## Asymmetric Beliefs, Agency Conflicts, and Venture Capital Investment

#### Ajay Subramanian

J. Mack Robinson College of Business Georgia State University Atlanta, GA insasu@langate.gsu.edu 404-651-4627

Co-authors:

Yahel Giat and Steve Hackman

School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, GA

#### **Plan of Presentation**

- Introduction and Motivation
- Verbal Description of Model
- Model Details
- Main Analytical Results
- Calibration of Model
- Results of Numerical Analysis
- Conclusions

#### **Introduction and Motivation**

Entrepreneurs tend to be wildly over-optimistic; if they were not, they would never get past their first crisis: The Economist, April 16, 2005

- Venture capital financing—financing of new ideas, economic growth
  - o VCs have created nearly one-third of the total market value of all publicly traded companies in the U.S. (Gompers and Lerner, 2001)
- Important characteristics of VC relationships
  - o High levels of risk with different attitudes towards risk—agency conflicts
  - o *Imperfect information* about potential payoffs
  - o Divergent views about payoffs—asymmetric beliefs
  - Staged investment and dynamic contracting

#### **Research Objectives**

- Develop theory of venture capital investment that incorporates these features in a dynamic setting
- Determine how risk, imperfect information, agency conflicts, and asymmetric beliefs affect VC-EN relationships
  - o Economic value that they generate
  - o Structure of long-term dynamic contracts between VCs and ENs
  - o Staging of VC investment over time
  - o Duration of VC-EN relationships

#### **Main Findings**

- Duration of relationship and expected payoff to the VC increase with degree of asymmetry in beliefs
  - o VC has significant incentives to "feed" EN optimism
  - o This incentive has a beneficial effect on firm value
- Depending on project's *intrinsic* and *technical* risk and degree of asymmetry in beliefs
  - o VC's investments could increase over time, decrease over time, or initially increase and then decrease
  - o Equilibrium long-term contract for the EN features decreasing payperformance sensitivities

#### **Main Findings**

- Intrinsic and technical risks have *opposing* effects on the duration and economic value of the VC-EN relationship
- Duration, firm/project value, and VC's expected payoff
  - o increase with technical risk
  - o decrease with intrinsic risk
- Firm value and the expected payoff to the VC are actually *enhanced* when there is greater noise in the perception of project quality

#### **Model Overview—The Players**

- Continuous time framework with time horizon  $[0, \infty)$
- At date 0, a cash-constrained entrepreneur (EN) with a project approaches a venture capitalist (VC) for funding
- Project could generate value via
  - o physical capital investments by the VC
  - o human capital (effort) investments by the EN
- VC and EN have imperfect information about the project
- VC and EN differ in their assessments of the project's quality

#### **Model Overview—The Contract**

- The VC offers the EN a long-term contract
  - o Specifies VC's investments over time
  - o Specifies EN's payoff
- Two-sided lack of commitment
  - o VC or EN could terminate the relationship at any date
  - o VC or EN could initiate a renegotiation of the contract
- Equilibrium contract is *renegotiation-proof*
- VC possesses bargaining power in negotiations with the EN

#### **Model Overview—State Variable and Preferences**

- Fundamental state variable—termination value V(t) of the project
  - o Market value of the project outside the VC-EN relationship
  - o VC and EN possess non-transferrable project-specific skills
  - o Termination value less than "rational expectations" value, that is, value under hypothetical full commitment
- Termination value is observable and verifiable and, therefore, contractible; the rational expectations value is non-contractible
- VC is risk-neutral and EN is risk-averse with inter-temporal CARA preferences—zero discount rates for simplicity
- For simplicity, payoffs upon termination—no intermediate cash flows

## **Model Overview—The Players' Actions**

- The VC chooses the long-term renegotiation-proof contract for the EN and the termination time to maximize her expected payoff
- EN dynamically chooses his effort to maximize his expected utility payoff upon termination
- VC-EN contract, VC's dynamic investment policy, EN's dynamic effort policy, and the termination time determined *endogenously* in a *subgame-perfect* equilibrium of the VC-EN dynamic game.

#### **Model Overview—Value Creation and Incentives**

- The change in termination value over any time period depends on
  - o VC's investment
  - o EN's effort
  - o Project's intrinsic quality
  - o Project's intrinsic risk
- EN's effort is observable
  - o But is not verifiable and therefore not directly contractible
- EN must be provided with appropriate incentives to exert effort
  - o VC offers contract contingent on the termination value

#### **Evolution of Termination Value—Components**

Formulation

$$dV(t) = (c(t)^{\alpha} \eta(t)^{\beta} - l(t))dt + \Theta dt + s dB(t)$$

- Net discretionary output  $(c(t)^{\alpha} \eta(t)^{\beta} l(t))dt; \alpha, \beta > 0$ 
  - o VC's investment rate c(t), EN's effort level  $\eta(t)$ , operating costs l(t)
  - o Operating costs—wages to salaried employees, depreciation expenses, decline in revenue due to competition, etc
  - o Deterministic—increasing and convex over time
- Intrinsic risk sdB(t): component of project risk invariant over time

## **Evolution of Termination Value—Project Quality**

- Project quality  $\Theta$ : Growth rate of termination value arising from intrinsic quality of the project
  - $\circ$  VC and EN have imperfect information about  $\Theta$  and different beliefs
  - o Beliefs are common knowledge—"agree to disagree"
  - o Uncertainty in the value of  $\Theta$ —project's *technical risk*
  - o Technical risk is resolved over time as VC and EN update their beliefs in a Bayesian manner based on observations of the project's termination value
- Initial beliefs about  $\Theta$ :  $N(\mu_0^{VC}, \sigma_0^2)$  and  $N(\mu_0^{EN}, \sigma_0^2)$
- Posterior beliefs  $\sigma_t^2 = \frac{s^2 \sigma_0^2}{s^2 + t \sigma_0^2}$ ;  $\mu_t^{EN} \mu_t^{EN} = \Delta_t = \frac{s^2}{s^2 + t \sigma_0^2} \Delta_0$

#### **Feasible Contractual Payoffs**

- ullet Contract specifies payoffs upon termination, which is an  $\{F_t\}$ -stopping time—information filtration generated by termination value process
- Contract described by  $\{F_t\}$ -adapted stochastic process P(.) describing EN's payoff if the relationship is terminated at any date
- V(.) P(.) = VC's payoff
- P(0) = V(0) since EN owns the project at date 0

## **Contract—EN's Perspective**

• EN's expected utility at date zero

$$-E\left[\exp\left\{-\lambda\left(P(\tau)-\int_{0}^{\tau}k\eta(t)^{\gamma}dt\right)\right\}\right]$$

- $\circ$   $\tau$ —termination time
- $\circ \lambda$ —EN's risk aversion
- o  $k\eta(t)^{\gamma} dt$ —disutility of effort
- EN can terminate the relationship at any date and receive P(t)
  - o Continues only if expected utility from continuing is greater

## **Contract—VC's Perspective**

• VC's continuation value at date t

$$CV(t) = E_t^{VC} \left[ (V(\tau) - P(\tau) - (V(t) - P(t)) - \int_t^{\tau} c(u) du \right]$$

- VC continues relationship only if her continuation value is nonnegative
- Since VC possesses bargaining power
  - o Termination occurs the VC's behest in equilibrium
  - o EN indifferent between termination and continuation

## The Equilibrium

• Assumption:  $(1-\alpha)\gamma/\beta > 2$ 

• The optimal contract must have the following *affine* form:

$$dP(t) = a_t dt + b_t dV_t; \ a_t \in R; b_t > 0$$

$$P(\tau) = P(0) + \int_{0}^{\tau} [a_t dt + b_t dV(t)]$$

- Idea of proof
  - o Consider any admissible effort process of the EN
  - o Such a process is *implementable* (Holmstrom and Milgrom, 1987) if and only if contract has the above form

#### **Proof Sketch**

- Start with a fixed random process V(.) on a probability space
- Investment and effort processes alter the probability distribution of this process—apply Girsanov's theorem
- Cumulative value process for the EN: conditional expected future utility to the EN at any date including sunk disutility of prior effort from a given contract  $(P(.), c(.), \tau)$  and given effort process  $\eta(.)$

$$\overline{U}_{P,c,\tau} = E_{c,\eta}^{EN} \left[ -\exp\left(-\lambda \left\langle P(\tau) - \int_{0}^{\tau} k \eta(u)^{\gamma} du \right\rangle \right) | F_{t} \right]$$

#### **Proof Sketch**

Certainty equivalent process for the EN

$$R_{P,c,\tau}(\eta(.),t) = -\frac{\log\left[-\overline{U}_{P,c,\tau}(t)\right]}{\lambda} + \int_{0}^{t} k\eta(u)^{\gamma} du$$

• *Key result*: A contract  $(P(.), c(.), \tau)$  *implements* a given effort process  $\eta^*(.)$  only if

$$P(0) = V(0), P(t) = R(\eta^*(t), t) \text{ a.s.}$$

$$; a(t), b(t) \text{ are functions of } \eta^*(t), c(t)$$

$$dR(\eta^*(t), t) = a(t)dt + b(t)dV(t)$$

• Use dynamic programming to derive evolution of the process R(.) such that the EN's optimal effort process is  $\eta^*(.)$ 

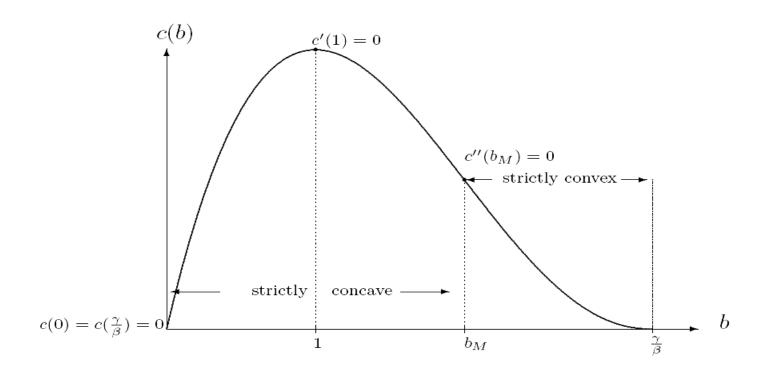
## **The Equilibrium Contract**

- We derive the equilibrium contract by induction
- EN's equilibrium pay-performance sensitivity  $b_t^*$ , effort  $\eta_t^*$ , VC's investment rate  $c_t^*$  are all *deterministic* (conditional on continuation)
- The *fixed* portion of the EN's compensation in each period is chosen to satisfy his participation constraint
- VC's continuation value at date t

$$CV(t) = \Lambda_t(b_t^*, c_t^*)dt + E_t^{VC}[\max(CV(t+dt), 0)]$$
"within - period flow" "future option value"

## **Derivation of Equilibrium**

- First derive optimal effort for given investment and pay-performance sensitivity
- Derive optimal investment for given pay-performance sensitivity
- Derive optimal pay-performance sensitivity


## The VC's Objective Function

• Optimal pay-performance sensitivity  $b_t^*$  solves

$$b_t^* = \arg\max_{b>0} F_t(b) = \arg\max_{b>0} \left[ \Delta_t b - \frac{1}{2} p b^2 + Kc(b) \right]$$

- o  $\Delta_t b$ : Economic rent from EN's optimism
- o  $\frac{1}{2}pb^2 = \frac{1}{2}\lambda s^2b^2$ : Cost of risk-sharing with the risk-averse EN
- $\circ$  Kc(b): Return on investment
- Interplay between three "forces" determines equilibrium dynamics

## **The Optimal Investment Function**



#### **The Optimal Investment Function**

- For a given pay-performance sensitivity, an increase in the investment affects the within-period flow to the VC in opposite ways:
  - o On the positive side, the EN increases his effort, which increases output
  - o On the negative side, since the EN's disutility of effort increases, VC's cost to maintain the EN's participation increases
- Below a threshold level of the pay-performance sensitivity, benefits of increased output predominate
- Above the threshold, EN's participation costs dominate

#### **Benchmark Scenarios**

Benchmark Scenario 1: Symmetric Risk Attitudes and Symmetric Beliefs ("No Agency")

- EN is risk-neutral and degree of asymmetry in beliefs is zero
- Pay-performance sensitivity equals one
- VC's investment and the EN's effort are constant—VC's investment attains its highest possible level

Benchmark Scenario 2: Asymmetric Risk Attitudes, but Symmetric Beliefs

- EN is risk-averse and degree of asymmetry in beliefs is zero
- Pay-performance sensitivity  $b_p^*$ , investment  $c_p^*$ , and effort  $\eta_p^*$  are constant, but lower than in the "no agency" scenario

## **Properties of the Equilibrium**

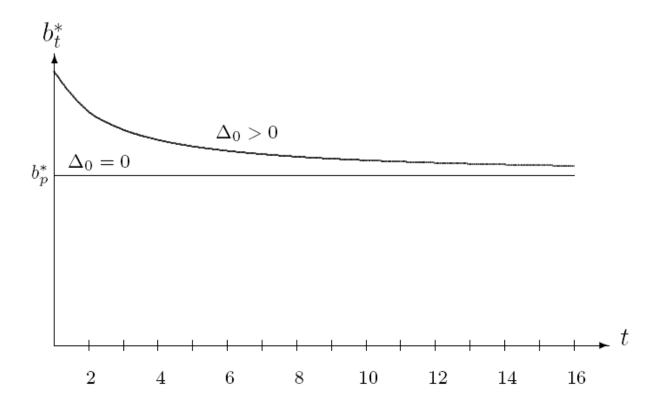



Figure 2: Possible equilibrium pay performance sensitivity paths

## **Properties of the Equilibrium**

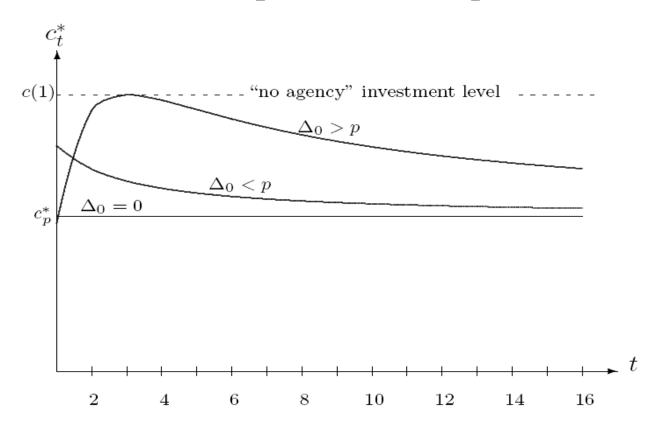
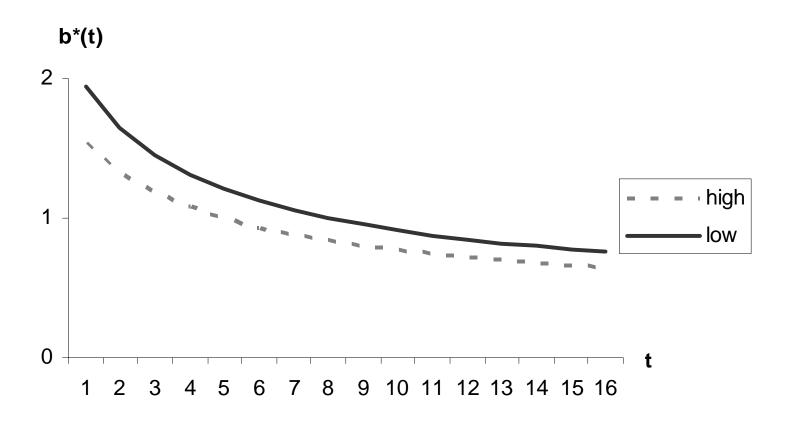


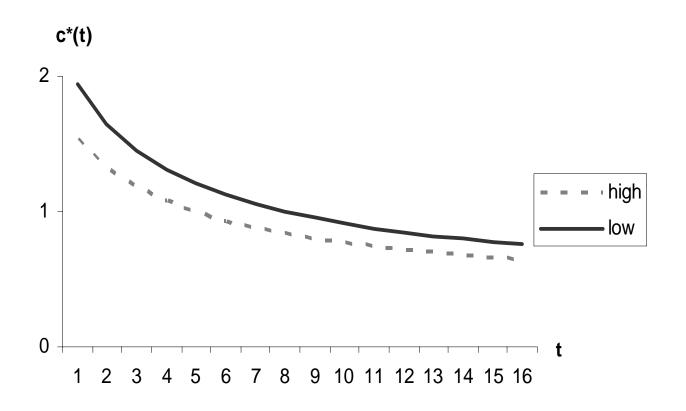

Figure 3: Possible equilibrium investment paths


## **Equilibrium Dynamics—Intuition**

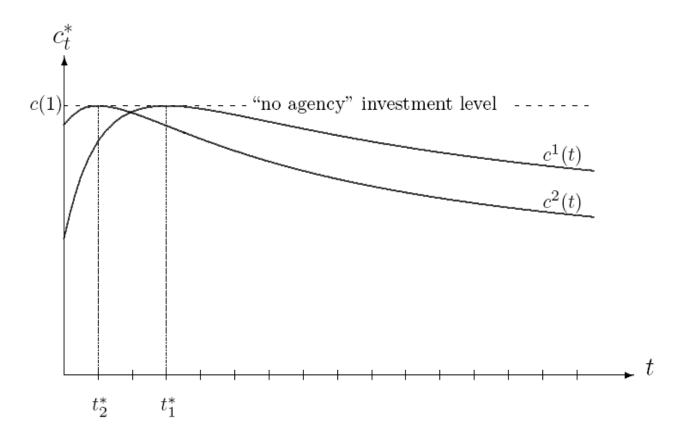
- Results hinge on interplay among
  - o EN's effort—positively affected by optimism
  - o Costs of risk-sharing—negatively affected by intrinsic risk
- Passage of time lowers degree of asymmetry in beliefs—EN revises optimistic assessments of project quality
  - o Lowers economic rents from EN optimism—lowers pay-performance sensitivity and effort
  - Due to *non-monotonic* optimal investment function, VC's investment:
    - Initially increases to "compensate" for decline in EN's effort
    - Then VC's investments decrease over time

## **Positive Implications**

- Decline of EN's pay-performance sensitivity over time
  - o With successive capital infusions of VCs
  - O EN optimism plays a key role in explaining this finding
  - o With symmetric beliefs, no change in EN's equity stake
- VC's *observed* investment paths could either increase until termination, decrease until termination, or initially increase and then decrease
  - o Model generates widely different paths of capital investment flows reported in Sahlman (1990) and Gompers (1995)


## Variation of Pay Performance Sensitivity Path with Initial Technical Risk Intrinsic Risk, and EN Risk Aversion

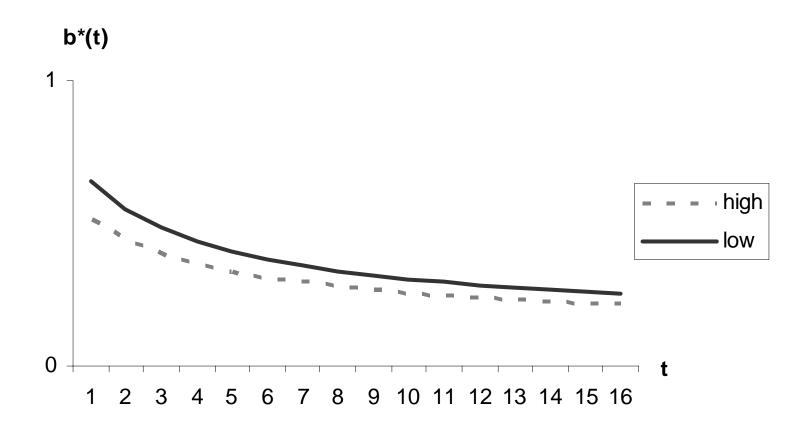



#### Variation of Pay-Performance Sensitivity Path

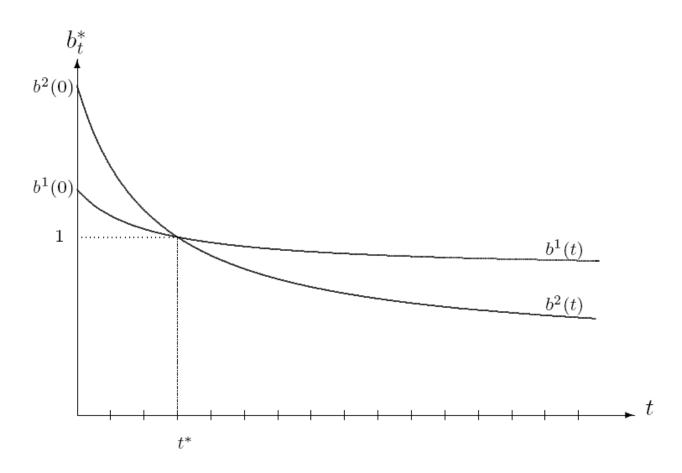
- An increase in EN's risk aversion increases costs of risk sharing relative to EN optimism
- Increase in initial technical risk lowers degree of asymmetry in beliefs because "signal to noise" ratio increases—EN "learns faster"
  - o Rents from EN's optimism decline relative to costs of risk sharing
- Increase in intrinsic risk *increases* degree of asymmetry in beliefs *and* costs of risk sharing
  - o "signal to noise" ratio decreases—costs of risk sharing dominate if  $\Delta_0 < 4p$

# Variation of Investment Path with Initial Technical Risk, Intrinsic Risk and EN Risk Aversion: EN reasonably optimistic ( $\Delta_0 < p$ )




# Variation of Investment Path with Initial Technical Risk, Intrinsic Risk, and EN Risk Aversion: EN exuberant( $\Delta_0 > p$ )




#### Variation of Investment Path

- Change in VC's equilibrium investment path depends on whether EN is initially "reasonably optimistic" ( $\Delta_0 < p$ ) or "exuberant" ( $\Delta_0 > p$ )
- If EN is initially reasonably optimistic, costs of risk sharing dominate the effects of EN optimism
  - o Investment path declines with EN's risk aversion, project's intrinsic and technical risks
- If the EN is initially exuberant, rents from EN optimism dominate costs of risk sharing in early periods, but costs of risk sharing dominate later

## Variation of Pay Performance Sensitivity with the Cost of Effort (EN reasonably optimistic)



# Variation of Pay Performance Sensitivity with the Cost of Effort (EN exuberant)



## **Project Duration**

- The optimal termination policy for the VC is a trigger policy
  - $\circ$  There exists  $\mu_t^*$  such that the VC terminates the project only if

$$\mu_t^{VC} < \mu_t^*$$

- o  $\mu_t^{VC} < \mu_t^*$  if and only if  $V_t < V_t^*$
- $\circ V_t^*$ 's are the *performance targets* that must be met to ensure continuation
- Project duration
  - o increases with the initial degree of asymmetry in beliefs
  - o decreases with the EN's risk aversion and cost of effort

# **Model Calibration: Approach #1**

- Classify parameters as either "Direct" or "Indirect"
- Set Direct parameter values
- Find Indirect parameters to match model's prediction to empirical evidence

#### **Direct Parameters**

•  $\mu_0$  – VC's initial assessment of project quality

CAPM: 
$$\mu_0 = r_f + \beta(r_M - r_f) = 0.06 + 1.0(0.10 - 0.06) = 0.10$$

•  $s^2$ ,  $\sigma_0^2$  – Systematic and initial technical risk

$$s^2 + \sigma_0^2 = 1$$
 (Kerins, Smith and Smith, 2004)

$$s^2 = \sigma_0^2 = 0.5$$

•  $\Delta_0$  – Initial degree of asymmetry of beliefs

$$\Delta_0 = 0.5$$

•  $k\eta^{\gamma}$  – Disutility of effort

$$\gamma = 2$$

#### **Indirect Parameters**

 $\lambda$  - EN's risk aversion

k – EN's level of disutility of effort

 $\alpha$ ,  $\beta$  - Capital, effort intensities of firm's production function

L – loss function parameter [  $l(t) = Lt^2$  ]

#### Empirical Data [Gompers, 1995, Sahlman, 1990]

### Project duration:

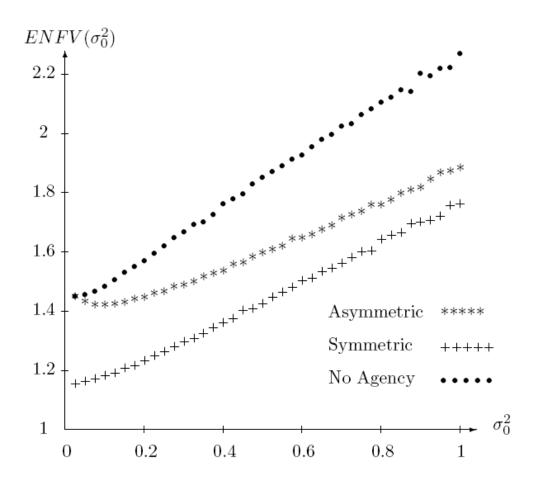
2.7 = average number of investment periods

Distribution of returns from investment:

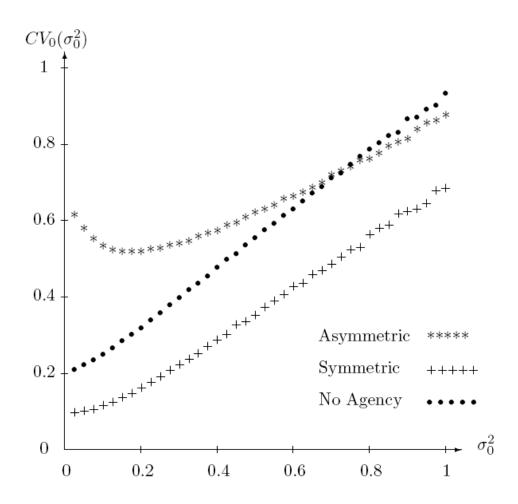
- 34.5% of total investment resulted in a negative return
- 49.8% of total investment resulted in a return between 0 and 5
- 15.7% of total investment resulted in a return greater than 5

#### Firm's rate of success:

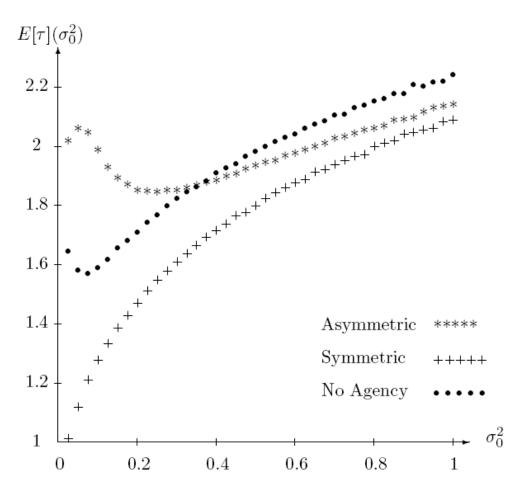
- 32.4% of companies failed to yield the amount invested
- 67.6% of companies yielded more than the amount invested


### Firm value per unit of investment:

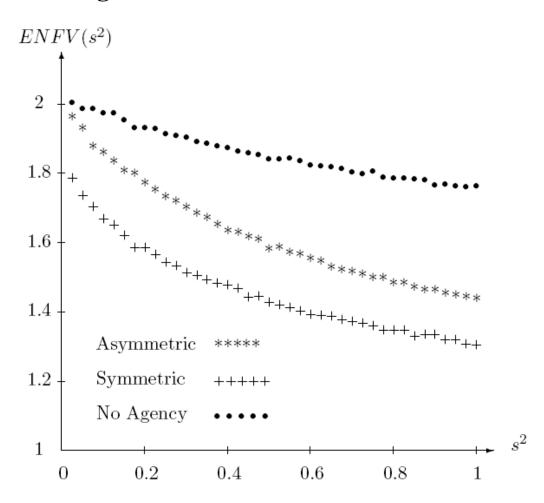
4.8 = total value of firms divided by total amount invested


## **Model Calibration: Approach 2**

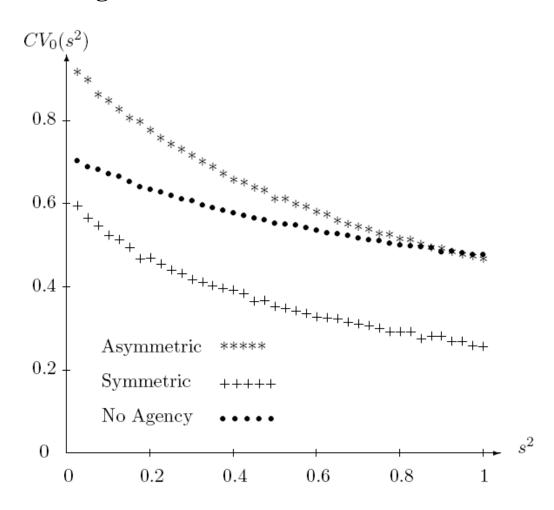
- Classify parameters as firm-specific or EN-specific
- Each choice of firm-specific parameters defines a firm *type*
- For each firm type t = 1, 2, ..., N:
  - o Find EN-specific parameters that best match empirical data
  - $\circ$  R<sub>t</sub> —model's predictions for above combination of firm-specific and EN-specific parameters
  - Find distribution  $p_t$ , t = 1, 2, ..., N of firms so that  $\{(p_t, R_t), t = 1, 2, ..., N\}$  matches empirical data *exactly*


## **Figure: The Effect of Technical Risk**

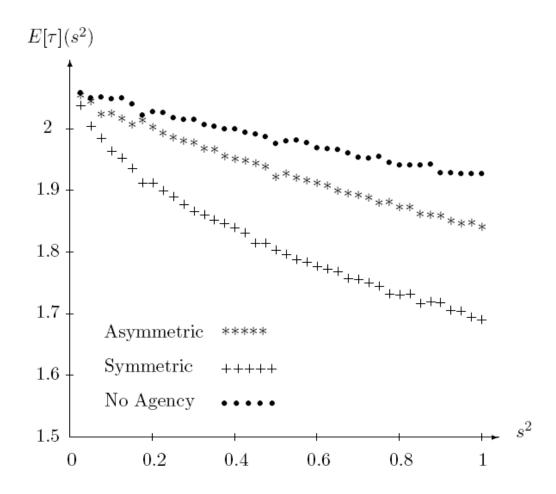



## **Figure: The Effect of Technical Risk**




## **Figure: The Effect of Technical Risk**




## **Figure: The Effect of Intrinsic Risk**



## **Figure: The Effect of Intrinsic Risk**



## **Figure: The Effect of Intrinsic Risk**



## **Project Quality Perception and Continuation Value**

Evolution of Mean Posterior Assessment of Project Quality

$$d\mu_{t}^{VC} = \frac{{\sigma_{0}}^{2} s}{s^{2} + t{\sigma_{0}}^{2}} dB_{t}^{VC} = \sigma_{t}^{\mu} dB_{t}^{VC}$$

o VC's Continuation Value

$$CV(t) = \Lambda_t(b_t^*, c_t^*)dt + E_t^{VC}[\max(CV(t+dt), 0)]$$
within period flow future option value
$$= F_t^* dt + \mu_t^{VC} dt + E_t^{VC}[\max(CV(t+dt), 0)]$$

### The Effects of Technical and Intrinsic Risk

## No Agency and Symmetric Beliefs Scenarios

| Factor                                  | Technical Risk | Intrinsic Risk |
|-----------------------------------------|----------------|----------------|
| Stdev of mean assessment                |                |                |
| of project quality                      | $\uparrow$     | <b>\</b>       |
| Deterministic component                 |                |                |
| of within-period flow, $\mathbf{F_t}^*$ |                | <b>\</b>       |
| Future "option value" of                |                |                |
| continuation                            | $\uparrow$     | <b>\</b>       |

### The Effects of Technical and Intrinsic Risk

### **Actual Scenario**

| Factor                                    | Technical Risk | Intrinsic Risk |
|-------------------------------------------|----------------|----------------|
| Degree of asymmetry of                    |                |                |
| beliefs                                   | <b>↓</b>       | <b>↑</b>       |
| Deterministic component                   |                |                |
| of within-period flow, $\mathbf{F_{t}}^*$ | <b>\</b>       | Non-monotonic  |
| Future "option value" of                  |                |                |
| continuation                              | <b>↑</b>       | <b>\</b>       |

#### The Effects of Technical and Intrinsic Risk

- ullet Below a threshold value of technical risk decrease in  $F_t^*$  dominates
- Above the threshold, increase in option value dominates
- In the case of intrinsic risk, decline in option value dominates effect on within-period flow

#### **Conclusions**

- Dynamic model of VC investment
  - o High levels of intrinsic and technical risk
  - o Agency conflicts, imperfect information, and asymmetric beliefs
  - Importance of staged investment and dynamic contracting in mitigating potential inefficiencies
- Positive Implications
  - o Declining pay-performance sensitivity
  - o Increasing, decreasing, or non-monotonic investment paths
  - o Technical and intrinsic risks have opposing effects
  - o EN optimism could be exploited by VC—improves firm value
- Normative implication
  - Society benefits from greater noise in project quality

### **Conclusions**

- Dynamic principal-agent model with
  - o double-sided moral hazard
  - o risk
  - o imperfect information
  - o asymmetric beliefs
- Applicable in other economic settings
  - o Manager-shareholder conflicts
  - o Financing of R&D
  - o Delegated portfolio management