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fo(2) holomorphic near 0  fp(0) =0

parabolic fixed point: f3(0) a root of unity
1-parabolic and non-degenerate

fo(z) = z+ a2 +... az # 0

2micy

near-parabolic fixed point: f'(0) = e“™*, « small

irrationally indifferent

f(z) =¥z + 0(z?) @ €RNQ

where a; € N

as +
2 as =

large continued fraction coefficients: a; > IN




The Goal of This Talk

Define
parabolic renormalization: jfo ~ Rofo

Rofo(z) = z + O(2?) 1-parabolic

near-parabolic renormalization: f ~ Rf
Rf(z) = e™Pz + 0(2?)  B=--

a

it is induced from the first return map
to a certain fundamental domain

Present the class F; of 1-parabolic maps

it 1s invariant under the renormalizations
the renormalizations are contracting/hyperbolic




Plan

® Definition of Fatou coordinates and horn map

® Parabolic bifuracation/implosion and the
return map (Douady-Hubbard-Lavaurs)

® Parabolic and near-parabolic Renormalizations
® Statements of Theorems
® (Class F; and its characterization

® About the proof of invariance




Fatou coordinates @4, ®rep and Horn map E o
Fo(w) =w+1+0(1)

*I'*rep /

T(w) = w+ 1 T(W“"’r'l
@ (fo(2)) =2..(2)+1




£(0) = ", o small |arga] <

E; depends continuously on f
(after a suitable normalization)




Parabolic Bifurcation/Implosion
When a parabolic point 1s perturnbed....

Discontinuous change
of Julia sets

New complicated
dynamics 1s created
by the orbits going
through the “gate”

New dynamics can be
understood via the
return map




Parabolic Renormalization

fo Normalize the Fatou coordinates
i ‘ so that
Ef(2) =2z+0(1) (Imz— +400)

Let TII(z) = e*™* then
II:C/Z—C*

Parabolic Renormalization
Rofo=Mo Eg ol

0 is 1-parabolic fixed point




Near-parabolic Renormalization (cylinder renorm.)

Rf=IoRfoll"L
=TIoxso EfoIl™!
— Egﬂﬁz—l—O(zg)

where 8 = —é (mod Z)

ﬂra=m%ﬂ (m € N)

@ Rf=x50E;
ﬁrstreturnmap

.:>




Renormalization: The Picture
F(z) = e2miey + O(22) = e2™@ fy(z) where fo(z) = z + O(22) 1-parabolic
f (o, fo)
Write Rf(z) =e > aRafo(2) then R:(,fo)— (—L, Rafo)

R
R hyperbolic?

(Ro contracting?)

Rafo — Rofo (¢ — 0)
Ro contracting?

o: YES for « small




Main Theorems

Theorem 1 Let P(2) = z(1+ 3)2_ There exist bounded simply connected
open sets V and V' with0 € V Cc V Cc V' C C such that the class

w:V —C is uniﬂaimt}
¢(0) =0, ¢'(0)=1

satisfies the following: univalent = holomorphic and injective

f1={f=Poga-1:(p(V)—>fC

(0) every f € F1 is non-degenerate;

(i) Fo ~ {quadratic polynomial} can be naturally embedded into F1 (in par-
ticular, R§(z+2*) e F1 n=1,2,...);

(ii) The renormalization R is well defined on F; so that Ro(F1) C F1 ;
(iii) If we write Rof = P o1™!, then 1 can be extended univalently to V';
(iv) f— Rof is “holomorphic.”

Theorem 2 The above statements hold for R, for a small. Hence there
ezxists an N such that the above holds for

1 :
ﬂ:=m—_|_ﬁ withmeN, € C and |B| < 1.




P(z)=z(14+2)% and V, V'
P(0) =0, P'(0) =1
critical points: —% and —1  critical values: P(—%) — —% and P(—1) =0

4 ,—2my
27 ¢

V slightly smaller domain than V'




0 € Ut open and connected C C,
f is holomorphic in Uy, f(0) =0, f/(0) =1,
Fo=<f:Us—>C| f:Us~ {0} — C* is a branched covering map
with a unique critical value,
all critical points are of local degree 2

R[}(Fﬂ) C Fo
z+ 2%, Ro(z+ 2%),--- € Fo

This class was used in the proof of HD=2 for generic Julia sets on
the boundary of the Mandelbrot set, and for the the boundary of
the Mandelbrot set itself.

Also compare with the works on critical circle maps
(for example, Epstein- Yampolsky)




Contraction and Hyperbolicity

Theorem 3 Modifying the definition slightly (requiring that ¢ has a quasi-
confomal extension to C), F1 is in one to one correspondence with the
Teichmiiller space Teich(W) of W = C\V(~ D*). The induced map R "
8 a uniform contraction with respect to the Teichmiiller distance. (The Lip-
shitz constant < exp(—2mw mod(V' \ V)).)

Theorem 4 The above statements hold for the fiber map Ry for a small.
Hence the total renormalization R is hyperbolic in this region.

Fidf=Pop !~ [p|lw] € Teich(W)={p:W—->Cqc}/~
where @ is a quasiconformal extension of ¢ to C.

Royden-Gardiner Theorem (Teichmiiller distance = Kobayashi distance)
cotangent space = {integrable holomorphic quadratic differentials}
modulus-area inequality for holom. quad. differentials

isoperimetric inequality for holom. quad. differentials

modified Carleman’s inequality




Theorem 2 follows from Theorem 1 and
the continuity of E, with respectto f.

We outline the proof of Theorem 1.
one cannot compute Rgf!

In order to define an invariant class of maps,
we need a way to recognize that Ro f
belongs to this class.

We characterize our class by covering property
(as imcomplete/partial ramified covering over C)




The Class J; -- starting point and goal

We characterize our class by covering property
(as imcomplete/partial ramified covering over C)

“f and g have the same covering properties” or
Dom(f) and Dom(g) are the same when viewed as, in classical terms,
Riemann surfaces spread cover C

0 = the fixed point
oo = designated omitted point

> C
identity N
(or a canonical isomorphism) the critical value

g=foyp™!
We will characterize f € 7, by color-tiling the domains (V replaced by V)




z(1+ 2)*
(1-2)°

exercise: Q(z) =

€ J after rescaling (V is replaced by V' for F})




Before the proof...
send the parabolic fixed point to OO
dynamics is already close to a translation

Fatou coordinates will be “close” to the identity or affine
transformation

we musthandle f = Po rp_l with arbitrary univalent function ¥

it is easier to work with univalent functions in C < D
(Area theorem etc)

open the slit (—oo, —1] to the unit disk and obtain Q(z) = =2 a
with the same covering property (1 = E)

Q= ¥5" 0 Poty where go(s) =~ (&) =~z = 4o (-, )
We will work with f € F{° instead of F;
- ¢ : C~ E — C is univalent
f=Qoy™:p(V) = €| p(00) = 00, lim, o0 22 = 1
and 0 ¢ Imﬂge(ga)

2 -~
fremee (1204 (8’51} vem@nn

@+ )




How to see that Rof is in JF]
Rof was defined via Horn map E; and II(z) = e?™**
R[]f =1Ilo E_f oIl"1

For E;, domain = repelling Fatou coordinate
range = attracting Fatou coordinate

Make a color-tiling according to the range (= attracting Fatou coordinate)
and compare with that of P

“checkerboard picture”




Compare Rof with P orits log lift

| log lift of P

i




Compare Rof with log lift of QO
E; log lift of Q

This is the starting point of the proof

Danger: inverse orbits may fall off from the domain of definition
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What we need to do

Left

guarantee that certain
inverse images arrive
in the domain of
repelling Fatou
coordinate

construct a Riemann
surface X on which
an appropriate inverse
branch of f can be
lifted

Middle

take multiple inverse
images of D;

(Do, D’p, D1, D”_})
and bound their location
they are glued together
like the tiles for P

Right
distortion estimates
for attracting Fatou

coordinate
bound the location

and shape of D;

determine the domain
where the attracting
Fatou coord. is
univalent and apply
Golusin inequality

| many inequalities (~30)

needed to cecked

| with help of computers
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