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Overview

• Waves in geophysical fluid dynamics.

• Some observed phenomena that result from wave interactions.

• Introduction to the equations of geophysical fluid dynamics.

• An example of a wave–mean flow interaction:

Rossby waves on a beta plane.

• Some analytical ideas.

• A few numerical results.
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Geophysical fluid dynamics (GFD)

• The flow of fluids (liquids and gases) is modelled by PDEs

based on Newton’s Laws: conservation of mass, momentum

and energy.

• Independent variables include:

◦ space, e.g., (x, y, z) in rectangular coordinates

◦ time t.

• Dependent variables include:

◦ velocity, e.g., ~v = (u, v, w).

◦ pressure p, density ρ, temperature T .

• In GFD, we add extra terms to represent the effects of

◦ the earth’s rotation (the Coriolis force)

◦ density stratification (lighter fluid above, heavier fluid

below)
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The “beta plane” approximation for rotating flows

Consider 2-D incompressible flow in rectangular coordinates (x, y):

• Newton’s 2nd law ( ~F = m~a) ⇒ 2 momentum equations
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• Conservation of mass ⇒ continuity equation
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• In the β-plane approximation, we assume that the Coriolis force

f ∼ f0 + βy.
y

x
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2-D fluid flow on a β-plane
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Re-write in a form where we have only one dependent variable:

• Define streamfunction Ψ(x, y, t) by ∂Ψ
∂y

= −u, ∂Ψ
∂x

= v
• Differentiate equation (1) by y and equation (2) by x and subtract:
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This is called the barotropic vorticity equation.
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Waves in the atmosphere and ocean

There are various types of waves in geophysical flows, for example:

• Rossby waves (or planetary waves):

◦ wavelengths ∼ 10, 000 − 40, 000 km (almost the

circumference of the earth)

◦ result from earth’s rotation

• Small-scale gravity waves:

◦ wavelengths ∼ 10 − 1, 000 km

◦ result from variation of density with height

◦ sometimes forced by topography (mountains)

• Other planetary-scale waves:

◦ Rossby-gravity waves

◦ Kelvin waves
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Atmospheric gravity waves between Edmonton and Edson (near Rocky

Mountains). Taken by A. Mehta, 12/06/98 around 9am.

(From http://www.math.ualberta.ca/˜bruce/imagelinks/earth.html)
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Atmospheric gravity waves over the Arabian Sea on May 23, 2005. The

pattern seen is the “impression” of atmospheric gravity waves on the

surface of the ocean.

(From http://earthobservatory.nasa.gov/Newsroom/NewImages/images.php3?img_id=16921)
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Schematic diagram of topographic gravity waves.

(From http://sprg.ssl.berkeley.edu/atmos/gj_science.html)
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Why is it important for us to understand geophysical waves?

Because waves interact with the general circulation of the atmosphere and

cause various phenomena that affect us directly or indirectly.

For example:

• turbulence

• large-scale phenomena, such as the quasi-biennial oscillation and

stratospheric sudden warmings

Interactions of waves with the general circulation are called

wave–mean-flow interactions.

It is important to represent such interactions correctly in weather prediction

and climate models.
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Contour plot of the east-west component of the wind in the middle atmosphere at the

equator. Time is on the x-axis, and height above the ground is on the y-axis. Red =

west-to-east winds, blue = east-to-west winds. Note that the wind changes direction

every 26-28 months. This is called the quasi-biennial oscillation. It results from

wave–mean flow interactions in the middle atmosphere. (From Baldwin et al.,

Reviews of Geophysics, 39, 2001)
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How can we describe wave–mean-flow interactions in

mathematical terms?

Assume wave is sinusoidal. For example, in 2-D we can write:

ψ(x, y, t) = Re{Aei(kx+ly−ωt)}

or

ψ(x, y, t) = Re{φ(y)ei(kx−ωt)}

where k, l = wavenumbers, ω = frequency.
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Let’s illustrate this using the barotropic vorticity equation:

∇2Ψt + Ψx∇
2Ψy − Ψy∇

2Ψx + βΨx − ν∇4Ψ = 0

• Write Ψ(x, y, t) = ψ̄(y) + εψ(x, y, t)

perturbation (wave)mean (shear flow)

x

y

• Substitute into the BV equation and get a nonlinear equation for ψ.

Since ψ̄(y) is known, we can solve for ψ(x, y, t).

∇2ψt + ū∇2ψx +(β− ūyy)ψx +ε(ψx∇
2ψy −ψy∇

2ψx) = 0.

• For ε = 0, equation is linear: easier (but not trivial!) to solve.
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In fluid dynamics, we almost always have nonlinear equations to

solve. We can linearize. But even the linear equations are usually

not trivial to solve. For example, they may contain singularites....

Continue with our example: Ψ(x, y, t) = ψ̄(y) + εψ(x, y, t).

ε = 0 ⇒ a linear equation for ψ(x, y, t)

Suppose waves are periodic in x and t:

ψ(x, y, t) = Re{φ(y)eik(x−ct)}

phase speedwavenumber

⇒ an ODE for φ(y):

(ū− c)(φyy − k2φ) + (β − ūyy)φ = 0,

where ū(y) = −ψ̄y .
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Rayleigh-Kuo equation:

φyy +
(

−k2 +
β − ūyy

ū− c

)

φ = 0

But there is a complication:

The equation is singular if there is a point y = yc where ū(yc) = c.

Question: How do we solve an ODE near a singular point?
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Answer: Use the method of Frobenius.

We get 2 linearly independent series solutions about the singular point:
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2 + . . . ,
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But what do we do with the log term?

The solution is undefined at y = yc.

For y < yc, we have to define log (y − yc) = log |y − yc| + iθ, where

θ = −π. So the solution in discontinuous.

Also, the averaged momentum flux

F = −
k
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k
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0

ψxψydx

is discontinuous across y = yc.
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The reason we got the singularity was that

• we neglected the nonlinear terms

• we neglected viscosity (4th-order derivative)

• we assumed that ψ(x, y, t) = Re{φ(y)eik(x−ct)}, i.e., that waves

are periodic in time and x. So we got a 2nd-order ODE with no

time-dependence.

Periodicity in x makes sense because x is the zonal coordinate:

• Rossby (planetary) waves: Assume that wavelength 2π/k = the

circumference of the earth,

• smaller scale (topographic) waves: Assume mountains are periodic.

But there is less justification to assume periodicity in t.
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So what happens if we don’t assume periodicity in t. Can we get rid

of the singularity then?

Let’s write wave as

ψ(x, y, t) = Re{φ(y, t)eikx}

and substitute in our linear equation

∇2ψt + ū∇2ψx + (β − ūyy)ψx = 0

Then we get a PDE for φ:
(

∂

∂t
+ ū

∂

∂x

)

(

φyy − k2φ
)

+ (β − ūyy)φ = 0

To solve the PDE, we need a boundary condition.
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Consider the boundary-value problem in which the waves are forced at

one boundary y = y1 of a rectangular domain:

y

x

y = y1

y = yc (CRITICAL LAYER)

Boundary condition: ψ(x, y1, t) = eikx, i.e., set c = 0 at the boundary.

Then the BVP is:
(

∂

∂t
+ ū

∂

∂x

)

(

φyy − k2φ
)

+ (β − ūyy)φ = 0

with BC: φ(y1, t) = 1.

We shall see that things happen at the point yc where ū(y) = c = 0. This

is called the critical layer.
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We solve the BVP by taking a Laplace transform in t, solving the

transformed equation, and then inverting the transform.

Solution (for large t) is of the form:

ψ(x, y, t) = eikx

{

φ∞(y) + h1(y)
e−ikyt

k2yt2
+ h2(y)

e−iky1t

k2yt2

}

,

where φ∞(y) is the solution of the steady problem we found earlier

(φ∞(y) = aφA(y) + bφB(y))

But there are problems:

(1) The solution of the linear equation is not valid as y → 0. (We thought

we had gotten rid of the singularity, but it is still lurking in there!)

(2) How do we solve the nonlinear equation? We can’t use Laplace

transforms for that!
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Answer to (1):

• Our solution is valid in the outer region, away from the point y = yc.

• Near the point y = yc, we have a critical layer where we need to find

a different solution.

• It turns out that the thickness of the critical layer is ε1/2.

• In the critical layer, we define a “stretched” variable Y = y−yc

ε1/2

⇒ a PDE in terms of Y which is valid in the inner region.

• We solve this inner equation and “match” the inner solution with the

outer solution that we found already. We want:

the inner solution → the outer solution, as Y → ∞

the outer solution → the inner solution, as (y − yc) → 0.

This procedure is called the method of matched asymptotic expansions.
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Answer to (2):

To solve the nonlinear equation:

• We write the solution in powers of the parameter ε:

ψ(x, y, t) = ψ(0)(x, y, t)+εψ(1)(x, y, t)+ε2ψ(2)(x, y, t)+....

• The first term ψ(0) is the solution of the linear equation that we have

found already.

• We substitute this series into our nonlinear equation and obtain

equations for ψ(0), ψ(1), ψ(2),....

At O(1): ∇2ψ
(0)
t + ū∇2ψ

(0)
x + (β − ūyy)ψ

(0)
x = 0

At O(ε): ∇2ψ
(1)
t + ū∇2ψ

(1)
x + (β − ūyy)ψ

(1)
x

= −(ψ
(0)
x ∇2ψ

(0)
y − ψ

(0)
y ∇2ψ

(0)
x )

• Since we know ψ(0), we can find ψ(1), and then find ψ(2), and so on.

• We must do this in both the outer and inner regions and make sure that

the solutions “match”.
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At the end of all this, we end up with approximate solutions that are valid in

the different regions.

In our example problem, the solutions tell us that:

• The wave amplitude goes to zero at the critical layer.

• The momentum flux F is discontinuous across the critical layer.

• The wave doesn’t just disappear at the critical layer. It is “absorbed” by

the mean flow (momentum is transferred from the wave to the mean

flow).

• The mean flow changes with time, according to:

∂ū

∂t
=
∂F

∂y
.

• At later time, the wave is “reflected”, i.e., momemtum is transferred

from the mean flow to the wave.

• The approximate solution we have found describes a “wave–mean-flow

interaction”.
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What does all this look like physically?

Let’s look at some results of numerical simulations:

We solve our nonlinear time-dependent equation

∇2ψt+ ū∇2ψx+(β− ūyy)ψx+ε(ψx∇
2ψy−ψy∇

2ψx) = 0

using numerical methods:

• finite differences in y and t

• a spectral method (Fourier series approximation) in x.

(Remember that our solution is periodic in x, so it makes sense to

use a Fourier series representation in x.)
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Some numerical results:

Apply boundary condition at y = y1:

ψ(x, y1, t) = cos kx, with k = 2

.

y

x0 2π x0 2π

Early time:
Linear propagation
Wave absorbed at critical layer

Late time:
Effects of nonlinearity
Wave reflections at critical layer
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Conclusions

• Wave–mean-flow interactions can be decribed mathematically by

PDEs.

• Approximate solutions can be found using analytical techniques or

using numerical methods.

• In our example, the governing linear equation is singular if there is a

place in the flow where the mean velocity equals the wave phase

speed.

• In this region, the wave is absorbed/reflected by the mean flow.

• Momentum is transferred between the wave and the mean flow.

• Such wave–mean-flow interactions drive the general circulation of the

atmosphere and ocean.
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