Quasi-Fuchsian surfaces in hyperbolic knot complements

Joseph D. Masters Xingru Zhang

SUNY Buffalo

Let $M = \mathbb{H}^3/\Gamma$ be a finite-volume hyperbolic 3-manifold.

Let $H \subset \Gamma$ be isomorphic to the fundamental group of a closed surface of genus at least two. By results of Bonahon, Marden, and Thurston, either:

- a. H is quasi-Fuchsian: $\Lambda(H) \cong S^1$, or
- b. H is geometrically infinite: $\Lambda(H)=S_{\infty}^2$, or
- c. H contains a parabolic element.

Questions: Does Γ contain a closed surface group?

If so...what about the geometry?

If M closed, there are no parabolics. Most known constructions give quasi-Fuchsian examples. Is there always a geometrically infinite surface subgroup? (virtual fiber conjecture.)

If M is non-compact, a closed surface group in Γ can never be geometrically infinite. Most known constructions give accidental parabolics. Is there always a quasi-Fuchsian surface subgroup?

From now on, suppose $M = \mathbb{H}^3/\Gamma$ is a *hy-*perbolic knot complement. i.e. M is finite-volume, with a single cusp.

Cooper, Long and Reid showed that Γ contains a closed surface subgroup of genus at least two. However, the surface subgroup is constructed by a tubing operation, and thus always contains parabolic elements.

We show

Theorem 1. (M-Zhang) If $M = \mathbb{H}^3/\Gamma$ is a hyperbolic knot complement, then Γ contains a closed, quasi-Fuchsian surface group.

Topological application:

Corollary 2. Every hyperbolic knot complement contains an essential, immersed surface which survives all but finitely many surgeries.

This extends a result of Cooper-Long.

Approach:

Construct a "nice" hyperbolic manifold, Y, with: convex boundary; a π_1 -injective, quasi-Fuchsian boundary component S; and a local isometry $f: Y \rightarrow M$. Then

Lemma 3. $f: S \rightarrow M$ is a closed, quasi-Fuchsian surface.

Proof. Given $\gamma \in \pi_1 S \subset \pi_1 Y$.

Then γ is freely homotopic to a non-trivial, closed geodesic ℓ .

 $f(\ell)$ is a closed geodesic in M.

Therefore $f_*\gamma$ is freely homotopic to a non-trivial, closed geodesic.

Therefore $f_*\gamma$ is non-zero and non-parabolic.

Therefore $f_*\pi_1S$ is a quasi-Fuchsian surface group. \diamondsuit

Construction of Y: first try

Let $M^- = M - (T \times (0, \infty))$. By Culler-Shalen, M^- contains a pair of incompressible surfaces S_1, S_2 , representing distinct slopes in ∂M^- . Suppose S_1 and S_2 intersect transversely.

Let $Y = (S_1 \times I) \cup (S_2 \times I) \cup (T \times [0, \infty))$. Hyperbolic structure on M induces a hyperbolic structure on Y, so inclusion is a local isometry from Y to M.

1.	S1 X	Ι	S1 X I		
S2 X I					
S2 X I					
52 M I					

PROBLEM: The structure on Y does not have convex boundary.

GOAL: Try to smooth out the corners.

The goal may be impossible for this particular choice of Y. Need more room to smooth. This is achieved by replacing the given surfaces S_i with certain carefully chosen finite covers \widetilde{S}_i . These covers are thickened, then glued together along certain sub-manifolds, and finally attached to the cusp, to produce Y.

Main issues:

- a. How to glue. Require topological picture of "gluing pieces". Need to choose where to insert them.
- b. How to smooth. Require results on convex gluing of hyperbolic 3-manifolds.
- c. How to find the covers. Requires algebraic results. In particular, must prove that free groups satisfy a stronger version of the LERF property.

Gluing pieces

Easy case: Suppose S_1 and S_2 are totally geodesic.

In general, may assume S_1 and S_2 are qF. Let $\Gamma_i = \pi_1 S_i \subset \Gamma$.

Then $\Gamma_1 \cap \Gamma_2$ is a finitely generated, quasi-Fuchsian group, corresponding to some (possibly immersed) sub-manifold K in $S_1 \times I$ and $S_2 \times I$.

K is handlebody with "spikes".

May perform gluing: $(S_1 \times I) \cup_K (S_2 \times I)$.

Have a good picture of the parabolic region.

Convex gluing (c.f. Baker-Cooper)

Turns out, can perform **convex** gluing of $S_1 \times I$ and $S_2 \times I$ along K if:

- a. K is embedded in $S_i \times I$, and
- b. K has a large collar neighborhood in $S_i \times I$.

Moreover, can construct an explicit picture of the convex gluing, and control its intersection with the cusp.

Construction of Y (second try)

Wish to:

- a. Replace S_i with certain covers \widetilde{S}_i .
- b. Select certain conjugates of $\Gamma_1 \cap \Gamma_2$, corresponding to certain 3-manifolds K_i , which will be the "gluing pieces".
- c. Glue $\widetilde{S}_1 \times I$ and $\widetilde{S}_2 \times I$, by inserting gluing pieces in certain places.
- d. Cap off (convexly) with the cusp.

Illustration

Suppose $|\partial S_i^-|=$ 2 and slopes are distance one.

 $Y = (\widetilde{S}_1^- \times I) \cup_{K_1 \cup K_2} \cup (\widetilde{S}_2^- \times I) \cup (\widetilde{T} \times [0, \infty)).$

To make this work, need:

- a. Gluing pieces lift to embeddings in \tilde{S}_i , with large collar neighborhoods. (To allow convex gluing.)
- b. The resulting parabolic region consists of **evenly spaced** parallelograms, with **long sides**. (To allow capping off with cusp.)

In light of b., we further require:

c. The number of boundary components of S_i is the same as the number of boundary components of S_i .

Algebra

Translate desired properties into group theory.

Spacing issue becomes very technical. We shall focus on issues a and c. Part a is a standard application of LERF property of free groups. However, parts a and c together require:

Strong LERF Let F be the fundamental group of a connected compact orientable surface S^- with genus g and with b>0 boundary components. We may choose a free basis of F:

$$a_1, b_1, a_2, b_2, ..., a_g, b_g, x_1, ..., x_{b-1}$$

Boundary components of F are represented by

$$X = \{x_1, ..., x_{b-1}, x_b\}$$
, where $x_b = [a_1, b_1][a_2, b_2] \cdots [a_g, b_g]x_1x_2 \cdots x_{b-1}$

Theorem 4. Let $H \subset F$ be a finitely generated subgroup containing no peripheral elements, and let $Y = \{y_1, ..., y_a\} \subset F - H$. Then, for some $n \in \mathbb{Z}^+$, there exists an index n subgroup J of F such that

$$J\supset H,$$
 $Y\cap J=\emptyset$, and $x^i
ot\in J \quad \forall x\in X,\ 1\leq i< n.$

Corollary 5. Let S be a hyperbolic surface with b>0 boundary components, and let $f:S^1\to S$ be an immersion of a geodesic. Then there is a finite cover \tilde{S} of S, with b boundary components, such that f lifts to an embedding $\tilde{f}:S^1\to \tilde{S}$.

Proof of Theorem 4 is a combinatorial analysis of labeled graphs.

