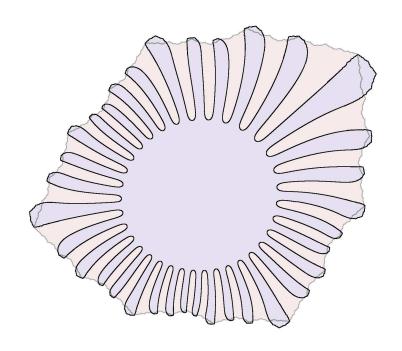


The theorem
Special pertub.
Parabolic explosion
Vector field
Renormalization
Acknowledgements

Introverted Siegel disks



Xavier Buff & Arnaud Chéritat Toulouse III University

The theorem

The theorem

Special pertub.
Parabolic explosion
Vector field
Renormalization
Acknowledgements

For $\theta \in \mathbb{R}$ let

$$P_{\theta}(z) = e^{2i\pi\theta}z + z^2.$$

We note \mathcal{B} the set of Brjuno numbers. Brjuno and Yoccoz proved that P_{θ} is linearizable at 0 iff $\theta \in \mathcal{B}$. In that case, we note Δ_{θ} its Siegel disk. It is foliated by P_{θ} -invariant loops.

Theorem: $\forall \theta \in \mathcal{B}$ and for all invariant loop \mathcal{C} of Δ_{θ} , there exists a sequence $\theta_n \in \mathcal{B}$ such that

- \blacksquare $\theta_n \longrightarrow \theta$
- \blacksquare P_{θ_n} has a cycle (of period $q_n \longrightarrow +\infty$) that tends to $\mathcal C$
- for all open subset U of Δ_{θ} ,

$$\liminf_{n \to +\infty} \frac{\operatorname{area}(U \cap \Delta_{\theta_n})}{\operatorname{area} U} \ge \frac{1}{2}$$

Special perturbations

The theorem

Special pertub.

Parabolic explosion Vector field Renormalization Acknowledgements Given $\theta \in \mathbb{R} \setminus \mathbb{Q}$, let us develop:

$$\theta = a_0 + \frac{1}{a_1 + \frac{1}{a_1 + \dots}} = [a_0, a_1, \dots]$$

Let $p_n/q_n=[a_0,\ldots,a_n]$ be the n-th convergent of θ . We choose $A\in(1,+\infty)$, $N\in\mathbb{N}^*$, and set

$$\theta_n = [a_0, \dots, a_n, \lfloor A^{q_n} \rfloor, N, N, N, \dots].$$

This is tailored so that

$$\sqrt[q_n]{\left|\theta_n - \frac{p_n}{q_n}\right|} \xrightarrow[n \to +\infty]{} \frac{1}{A}.$$

Parabolic explosion

The theorem Special pertub.

Parabolic explosion

Vector field Renormalization Acknowledgements Let \mathcal{P}_q be the set of $\theta \in \mathbb{C}$ such that P_{θ}^q has a multiple fixed point. Let $d = d(p/q) = \operatorname{dist}(p/q, \mathcal{P}_q \setminus \{p/q\})$.

Theorem: (easy) $\exists \chi : D(0, d^{1/q}) \to \mathbb{C}$ analytic, such that

- $\forall \theta \in D(\frac{p}{q}, d) \setminus \left\{\frac{p}{q}\right\}, \ P_{\theta} \ \text{has a cycle of length } q \text{ given by}$ $\chi(\sqrt[q]{\theta \frac{p}{q}}), \text{ where } \sqrt[q]{} \text{ denotes the set of all } q\text{-th roots}$
- $\chi(0) = 0, \ \chi'(0) \neq 0$

Theorem: (Douady) $\exists K > 0$ such that $\forall p/q$,

$$d(p/q) \ge K/q^3$$
.

This is a corollary of the Yoccoz inequality, combinatorics of degree 2 polynomials, and Pythagora's theorem.

Parabolic explosion

The theorem Special pertub.

Parabolic explosion

Vector field Renormalization Acknowledgements **Theorem** (Jellouli) Let us fix $\theta \in \mathcal{B}$ and let $\theta_n \longrightarrow \theta$. If $\theta_n - \theta = o(1/q_n)$ and $d(q_n\theta_n, \mathbb{Z}) \longrightarrow 0$ then $P_{\theta_n}^{q_n} \longrightarrow \mathrm{id}$ uniformly on compact subsets of Δ_{θ} .

Theorem For all $\theta \in \mathcal{B}$, noting p_n/q_n its convergents, χ_{p_n/q_n} tends uniformly on compact subsets of \mathbb{D} to the linearizing map $\phi : \mathbb{D} \to \Delta_{\theta}$ of P_{θ} .

We will use χ_{p_n/q_n} as a convenient change of coordinates, that tends to ϕ and on which $P_{\theta'}$ is conjugated to a map having a cycle $\sqrt[q_n]{\theta'-p_n/q_n}$ thus on a regular q_n -gon.²

¹ up to precomposition with a rotation

² for θ' not too far from p_n/q_n .

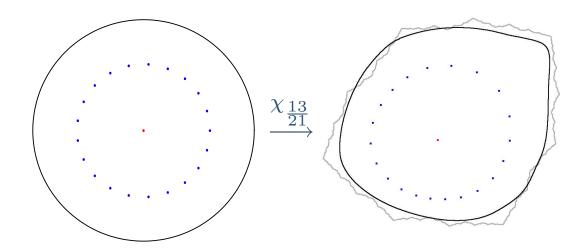
Parabolic explosion

The theorem Special pertub.

Parabolic explosion

Vector field
Renormalization
Acknowledgements

In particular, for our special perturbations θ_n of θ (with $|\theta_n-p_n/q_n|^{1/q_n}\longrightarrow 1/A$), P_{θ_n} gets conjugated to a map g_n defined on a disk of radius $\underset{n\to+\infty}{\longrightarrow} 1$ and having a cycle that tends to the circle C(0,1/A) for the Hausdorff topology on compact sets.



Vector field

The theorem Special pertub. Parabolic explosion

Vector field

Renormalization Acknowledgements

By Jellouli's theorem, $g_n^{q_n}$ tends to identity uniformly on compact subsets of \mathbb{D} . These maps will be compared to the vector field

$$dz = 2i\pi q_n z(\varepsilon_n - z^{q_n})dt = X_n(z)dt$$

$$\varepsilon_n = \theta_n - \frac{p_n}{q_n}.$$

Vector field

The theorem Special pertub. Parabolic explosion

Vector field

Renormalization Acknowledgements

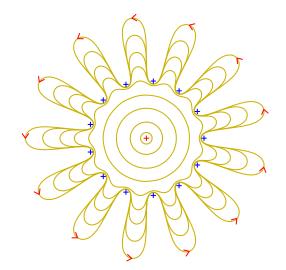
By Jellouli's theorem, $g_n^{q_n}$ tends to identity uniformly on compact subsets of \mathbb{D} . These maps will be compared to the vector field

$$dz = 2i\pi q_n z(\varepsilon_n - z^{q_n})dt = X_n(z)dt$$

where

$$\varepsilon_n = \theta_n - \frac{p_n}{q_n}.$$

Its field lines look like this: and there is an explicit formula for its straightening. We need to show that $g_n^{q_n}-z$ is close to the time-1 flow Φ_n of this vector field.



Vector field

The theorem Special pertub. Parabolic explosion

Vector field

Renormalization Acknowledgements

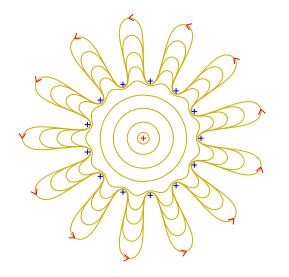
By Jellouli's theorem, $g_n^{q_n}$ tends to identity uniformly on compact subsets of \mathbb{D} . These maps will be compared to the vector field

$$dz = 2i\pi q_n z(\varepsilon_n - z^{q_n})dt = X_n(z)dt$$

where

$$\varepsilon_n = \theta_n - \frac{p_n}{q_n}.$$

Its field lines look like this: and there is an explicit formula for its straightening. We need to show that $g_n^{q_n}-z$ is close to the time-1 flow Φ_n of this vector field.



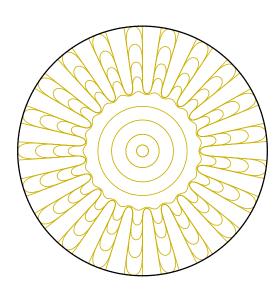
Theorem:
$$\frac{g_n^{q_n}-z}{\Phi_n(z)-z}=1+d_nz^{q_n}+z(z^{q_n}-\varepsilon_n)h_n(z)$$
 where $d_n\leq B_n$, $|h_n(z)|\leq B_n$ and $(B_n)^{1/q_n}\longrightarrow 1$.

The theorem
Special pertub.
Parabolic explosion
Vector field

Renormalization

Acknowledgements

The previous theorem tells us that the relative error between g_n-z and X_n has order of magnitude z^{q_n} .

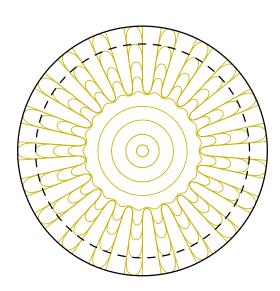


The theorem
Special pertub.
Parabolic explosion
Vector field

Renormalization

Acknowledgements

The previous theorem tells us that the relative error between g_n-z and X_n has order of magnitude z^{q_n} . Let us fix r<1 close to 1

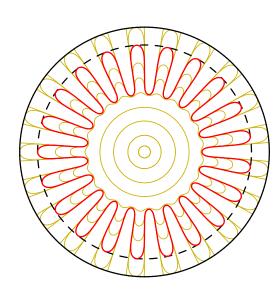


The theorem
Special pertub.
Parabolic explosion
Vector field

Renormalization

Acknowledgements

The previous theorem tells us that the relative error between g_n-z and X_n has order of magnitude z^{q_n} . Let us fix r<1 close to 1 and consider the disk bounded by the red curve.

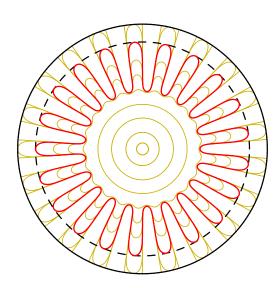


The theorem
Special pertub.
Parabolic explosion
Vector field

Renormalization

Acknowledgements

The previous theorem tells us that the relative error between g_n-z and X_n has order of magnitude z^{q_n} . Let us fix r<1 close to 1 and consider the disk bounded by the red curve. We want to show that it is contained in the Siegel disk of g_n for n big enough. For this we will use Yoccoz's renormalization.

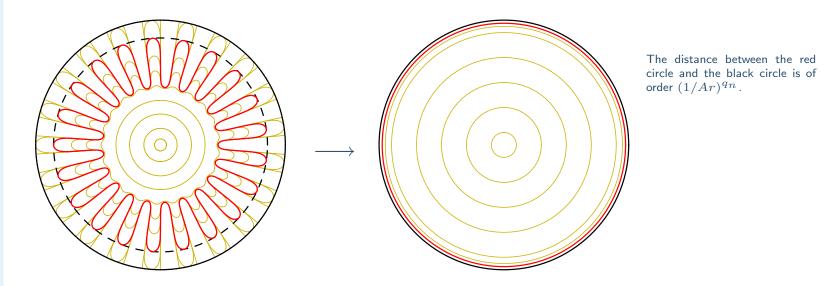


The theorem
Special pertub.
Parabolic explosion
Vector field

Renormalization

Acknowledgements

The previous theorem tells us that the relative error between g_n-z and X_n has order of magnitude z^{q_n} . Let us fix r<1 close to 1 and consider the disk bounded by the red curve. We want to show that it is contained in the Siegel disk of g_n for n big enough. For this we will use Yoccoz's renormalization. Let us first straighten our vector field.

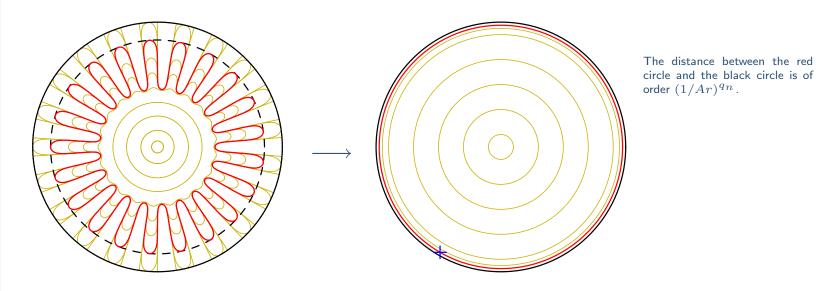


The theorem Special pertub. Parabolic explosion Vector field

Renormalization

Acknowledgements

The previous theorem tells us that the relative error between g_n-z and X_n has order of magnitude z^{q_n} . Let us fix r<1 close to 1 and consider the disk bounded by the red curve. We want to show that it is contained in the Siegel disk of g_n for n big enough. For this we will use Yoccoz's renormalization. Let us first straighten our vector field.

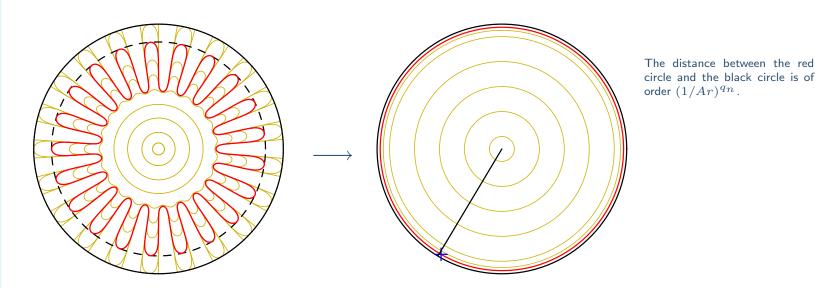


The theorem Special pertub. Parabolic explosion Vector field

Renormalization

Acknowledgements

The previous theorem tells us that the relative error between g_n-z and X_n has order of magnitude z^{q_n} . Let us fix r<1 close to 1 and consider the disk bounded by the red curve. We want to show that it is contained in the Siegel disk of g_n for n big enough. For this we will use Yoccoz's renormalization. Let us first straighten our vector field.



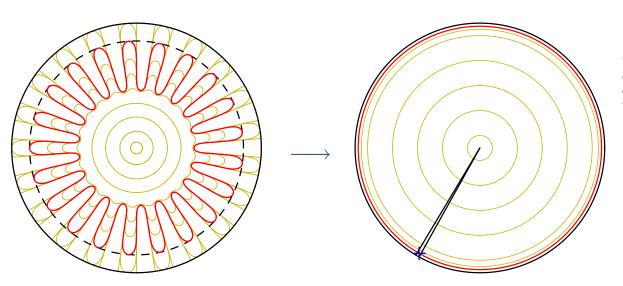
8 / 10

The theorem
Special pertub.
Parabolic explosion
Vector field

Renormalization

Acknowledgements

The previous theorem tells us that the relative error between g_n-z and X_n has order of magnitude z^{q_n} . Let us fix r<1 close to 1 and consider the disk bounded by the red curve. We want to show that it is contained in the Siegel disk of g_n for n big enough. For this we will use Yoccoz's renormalization. Let us first straighten our vector field.

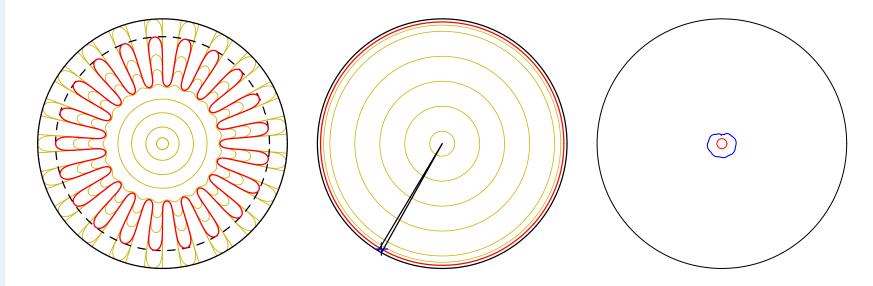


The distance between the red circle and the black circle is of order $(1/Ar)^{qn}$. The width of the sector is of order $(1/A)^{qn}$

The theorem
Special pertub.
Parabolic explosion
Vector field

Renormalization

Acknowledgements

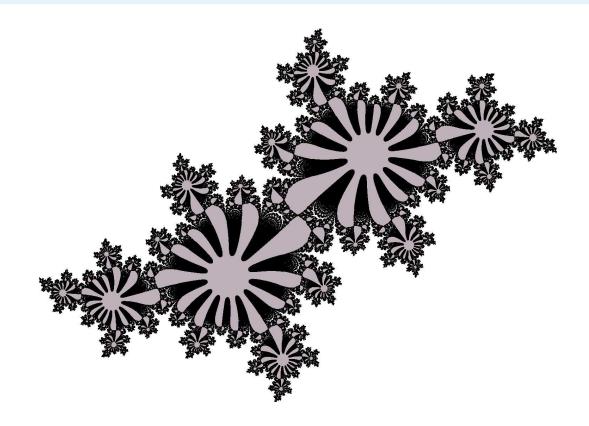


Theorem: (Siegel) For a fixed diophantine θ , the Siegel disk of a univalent map f on \mathbb{D} with f(0) = 0 and $f'(0) = e^{2i\pi\theta}$ must contain a disk of definite radius (that depends only on θ).

Acknowledgements

The theorem
Special pertub.
Parabolic explosion
Vector field
Renormalization

Acknowledgements



Many thanks to our common advisor, Adrien Douady.

Pictures done with GNU C++, libpng, Maple, and Gimp.

Slides done with powerdot package for LATEX

Flower images:

- -Japanese windflower courtesy of Lugar do Olhar Feliz (olharfeliz.typepad.com)
- -Golden aster courtesy of pixeleye.com