Currents and measures in parameter space

(joint work with Charles Favre)
Romain Dujardin

Institut de mathématiques de Jussieu

Introduction

1 dim. dynamics

- canonical invariant measure
- equidistribution of preimages of pts and periodic orbits

Introduction

1 dim. dynamics

- canonical invariant measure
- equidistribution of preimages of pts and periodic orbits

1 dim. parameter space

- harmonic measure of the Mandelbrot set
- equidistribution of centers and Misiurewicz pts (Levin)

Introduction

1 dim. dynamics

- canonical invariant measure
- equidistribution of preimages of pts and periodic orbits
higher dim. dynamics
- Green current: equidist. of preimages of codim. 1 subsets
- Invariant measure: equidistribution of periodic orbits

1 dim. parameter space

- harmonic measure of the Mandelbrot set
- equidistribution of centers and Misiurewicz pts (Levin)

Introduction

1 dim. dynamics

- canonical invariant measure
- equidistribution of preimages of pts and periodic orbits
higher dim. dynamics
- Green current: equidist. of preimages of codim. 1 subsets
- Invariant measure: equidistribution of periodic orbits

1 dim. parameter space

- harmonic measure of the Mandelbrot set
- equidistribution of centers and Misiurewicz pts (Levin)
higher dim. parameter space
- which objects? (cf. DeMarco, Bassanelli-Berteloot)
- which equiditribution?

Positive closed currents

Let Ω be a complex manifold.

- Currents of dimension k are dual to differential forms of degree k :

$$
\varphi \mapsto\langle T, \varphi\rangle .
$$

- Natural d operator: $\langle d T, \varphi\rangle=(-1)^{\operatorname{deg} \varphi}\langle T, d \varphi\rangle . T$ is closed if $d T=0$.
- Currents of bidimension (k, k) act non trivially only on forms of bidegree (k, k)
- Natural notion of positivity, invariant under holomorphic mappings.
- Topology considered: weak topology.

Positive closed currents

Let Ω be a complex manifold.

- Currents of dimension k are dual to differential forms of degree k :

$$
\varphi \mapsto\langle T, \varphi\rangle .
$$

- Example 1: if u is a function, $i \partial \bar{\partial} u$ defines a current of bidegree $(1,1):\langle i \partial \bar{\partial} u, \varphi\rangle=\int u(i \partial \bar{\partial} \varphi)$.
Let $d d^{c}=i \partial \bar{\partial} . u$ is $\mathrm{psh} \Leftrightarrow d d^{c} u$ is positive.
- Example 2: if V is a complex subvariety of (complex) dimension k,

$$
\varphi \mapsto \int_{V} \varphi
$$

defines a positive closed current of bidimension (k, k)

Marked critical points

Consider a family $\left(f_{\lambda}\right)_{\lambda \in \Lambda}$ of rational maps on \mathbb{P}^{1}, of degree d, with a holomorphically varying (marked) critical point $c(\lambda)$.
Definition. $c(\lambda)$ is passive at λ_{0} if $\left\{f_{\lambda}^{n}(c(\lambda))\right\}$ is normal near λ_{0}. Otherwise it is active.

Assume the f_{λ} are polynomials. Then

$$
T=d d^{c} G_{f_{\lambda}}(c(\lambda))
$$

is a positive closed current on Λ associated to c.
In the case of the space of quadratic polynomials this is the harmonic measure of the Mandelbrot set.

Marked critical points

Consider a family $\left(f_{\lambda}\right)_{\lambda \in \Lambda}$ of rational maps on \mathbb{P}^{1}, of degree d, with a holomorphically varying (marked) critical point $c(\lambda)$.
Definition. $c(\lambda)$ is passive at λ_{0} if $\left\{f_{\lambda}^{n}(c(\lambda))\right\}$ is normal near λ_{0}. Otherwise it is active.

In general, following DeMarco, $\left(f_{\lambda}, c(\lambda)\right)$ admits an associated positive closed current T.
Theorem. $\operatorname{Supp}(T)=$ activity locus of c

Marked critical points

Consider a family $\left(f_{\lambda}\right)_{\lambda \in \Lambda}$ of rational maps on \mathbb{P}^{1}, of degree d, with a holomorphically varying (marked) critical point $c(\lambda)$.
Definition. $c(\lambda)$ is passive at λ_{0} if $\left\{f_{\lambda}^{n}(c(\lambda))\right\}$ is normal near λ_{0}. Otherwise it is active.

FACT. if c is active at λ_{0}, there exist parameters λ arbitrary close to λ_{0} where c is (pre)periodic.
(Classical consequence of Montel's theorem)

Equidistribution

Assume the parameter space Λ is quasiprojective.
For $0 \leq k(n)<n$, let

$$
\operatorname{Per}(n, k(n))=\left\{\lambda, f_{\lambda}^{n}(c(\lambda))=f^{k(n)}(c(\lambda))\right\} .
$$

Theorem. The following convergence statements hold

$$
\begin{cases}\frac{1}{d^{n}+d^{k(n)}}[\operatorname{Per}(n, k(n))] \rightarrow T & \text { when the } f_{\lambda} \text { are rational maps } \\ \frac{1}{d^{n}}[\operatorname{Per}(n, k(n))] \rightarrow T & \text { when the } f_{\lambda} \text { are polynomials }\end{cases}
$$

Example. if $\Lambda=\mathbb{C}$ is the space of quadratic polynomials, this is the equidistribution of centers of components (resp. Misiurewicz points) towards the harmonic measure of the Mandelbrot set.

Two marked critical points.

Consider an algebraic family $\left(f_{\lambda}, c_{1}(\lambda), c_{2}(\lambda)\right)$, with 2 independent critical points ($\operatorname{dim} \Lambda \geq 2$).

Question. Assume both c_{1} and c_{2} are active at λ_{0}, can we find a nearby parameter λ for which both are preperiodic?
Recall that there is no analogue of Montel's Theorem in higher dimension so the classical approach fails.

Two marked critical points.

Consider an algebraic family $\left(f_{\lambda}, c_{1}(\lambda), c_{2}(\lambda)\right)$, with 2 independent critical points ($\operatorname{dim} \Lambda \geq 2$).

Question. Assume both c_{1} and c_{2} are active at λ_{0}, can we find a nearby parameter λ for which both are preperiodic?

On the other hand $T_{1} \wedge T_{2}$ is bidegree $(2,2)$ current such that $\operatorname{Supp}\left(T_{1} \wedge T_{2}\right) \subset \operatorname{Supp}\left(T_{1}\right) \cap \operatorname{Supp}\left(T_{2}\right)=\left\{c_{1}\right.$ active $\} \cap\left\{c_{2}\right.$ active $\}$.

Prop. Near every $\lambda_{0} \in \operatorname{Supp}\left(T_{1} \wedge T_{2}\right)$ there is a λ for which c_{1} and c_{2} are preperiodic.
Proof. $T_{1} \wedge T_{2}=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \frac{\left[\operatorname{Per}_{1}(n, k(n)) \cap \operatorname{Per}_{2}(m, k(m))\right]}{\left(d^{n}+d^{k(n)}\right)\left(d^{m}+d^{k(m)}\right)}$.

Cubic polynomials

For simplicity we now work with cubic polynomials with both critical points marked but the results are valid for all degrees.
Let $\Lambda=\mathbb{C}_{(c, v)}^{2}$ and $f_{c, v}(z)=z^{3}-3 c^{2} z+2 c^{3}+v$ (Kiwi).
Critical points: $+c$ and $-c$.

Cubic polynomials

For simplicity we now work with cubic polynomials with both critical points marked but the results are valid for all degrees.
Let $\Lambda=\mathbb{C}_{(c, v)}^{2}$ and $f_{c, v}(z)=z^{3}-3 c^{2} z+2 c^{3}+v$ (Kiwi).
Critical points: $+c$ and $-c$.
Let $\mathcal{C}^{ \pm}=\{(c, v), \pm c$ has bdd orbit $\}$.
$\mathcal{C}^{ \pm}$are closed and the activity locus of $\pm c$ is precisely $\partial \mathcal{C}^{ \pm}$.
$\mathcal{C}=\mathcal{C}^{+} \cap \mathcal{C}^{-}$is the connecteness locus, which is compact in \mathbb{C}^{2} (Branner-Hubbard).

Cubic polynomials

For simplicity we now work with cubic polynomials with both critical points marked but the results are valid for all degrees.
Let $\Lambda=\mathbb{C}_{(c, v)}^{2}$ and $f_{c, v}(z)=z^{3}-3 c^{2} z+2 c^{3}+v$ (Kiwi).
Critical points: $+c$ and $-c$.
Let $\mathcal{C}^{ \pm}=\{(c, v), \pm c$ has bdd orbit $\}$.
$\mathcal{C}^{ \pm}$are closed and the activity locus of $\pm c$ is precisely $\partial \mathcal{C}^{ \pm}$.
$\mathcal{C}=\mathcal{C}^{+} \cap \mathcal{C}^{-}$is the connecteness locus, which is compact in \mathbb{C}^{2} (Branner-Hubbard).
Let $G^{ \pm}(c, v)=G_{f_{c, v}}(\pm c)$ and T^{+}and T^{-}be the associated currents, $T^{ \pm}=d d^{c} G^{ \pm}$.
$\operatorname{Supp}\left(T^{ \pm}\right)=\partial \mathcal{C}^{ \pm}$

Cubic polynomials: schematic picture

p11 p12
$[0: 1: 0]$

Misiurewicz points

Let $\mu_{\text {bif }}=T^{+} \wedge T^{-}$. The bifurcation measure μ is a positive measure with support in $\partial \mathcal{C}^{+} \cap \partial \mathcal{C}^{-}$.

Definition. f is of Misiurewicz type if all critical points are strictly preperiodic.

We already know that:

$$
\operatorname{Supp}\left(\mu_{\text {bif }}\right) \subset \overline{\{\text { Misiurewicz pts }\}} \subset \partial \mathcal{C}^{+} \cap \partial \mathcal{C}^{-}
$$

Theorem. $\operatorname{Supp}\left(\mu_{\text {bif }}\right)=\overline{\{\text { Misiurewicz pts }\}} \neq \partial \mathcal{C}^{+} \cap \partial \mathcal{C}^{-}$.

Other definitions of $\mu_{\text {bif }}$

Let $\operatorname{Lyap}(c, v)$ be the Lyapounov exponent of the maximal entropy measure of $f_{c, v}$:

$$
\operatorname{Lyap}(c, v)=\log 3+G_{c, v}(c)+G_{c, v}(-c)
$$

In particular the "bifurcation current" (DeMarco) is

$$
T_{\mathrm{bif}}=d d^{c} \operatorname{Lyap}=T^{+}+T^{-}
$$

FACT. $\left(T^{+}\right)^{2}=\left(T^{-}\right)^{2}=0$.
$\Rightarrow \mu_{\mathrm{bif}}=T^{+} \wedge T^{-}=\left(d d^{c} \text { Lyap }\right)^{2}$.
(previously studied by Bassanelli-Berteloot)

Other definitions of $\mu_{\text {bif }}$

PROP. $\mu_{\text {bif }}=\left(d d^{c} \max \left\{G^{+}, G^{-}\right\}\right)^{2}$.
Cor. $\mu_{\text {bif }}$ is the "pluriharmonic measure" of the connectedness locus.
(natural object from the point of view of complex analysis).
\Rightarrow (Bedford-Taylor) $\operatorname{Supp}\left(\mu_{\text {bif }}\right)$ is the Shilov boundary of \mathcal{C}.

Some geometric intuition

There is a natural stratification of the space in terms of the number of critical points being active (picture):

$$
\partial \mathcal{C}^{+} \cap \partial \mathcal{C}^{-} \subset \partial \mathcal{C}^{+} \cup \partial \mathcal{C}^{-} \subset \mathbb{C}^{2}
$$

Some geometric intuition

There is a natural stratification of the space in terms of the number of critical points being active (picture):

$$
\partial \mathcal{C}^{+} \cap \partial \mathcal{C}^{-} \subset \partial \mathcal{C}^{+} \cup \partial \mathcal{C}^{-} \subset \mathbb{C}^{2} .
$$

Define:

- the bifurcation locus $\mathrm{Bif}_{1}=\partial \mathcal{C}^{+} \cup \partial \mathcal{C}^{-}=\operatorname{Supp} T_{\text {bif }}$
- the secondary bifurcation locus $\operatorname{Bif}_{2}=\operatorname{Supp} \mu_{\text {bif }}$

Some geometric intuition

There is a natural stratification of the space in terms of the number of critical points being active (picture):

$$
\partial \mathcal{C}^{+} \cap \partial \mathcal{C}^{-} \subset \partial \mathcal{C}^{+} \cup \partial \mathcal{C}^{-} \subset \mathbb{C}^{2} .
$$

Define:

- the bifurcation locus $\mathrm{Bif}_{1}=\partial \mathcal{C}^{+} \cup \partial \mathcal{C}^{-}=\operatorname{Supp} T_{\text {bif }}$
- the secondary bifurcation locus $\operatorname{Bif}_{2}=\operatorname{Supp} \mu_{\text {bif }}$ Intuitively:
- a polynomial f in $\operatorname{Bif}_{1} \backslash \operatorname{Bif}_{2}$ is unstable in \mathbb{C}^{2} but should have a 1 -parameter family of qc-deformations.
- a polynomial in Bif $_{2}$ should be "rigid".

Laminarity

(only valid for cubic polynomials)

Assume Δ is a holomorphic disk in $\partial \mathcal{C}^{+} \backslash \partial \mathcal{C}^{-}$. Then

- $G^{+}=0$ on Δ so c is passive.
- either $-c$ escapes so it is passive, or we are in $\operatorname{Int}\left(\mathcal{C}^{-}\right)$so $-c$ is again passive.
Both critical points are passive on Δ so the dynamics is J-stable. \Rightarrow all disks contained in $\mathrm{Bif}_{1} \backslash \partial \mathcal{C}^{+} \cap \partial \mathcal{C}^{-}$are disks of stability.

Laminarity

(only valid for cubic polynomials)

Theorem. T^{+}and T^{-}(hence T_{bif}) are laminar outside $\partial \mathcal{C}^{+} \cap \partial \mathcal{C}^{-}$.
So through $T_{\text {bif }}$-a.e. point in $\operatorname{Bif}_{1} \backslash \partial \mathcal{C}^{+} \cap \partial \mathcal{C}^{-}$there is a disk of qc-deformation. (picture)

On the other hand:
Theorem. For $\mu_{\text {bif }}-$ a.e. parameter λ, there is no holomorphic disk through λ and contained in \mathcal{C}.

Laminarity

(only valid for cubic polynomials)

Theorem. T^{+}and T^{-}(hence T_{bif}) are laminar outside $\partial \mathcal{C}^{+} \cap \partial \mathcal{C}^{-}$.
So through $T_{\text {bif }}$-a.e. point in $\operatorname{Bif}_{1} \backslash \partial \mathcal{C}^{+} \cap \partial \mathcal{C}^{-}$there is a disk of qc-deformation. (picture)

On the other hand:
Theorem. For $\mu_{\text {bif }}-$ a.e. parameter λ, there is no holomorphic disk through λ and contained in \mathcal{C}.

Remark. The right definition of Bif_{2} is not completely clear. For instance we could take the closure of the set of rigid parameters (contains $\operatorname{Supp}(\mu)$).

