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1 DBackground

[ this tallk, 5 g a closed, erientable Riemamm surface of
gents g = 1 owithout punctures. Many aspects ol Te-
wchmuller theory study different structures on Riemann
surfaces.

Wi study asymptotic geometry of Teiclunuller space
m this talk, However, we will nod go to the infinity, There
will be no curve pinching on the surface.  We consider
the asymptotics of the enrvatures in the interior of Te-
chmiiller space when the genns of the surface gots larec.

Teichmiiller space 7, js the space of confornial stroctures
[or hyperholic metries for g > 1) on a closed surface S
of genus g where two straclures are equivalent iF there is
a hiholomaorphic map, homotopic to the identity, hetween
Lhere, 1e. Techmiller space is debined as

T, = M_ |/ Dif folS)
where M_y is the space of hvperbolic metrics on S, and

Dif fulS) is the group of orientation preserving diffecmeor-
phiznis hometopie to the dentity,



Teichmiiller space 7, 15 a dg — 3 dimensional complex man-
iold if 4 = 2 (Allfors-Bers).

Different metries defined on Teichmiiller space reflect dif-
ferent perspectives of the structures of Teichmuller space,
The Weil-Petersson metrie is one of the most natural ones,

The Well-Petersson metrie dyp on Teichmiiller space 1s
obtained by duality from the Lnorm on the eotangent
space (the space of holomorphic quadratic differentials):
e
l6llp = Jo dzdz

where gdzd 2 is the hyperbolic metric on 5.

The geometry of (7, diyp) 18 very interesting, and there
i ¥ h

are many deep connections with the study of dy p and hy-

perbalic 3-manifolds. which is the theme of this workshop.
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o {Chu, Masur, Wolpert; 1976) dyp is incomplete;

[ Tromba, Wolperl: 1956) Ky < 0,

[ Wolpert; 1986) The halomorphic sectional curvature

and Hicel curvature are pinched from above by Tlt“.l

[ Wolpert; 1987) (T, dw p) 13 geodesically convex:

[ Brock-Farb; 2000) dyp is 6-hyperbolic if and only if
dimeoZ < 2:

o ( Brock: 2000) The volume of the convex core of the
guasi-Fuchsian hyperbolic 3-manifold 2{.5;, 55) with
Sy anel Sa in the boundary is comparable to dy {51, S5

o (H-; 2002) The sectional curvalure Ky, » 18 10k neg-
atively pinched,



2 Bystole and Genus

Throvghout the talk, we denote [, as the systole, the
length of the shorlest closed zeodesic on & with respect
tef the hyperbolic metrie o, We assume there is o positive
lower bound #y on the injectvity rading int,(5)

We call the eompact subset of the moduli space where
int,(5) = ry > 0 the thick part, ie, the thick part of
modult space consists of fal surfaces,

As convenlent constants, the svstole and genus show up
repularly at many compactness arguments and estimates.
It i very important Lo understand their roles in the stady
of the Weil-Petersson geometry. In this section, we closely
exarm this aspeet which motieated current work.
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o (o the surface S, the (hyperbolic) area is piven by the
Gauss-Bonnett formula: Area(S) = dx{g — 1);

o [Bers; 1372) The hyvperbolic diameter salisfies

diam(5) < (g — 1)zt

where —2— o 2 for 1, sufficiently srnall:
st !ﬁ-_'l Ly i

e Bers constant satisfies \/ig — 2 < L, < 26(g — 1);

o [ Welpert: 1977 The moduali space has finite (bound
depends on the surface) Weil-Petersson diameter;

o [he frontier space of T, consists of noded surfaces,
thus can be deseribed as the set {a [, = 0}

o | Wolpert: 2005 The Weil-Petersson mjectivity radius
of the moduli space is comparable to T, with con-
stant independent of the senus.
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3 Asymplotics in the thick part

An mportant yel very difficult consideration is the calou:
lation of the Weil-Froersson metegrals em the moduli space
M, A direct application is to delermine their Weil-
Potersson vohimes,

Comsidering the Deligne-Mumtord compactification of M, ,,,
s Weil-Petersson volume is a rational multiple of pe— o

{ Wolpert, 1933), Recently Mirzalchani has worked out a
recursive formuala on the Weil-Petersson volumes.

It 18 natural Lo ask how geometrical preperties of M, vary
if the gemus of the nnderlying surface pets laree,

Aa an example, it 18 known ( Welpert, 1986) that the

halomorphic sectional curvature and Riecl curvature are
bonnded from ahove by —— ie., laree serms implies

dria—1]"

almost vanishing Rieci curvatures, ke |



Before we move towards the thick part of the moduli space,
v consider the Weil-Petersson geometry near the com-
pactification divigor:

‘o (Schimacher 1956, Trapant 1982, H-, 2005) The
Weil-Petersson holomerphic sectional curvalire aned
Ricei curvature are bounded frora below by —Cf
maoreover (H-, 2003), there exists a family of Langeul
planes {towards the compactification divisor) with eur-
vatures of the order —1!, Holomorphic sections arc
the only ones with "extremely hyperbolic” curvatures.
The Weil-Pelersson sectional curvature has no nega-
tive lower bonn;

o ([, 2002, 2003) There exist fanilics of tangent planes
(towards the compactification divisor] with absolute
values of the eurvatures of Lhe order QL) In other
words, near the compactification divisor, tangential di-
ectlons are asvinptolically flat. Therefore, the Weil-
Petersson sectional eurvature has no negative upper
Lo,



We now assume the surface S js in the thick part of the
moduli space.

Fitat observation: beeause of the compactness of the thick
part: in M, all Weil-Petersson eurvatures are hounded,
Howewver, the bounds depend on the genus, and/or other
nvariants.

Theorem 1. There exists a posilive constant O\, in-
dependent of g, such that the Weill-Petersson holomor-
phie seetional curvature Iy, satisfies that

_(:"1 < .!r";-fl [ - _"'I'I":s"."]"-we?

i the thick part of the moduli space.

As for the general sectional enrvature, we have

Theorem 2. (Main theorem)} In the thick part of the
maduli space, there 45 a posilive constant Cs, indepen-
dent of the genus g, sueh that the sectional curnature
foaf the Well-Petersson metric satisfies that

—Cy < K <0,



Let us consider what need to be estimate] bo bave curva-
ture estimates as in bhe theorems,

Thie tangent space of Telchmuller space at 5 is equiva-
lent to H B({S), the space of harmonie Beltrama differen-
tials, A harmonic Beltrami differential ;;i:z}f—r}_f b given as
aleds?) ™! for ¢ a holomaorphic quadratic differential with
at most simple poles at the ensps and ds? the hyperbolic
metric tengor, Since the sarface S has no cusps and this

qrurdratic differential ¢ = ¢(z)dz® has no poles.

The Weil-Petersson holomorphic sectional curvature for a
tangent vector g is given by

- N 2 e T T
.Iiri I:ff-, .}_.[I'-J = ,f,r.- ||'J|.2|'L"h ¢

where D= —2{A, — 2777 s a self-adjoint, compact oper-
ator, and d4 = frtff-z|2.

I general. the Well-Pelerszon corvature tensor is given by
the Tromba-Wolpert formula:

Riow = [5 Dipaji)psitad A + ;q' D gy flg ) phafigd A



Nowe 1l we choose g to have a unit Weil-Petersson norm

e, [ ul®dA = 1, then the Lolomorphic sectional curva-
ol TaI ' T e ' A 4.7

ture 15 & multiple of the integral | D) # )| p|*d A,

The next lemma passes a L7 bound to a pointwise hound:
I

Lemma 3. For ,rr.lj'zjf—i e HB(S) with ||pllwp = 1.
there exists u positive constant hg, independent of g.
sach that |plz)| < by, for all 2 € 5, where the surface
S s in the thick pavt of the moduli space.

With this lemma, we see that:
K| = ‘3/ B pa| ) e Pl A
o N
< h [U{|;.a.|l}rf.ffl

k= Ehﬁj | Fd A
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