph (of rank n):

 A graph G with no vertices of valence 1 , equipped with:- A geodesic metric, determined (up to isotopy) by assigning a length to each edge.
- A homotopy equivalence

$$
\rho_{G}: R_{n} \rightarrow G
$$

called (the marking).

Definition of a marked graph (of rank n):

A graph G with no vertices of valence 1, equipped with:

- A geodesic metric, determined (up to isotopy) by assigning a length to each edge.
- A homotopy equivalence

$$
\rho_{G}: R_{n} \rightarrow G
$$

called (the marking).

Definition of a marked homotopy equivalence:
A homotopy equivalence $f: G \rightarrow G^{\prime}$ of marked graphs such that

commutes up to homotopy.

Definition of a marked homotopy equivalence:
A homotopy equivalence $f: G \rightarrow G^{\prime}$ of marked graphs such that

commutes up to homotopy.

Types of marked homotopy equivalences:

- Marked isometry (preserves metric).
- Marked homothety (multiplies metric by a constant).
- Marked homeomorphism (preserves topology).

Deprojectivized Outer Space $\widehat{\mathcal{X}_{n}}$:

- One element for each marked graph, up to marked isometry.

Deprojectivized Outer Space $\widehat{\mathcal{X}_{n}}$:

- One element for each marked graph, up to marked isometry.

Outer Space \mathcal{X}_{n} :

- One element for each marked graph, up to marked homothety.

Deprojectivized Outer Space $\widehat{\mathcal{X}_{n}}$:

- One element for each marked graph, up to marked isometry.

Outer Space \mathcal{X}_{n} :

- One element for each marked graph, up to marked homothety.

Cone stratification of $\widehat{\mathcal{X}_{n}}$, Simplex stratification of \mathcal{X}_{n} :

- One cone (simplex) for each marked graph G, up to marked homeomorphism.

Cone stratification of $\widehat{\mathcal{X}_{n}}$,

Simplex stratification of \mathcal{X}_{n} :

- One cone (simplex) for each marked graph G, up to marked homeomorphism.
- Open cone parameterized by $(0, \infty)^{k}$, one coordinate for each of the k edges of G.
- Closed cone parameterized by $[0, \infty)^{k}$ minus one face for each nonforest subgraph of G :
- Edge lengths may be zero on a subforest, collapsing each component of the subforest to a point.
- Edge lengths may not be zero on a loop, else the homotopy type changes.

Topology of $\widehat{\mathcal{X}_{r}}$:

- Closed cones inherit topology from parameterization.
- Weak topology w.r.t. collection of closed cones.

Topology of \mathcal{X}_{r} :

- Quotient topology w.r.t. projection $\widehat{\mathcal{X}_{r}} \rightarrow \mathcal{X}_{r}$.
- Quotients of open cells form open simplex decomposition.
- Quotients of closed cells form closed (but noncompact) simplex decomposition
- Weak topology w.r.t. collection of closed simplices.

Action of $\operatorname{Out}\left(F_{n}\right)$ on \mathcal{X}_{n} (from the right): Change of marking.

Action of $\operatorname{Out}\left(F_{n}\right)$ on \mathcal{X}_{n} (from the right): Change of marking.

Given: $\phi \in \operatorname{Out}\left(F_{n}\right)$

Action of $\operatorname{Out}\left(F_{n}\right)$ on \mathcal{X}_{n} (from the right): Change of marking.

Given: $\phi \in \operatorname{Out}\left(F_{n}\right)$
Choose: homotopy equivalence

$$
\Phi: R_{n} \rightarrow R_{n}
$$

representing ϕ.

Action of $\operatorname{Out}\left(F_{n}\right)$ on \mathcal{X}_{n} (from the right): Change of marking.

Given: $\phi \in \operatorname{Out}\left(F_{n}\right)$
Choose: homotopy equivalence

$$
\Phi: R_{n} \rightarrow R_{n}
$$

representing ϕ.
Define action of ϕ on $\widehat{\mathcal{X}_{r}}$ and on \mathcal{X}_{r} :

Action of $\operatorname{Out}\left(F_{n}\right)$ on \mathcal{X}_{n} (from the right): Change of marking.

Given: $\phi \in \operatorname{Out}\left(F_{n}\right)$
Choose: homotopy equivalence

$$
\Phi: R_{n} \rightarrow R_{n}
$$

representing ϕ.
Define action of ϕ on $\widehat{\mathcal{X}_{r}}$ and on \mathcal{X}_{r} :

- For each marked graph $\rho_{G}: R_{n} \rightarrow G$

Action of $\operatorname{Out}\left(F_{n}\right)$ on \mathcal{X}_{n} (from the right): Change of marking.

Given: $\phi \in \operatorname{Out}\left(F_{n}\right)$
Choose: homotopy equivalence

$$
\Phi: R_{n} \rightarrow R_{n}
$$

representing ϕ.
Define action of ϕ on $\widehat{\mathcal{X}_{r}}$ and on \mathcal{X}_{r} :

- For each marked graph $\rho_{G}: R_{n} \rightarrow G$
- Define marked graph $\rho_{G \cdot \phi}=\rho_{G} \circ \Phi: R_{n} \rightarrow G$

Outer space and its boundary in terms of trees:

- First understand points in \mathcal{X}_{r} in terms of universal covers of marked graphs.

Outer space and its boundary in terms of trees:

- First understand points in \mathcal{X}_{r} in terms of universal covers of marked graphs.
- Universal cover of a rank n marked graph (up to marked homothety) is:
- An R-tree,

Outer space and its boundary in terms of trees:

- First understand points in \mathcal{X}_{r} in terms of universal covers of marked graphs.
- Universal cover of a rank n marked graph (up to marked homothety) is:
- An R-tree, on which F_{n} acts,

Outer space and its boundary in terms of trees:

- First understand points in \mathcal{X}_{r} in terms of universal covers of marked graphs.
- Universal cover of a rank n marked graph (up to marked homothety) is:
- An R-tree, on which F_{n} acts, freely,

Outer space and its boundary in terms of trees:

- First understand points in \mathcal{X}_{r} in terms of universal covers of marked graphs.
- Universal cover of a rank n marked graph (up to marked homothety) is:
- An R-tree, on which F_{n} acts, freely, simplicially,

Outer space and its boundary in terms of trees:

- First understand points in \mathcal{X}_{r} in terms of universal covers of marked graphs.
- Universal cover of a rank n marked graph (up to marked homothety) is:
- An R-tree, on which F_{n} acts, freely, simplicially, minimally (up to F_{n}-equivariant homothety)

Outer space and its boundary in terms of trees:

- First understand points in \mathcal{X}_{r} in terms of universal covers of marked graphs.
- Universal cover of a rank n marked graph (up to marked homothety) is:
- An R-tree, on which F_{n} acts, freely, simplicially, minimally (up to F_{n}-equivariant homothety)
- A point in the compactification $\overline{\mathcal{X}}_{r}=\mathcal{X}_{r} \cup \partial \mathcal{X}_{r}$ is:

Outer space and its boundary in terms of trees:

- First understand points in \mathcal{X}_{r} in terms of universal covers of marked graphs.
- Universal cover of a rank n marked graph (up to marked homothety) is:
- An R-tree, on which F_{n} acts, freely, simplicially, minimally (up to F_{n}-equivariant homothety)
- A point in the compactification $\overline{\mathcal{X}}_{r}=\mathcal{X}_{r} \cup \partial \mathcal{X}_{r}$ is:
- An R-tree, on which F_{n} acts, minimally, "very small" (up to F_{n}-equivariant homothety)

Fold line in Outer Space:
Continuous path in \mathcal{X}_{r} interpolated by edge isometries

Periodic fold lines:

Arise from train track maps

Edge isometry: a marked homotopy equivalence

$$
f: G \rightarrow G^{\prime}
$$

Edge isometry: a marked homotopy equivalence

$$
f: G \rightarrow G^{\prime}
$$

such that for each edge E of G,
$f \mid \operatorname{int}(E)$ is a local isometry

Edge isometry: a marked homotopy equivalence

$$
f: G \rightarrow G^{\prime}
$$

such that for each edge E of G,

$$
f \mid \operatorname{int}(E) \text { is a local isometry }
$$

Fold line: a continuous, 1-parameter family of marked graphs

$$
t \mapsto G_{t}, \quad-\infty<t<+\infty
$$

Edge isometry: a marked homotopy equivalence

$$
f: G \rightarrow G^{\prime}
$$

such that for each edge E of G,

$$
f \mid \operatorname{int}(E) \text { is a local isometry }
$$

Fold line: a continuous, 1-parameter family of marked graphs

$$
t \mapsto G_{t}, \quad-\infty<t<+\infty
$$

for which there is a family of edge isometries

$$
h_{t s}: G_{s} \rightarrow G_{t}, \quad-\infty<s<t<+\infty
$$

Edge isometry: a marked homotopy equivalence

$$
f: G \rightarrow G^{\prime}
$$

such that for each edge E of G,

$$
f \mid \operatorname{int}(E) \text { is a local isometry }
$$

Fold line: a continuous, 1-parameter family of marked graphs

$$
t \mapsto G_{t}, \quad-\infty<t<+\infty
$$

for which there is a family of edge isometries

$$
h_{t s}: G_{s} \rightarrow G_{t}, \quad-\infty<s<t<+\infty
$$

satisfying the semiflow identity

$$
\begin{gathered}
h_{t s} \circ h_{s r}=h_{t r}, \quad-\infty<r<s<t<+\infty \\
G_{r} \xrightarrow[h_{t r}]{\stackrel{h_{s r}}{\longrightarrow} G_{s} \xrightarrow{h_{t s}} G_{t}}
\end{gathered}
$$

Train track maps: Given:

- $\phi \in \operatorname{Out}\left(F_{n}\right)$
- marked graph G
- homotopy equivalence $g: G \rightarrow G$
g is an (affine) train track representative of ϕ if:

Train track maps: Given:

- $\phi \in \operatorname{Out}\left(F_{n}\right)$
- marked graph G
- homotopy equivalence $g: G \rightarrow G$
g is an (affine) train track representative of ϕ if:
- g takes vertices to vertices

Train track maps: Given:

- $\quad \phi \in \operatorname{Out}\left(F_{n}\right)$
- marked graph G
- homotopy equivalence $g: G \rightarrow G$
g is an (affine) train track representative of ϕ if:
- g takes vertices to vertices
- g changes marking consistent with ϕ :

$$
g \circ \rho_{G} \sim \rho_{G} \circ \Phi
$$

Train track maps: Given

- $\phi \in \operatorname{Out}\left(F_{n}\right)$
- marked graph G
- homotopy equivalence $g: G \rightarrow G$
g is an (affine) train track representative of ϕ if:
- g takes vertices to vertices
- g changes marking consistent with ϕ :

$$
g \circ \rho_{G} \sim \rho_{G} \circ \Phi
$$

- $\exists \lambda>1$ such that $\forall i \geq 1$ and $\forall E$ an edge of G,
$g^{i} \mid \operatorname{int}(E)$ is a local homothety with stretch λ^{i}

Example of a train track map:
On the 3-petalled rose:

$$
\Phi: \begin{cases}A & \rightarrow B \\ B & \rightarrow C \\ C & \rightarrow \bar{B} A\end{cases}
$$

Only "illegal turns" (turns which are not locally injective under all powers) are:

$$
A C, \overline{C A}, C B, \overline{B C}, B A, \overline{A B}
$$

No edge has an image containing one of these illegal turns.
So, Φ is a train track map.

$$
\Phi: \begin{cases}A & \rightarrow B \\ B & \rightarrow C \\ C & \rightarrow \bar{B} A\end{cases}
$$

Sufficient condition for $\phi \in \operatorname{Out}\left(F_{3}\right)$ to be fully irreducible:
Check that the map M_{Φ} on $H_{1}(G ; \mathbf{Z})$ induced by the train track map Φ

$$
M_{\Phi}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)
$$

has no eigenvalue on the unit circle.
(This sufficient condition only works in rank 3).

Eigenvalues $\left(M_{\Phi}\right)=\{0.6823278040$,
$-0.3411639019 \pm 1.161541400 i\}$

Theorem (Bestvina, Handel). For every fully irreducible $\phi \in \operatorname{Out}\left(F_{r}\right)$ there exists an affine train track representative

$$
g: G \rightarrow G
$$

Theorem (Bestvina, Handel). For every fully irreducible $\phi \in \operatorname{Out}\left(F_{r}\right)$ there exists an affine train track representative

$$
g: G \rightarrow G
$$

From this we shall obtain:
A ϕ-periodic fold line

A ϕ-periodic fold line: Given:

- Fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$,
- Affine train track representative $g: G \rightarrow G$,

A ϕ-periodic fold line: Given:

- Fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$,
- Affine train track representative $g: G \rightarrow G$,

First get a ϕ-periodic "discrete" fold line:

$$
G
$$

A ϕ-periodic fold line: Given:

- Fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$,
- Affine train track representative $g: G \rightarrow G$,

First get a ϕ-periodic "discrete" fold line:

$$
G \cdot \phi^{i}, \quad i \in \mathbf{Z}
$$

A ϕ-periodic fold line: Given:

- Fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$,
- Affine train track representative $g: G \rightarrow G$,

First get a ϕ-periodic "discrete" fold line:

$$
\frac{1}{\lambda^{i}} G \cdot \phi^{i}, \quad i \in \mathbf{Z}
$$

A ϕ-periodic fold line: Given:

- Fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$,
- Affine train track representative $g: G \rightarrow G$,

First get a ϕ-periodic "discrete" fold line:

$$
G_{i}=\frac{1}{\lambda^{i}} G \cdot \phi^{i}, \quad i \in \mathbf{Z}
$$

A ϕ-periodic fold line: Given:

- Fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$,
- Affine train track representative $g: G \rightarrow G$,

First get a ϕ-periodic "discrete" fold line:

$$
G_{i}=\frac{1}{\lambda^{i}} G \cdot \phi^{i}, \quad i \in \mathbf{Z}
$$

For $i<j \in \mathbf{Z}, g^{j-i}$ induces an edge isometry

$$
h_{j i}: G_{i} \rightarrow G_{j}
$$

A ϕ-periodic fold line: Given:

- Fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$,
- Affine train track representative $g: G \rightarrow G$,

First get a ϕ-periodic "discrete" fold line:

$$
G_{i}=\frac{1}{\lambda^{i}} G \cdot \phi^{i}, \quad i \in \mathbf{Z}
$$

For $i<j \in \mathbf{Z}, g^{j-i}$ induces an edge isometry

$$
h_{j i}: G_{i} \rightarrow G_{j}
$$

For $i<j<k \in \mathbf{Z}$, the identity

$$
g^{k-j} \circ g^{j-i}=g^{k-i}
$$

induces the semiflow identity

$$
h_{k j} \circ h_{j i}=h_{k i}
$$

From this "discrete" fold line:

- $G_{i}=\frac{1}{\lambda^{i}} G \cdot \phi^{i}, \quad i \in \mathbf{Z}$
- $h_{j i}: G_{i} \rightarrow G_{j}$ for $i<j \in \mathbf{Z}$
- $h_{k j} \circ h_{j i}=h_{k i}$ for $i<j<k \in \mathbf{Z}$

To get a continuous fold line:

From this "discrete" fold line:

- $G_{i}=\frac{1}{\lambda^{i}} G \cdot \phi^{i}, \quad i \in \mathbf{Z}$
- $h_{j i}: G_{i} \rightarrow G_{j}$ for $i<j \in \mathbf{Z}$
- $h_{k j} \circ h_{j i}=h_{k i}$ for $i<j<k \in \mathbf{Z}$

To get a continuous fold line:

- Interpolate $h_{i+1, i}: G_{i} \rightarrow G_{i+1}$ by a fold path.
- Fit together to give a ϕ-periodic fold line.

\mathcal{A}_{ϕ}
 The Axis Bundle for ϕ :

Periodic fold lines for powers of ϕ all bundled together

The axis bundle:

- Choices in the construction of a periodic fold line for power of ϕ :
- Positive power ϕ^{k}
- Train track map $g: G \rightarrow G$ representing ϕ^{k}
- The interpolations of $h_{i+1, i}: G_{i} \rightarrow G_{i+1}$.

The axis bundle:

- Choices in the construction of a periodic fold line for power of ϕ :
- Positive power ϕ^{k}
- Train track map $g: G \rightarrow G$ representing ϕ^{k}
- The interpolations of $h_{i+1, i}: G_{i} \rightarrow G_{i+1}$.
- Want something independent of choices.

The axis bundle:

- Choices in the construction of periodic fold lines
- Positive power ϕ^{k}
- The train track map $g: G \rightarrow G$
- The interpolations of $h_{i+1, i}: G_{i} \rightarrow G_{i+1}$.
- Want something independent of choices, and independent of the power of ϕ.

Define the axis bundle $\mathcal{A}_{\phi} \subset \mathcal{X}_{r}$ to be:

The axis bundle:

- Choices in the construction of periodic fold lines
- The train track map $g: G \rightarrow G$
- The interpolations of $h_{i+1, i}: G_{i} \rightarrow G_{i+1}$.
- Want something independent of choices.

Define the axis bundle $\mathcal{A}_{\phi} \subset \mathcal{X}_{r}$ to be:

- The closure of the union of all ϕ^{i}-periodic fold lines for $i \geq 1$.

Theorem. For each fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$, with source $T_{-} \in \partial \mathcal{X}_{r}$ and sink $T_{+} \in \partial \mathcal{X}_{r}$:

Theorem. For each fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$, with source $T_{-} \in \partial \mathcal{X}_{r}$ and sink $T_{+} \in \partial \mathcal{X}_{r}$:

- \mathcal{A}_{ϕ} is proper homotopy equivalent to \mathbf{R}

Theorem. For each fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$, with source $T_{-} \in \partial \mathcal{X}_{r}$ and sink $T_{+} \in \partial \mathcal{X}_{r}$:

- \mathcal{A}_{ϕ} is proper homotopy equivalent to \mathbf{R}
- The two ends of \mathcal{A}_{ϕ} converge in $\overline{\mathcal{X}}_{r}$ to T_{-}, T_{+}.

Theorem. For each fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$, with source $T_{-} \in \partial \mathcal{X}_{r}$ and sink $T_{+} \in \partial \mathcal{X}_{r}$:

- \mathcal{A}_{ϕ} is proper homotopy equivalent to \mathbf{R}
- The two ends of \mathcal{A}_{ϕ} converge in $\overline{\mathcal{X}}_{r}$ to T_{-}, T_{+}.
- \mathcal{A}_{ϕ} depends naturally on (T_{-}, T_{+})

Theorem. For each fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$, with source $T_{-} \in \partial \mathcal{X}_{r}$ and sink $T_{+} \in \partial \mathcal{X}_{r}$:

- \mathcal{A}_{ϕ} is proper homotopy equivalent to \mathbf{R}
- The two ends of \mathcal{A}_{ϕ} converge in $\overline{\mathcal{X}}_{r}$ to T_{-}, T_{+}.
- \mathcal{A}_{ϕ} depends naturally on (T_{-}, T_{+})

Natural dependence implies:

Theorem. For each fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$, with source $T_{-} \in \partial \mathcal{X}_{r}$ and sink $T_{+} \in \partial \mathcal{X}_{r}$:

- \mathcal{A}_{ϕ} is proper homotopy equivalent to \mathbf{R}
- The two ends of \mathcal{A}_{ϕ} converge in $\overline{\mathcal{X}}_{r}$ to T_{-}, T_{+}.
- \mathcal{A}_{ϕ} depends naturally on (T_{-}, T_{+})

Natural dependence implies:

- $\mathcal{A}_{\phi^{i}}=\mathcal{A}_{\phi}$ for $i \geq 1$

Theorem. For each fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$, with source $T_{-} \in \partial \mathcal{X}_{r}$ and sink $T_{+} \in \partial \mathcal{X}_{r}$:

- \mathcal{A}_{ϕ} is proper homotopy equivalent to \mathbf{R}
- The two ends of \mathcal{A}_{ϕ} converge in $\overline{\mathcal{X}}_{r}$ to T_{-}, T_{+}.
- \mathcal{A}_{ϕ} depends naturally on (T_{-}, T_{+})

Natural dependence implies:

- $\mathcal{A}_{\phi^{i}}=\mathcal{A}_{\phi}$ for $i \geq 1$
- If $\psi \in \operatorname{Out}\left(F_{n}\right)$ commutes with a (nonzero) power of ϕ then

$$
\psi\left(\mathcal{A}_{\phi}\right)=\mathcal{A}_{\phi}
$$

Natural dependence on $\left(T_{-}, T_{+}\right)$:

> Theorem. For each fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$, with source $T_{-} \in \partial \mathcal{X}_{r}$ and sink $T_{+} \in \partial \mathcal{X}_{r}$, \mathcal{A}_{ϕ} is

Natural dependence on $\left(T_{-}, T_{+}\right)$:

Theorem. For each fully irreducible $\phi \in \operatorname{Out}\left(F_{n}\right)$, with source $T_{-} \in \partial \mathcal{X}_{r}$ and sink $T_{+} \in \partial \mathcal{X}_{r}$, \mathcal{A}_{ϕ} is the union of all fold lines (periodic or not), whose negative end converges to T_{-}, and whose positive end converges to T_{+}.

So far two characterizations of when $G \in \mathcal{X}_{r}$ is in the axis bundle \mathcal{A}_{ϕ} :

- (3) G is a limit of points on ϕ^{i}-periodic fold lines, $i \geq 1$.
- (1) G is on a fold line with ends T_{-}, T_{+}.

These are both "global" or "extrinsic" conditions: existence of certain fold lines passing through or near G.
Need a "local" or "intrinsic" condition on G.

- (3) G is a limit of points on ϕ^{i}-periodic fold lines, $i \geq 1$.
- (1) G is on a fold line with ends T_{-}, T_{+}.

For the cognoscenti, alternate condition depends on the lamination theory of Bestvina, Feighn, and Handel:
$\Lambda_{-}=\Lambda_{-}(\phi)$, the expanding lamination of $\phi:$

- Limits of iterates of edges of a train track map.
- Minimal lamination whose leaves have length zero in T_{-}.
- (3) G is a limit of points on ϕ^{i}-periodic fold lines, $i \geq 1$.
- (1) G is on a fold line with ends T_{-}, T_{+}.

Alternate characterization of $G \in \mathcal{A}_{\phi}$:

- (2) $G \in \mathcal{X}_{r}$ is a weak train track, meaning G has a normalization in $\widehat{\mathcal{X}_{r}}$ so that:
- there exists an edge isometry $\widetilde{G} \rightarrow T_{+}$such that every leaf of Λ_{-}realized in \widetilde{G} embeds in T_{+}.

Main point to take from this definition: each weak train track has a "canonical" normalization, and hence has a "canonical" length.

Where's the hard work?

- For all $G \in \mathcal{X}_{r}$, TFAE:
(1) G is on a fold line with ends T_{-}, T_{+}
(2) G is a weak train track.
(3) G is a limit of points on ϕ^{i}-periodic fold lines, $i \geq 1$.
- Proving that \mathcal{A}_{ϕ} is proper homotopy equivalent to \mathbf{R}.

Main technical result from which others flow:
Proposition 1 (The $S-T$ Lemma (Prop. 5.4 but it doesn't look like this)).
For every $L>0$ there exists a train track S of length $>L$ such that for each weak train track T of length $<L$, there is an edge isometry $S \mapsto T$.

In other words: From a certain sufficiently long S, can fold to anything sufficiently short.

Proof that (2) \Longrightarrow (1): every weak train track lies on a fold line going from T_{-}to T_{+}.

- Every train track S is on a periodic fold line (proved earlier).
- Every periodic fold line goes from T_{-}to T_{+} (apply Source-Sink dynamics).

Construction of a fold line from T_{-}through T to T_{+}:

- Fold from T_{-}to S by part of a periodic fold line;
- Fold from S to T by interpolating the edge isometry $S \mapsto T$;
- Fold from T to T_{+}by interpolating the edge isometry $T \mapsto T_{+}$.

Proving that \mathcal{A}_{ϕ} is proper homotopy equivalent to R:

- Length map $\mathcal{A}_{\phi} \rightarrow(0, \infty)$ is a proper map:
- Use the $S-T$ Iemma: those T, foldable from S, with length in a compact interval $[a, b]$, forms a compact set.
- Skora's method, which has been used to prove contractibility of $\mathcal{X}_{r}, \overline{\mathcal{X}}_{r}$, etc., can also be used to prove that the length map $\mathcal{A}_{\phi} \rightarrow(0, \infty)$ is a proper homotopy equivalence.

