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Outline

The prices of non replicable derivative securities depend on

many factors:

1. risk-preferences of an investor:

(a) reference probability measure P

(b) utility function U = U(x)

2. current portfolio of the investor

3. trading volume in the derivatives

Goal: study the dependence of prices on trading volume.
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Model of a financial market

There are d + 1 traded or liquid assets:

1. a savings account with zero interest rate.

2. d stocks. The price process S of the stocks is a

semimartingale on (Ω, F , (Ft)0≤t≤T , P) .

Q : the family of local martingale measures for S .

Assumption (No Arbitrage)

Q 6= ∅
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Contingent claims

Consider a family of m non-traded or illiquid European

contingent claims with

1. maturity T

2. payment functions f = (fi)1≤i≤m .

Assumption No nonzero portfolio of f is replicable:

〈q, f〉 =
m∑

i=1

qifi is replicable ⇔ q = 0

Fields Institute, Computational Finance Seminar, September 28 – p. 4/31



Pricing problem

Question What is the (marginal) price p = (pi)1≤i≤m of

the contingent claims f ?

Intuitive Definition The marginal price p for the contingent

claims f is the threshold such that given the chance to buy

or sell at ptrade an investor will

buy at ptrade < p & sell at ptrade > p

m

do nothing at ptrade = p
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Economic agent or investor

Consider an investor with a portfolio (x, q) , where

x : liquid capital

q = (qi) : quantities of the illiquid contingent claims.

His preferences are modeled by a utility function U :

1. U : (0, ∞) → R , strictly increasing and strictly

concave

2. The Inada conditions hold true:

U ′(0) = ∞ U ′(∞) = 0
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Problem of optimal investment

The goal of the investor is to maximize the expected utility of

terminal wealth:

u(x, q) = sup
X∈X (x)

E[U(XT + 〈q, f〉)],

where X (x) is the set of strategies with initial wealth x .

Order structure: a portfolio (x, q) is better than a portfolio

(x′, q′) if u(x, q) ≥ u(x′, q′) .
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Marginal utility based price

Definition A marginal utility based price for the claims f

given a portfolio (x, q) is a vector p(x, q) such that

u(x, q) ≥ u(x′, q′)

for any pair (x′, q′) satisfying

x + 〈q, p(x, q)〉 = x′ + 〈q′, p(x, q)〉.

In other words, given the portfolio (x, q) the investor will not

trade the options at p(x, q) .

Fields Institute, Computational Finance Seminar, September 28 – p. 8/31



Computation of p(x) = p(x, 0)

Define the conjugate function

V (y) = max
x>0

[U(x) − xy] , y > 0.

and consider the following dual optimization problem:

v(y) = inf
Q∈Q

E

[
V

(
y(

dQ

dP
)

)]
, y > 0

Q(y) : the minimal martingale measure for y .
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Computation of p(x) = p(x, 0)

Mark Davis gave heuristic arguments to show that if y

corresponds to x in the sense that

x = −v′(y) ⇔ y = u′(x)

then

p(x) = EQ(y)[f ].

The precise mathematical results are given in a joint paper

with Julien Hugonnier and Walter Schachermayer.

Fields Institute, Computational Finance Seminar, September 28 – p. 10/31



Computation of p(x) = p(x, 0)

Theorem (Hugonnier,K.,Schachermayer) Let x > 0 ,

y = u′(x) and X be a non-negative wealth process. The

following conditions are equivalent:

1. p(x) is unique for any f such that

|f | ≤ K(1 + XT ) for some K > 0

2. Q(y) exists and X is a martingale under Q(y) .

Moreover, in this case p(x) = EQ(y)[f ] .
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Trading problem

Assume that the investor can trade the claims at the initial time

at a price ptrade .

Question What quantity q = q(ptrade) the investor

should trade (buy or sell) at the price ptrade ?

Using the marginal utility based prices p(x, q) we can

compute the optimal quantity from the “equilibrium” condition:

ptrade = p(x − qptrade, q)
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Sensitivity analysis of utility based prices

Main difficulty : p(x, q) is hard to compute except for the

case q = 0 .

Linear approximation for “small” ∆x and q :

p(x + ∆x, q) ≈ p(x) + p′(x)∆x + D(x)q,

where p′(x) is the derivative of p(x) and

Dij(x) =
∂pi

∂qj
(x, 0), 1 ≤ i, j ≤ m.
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Quantitative questions

Question (Quantitative) How to compute p′(x) and

D(x) ?

Closely related publications:

J. Kallsen (02) : formula for D(x) for general

semimartingale model but in a different framework of local

utility maximization.

V. Henderson (02) : formula for D(x) in the case of a

Black-Scholes type model with basis risk and for power

utility functions.
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Qualitative questions

Question (Qualitative) When the following (desirable)

properties hold true for any family of contingent claims f ?

1. The marginal utility based price p(x) = p(x, 0) does

not depend (locally) on x , that is,

p′(x) = 0

2. The sensitivity matrix D(x) has full rank

3. The sensitivity matrix D(x) is symmetric
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Qualitative questions

4. The sensitivity matrix D(x) is negative semi-definite:

〈q, D(x)q〉 ≤ 0 .

5. Stability of the linear approximation: for any ptrade the

linear approximation to the “equilibrium” equation:

ptrade = p(x − qptrade, q)

that is,

ptrade ≈ p(x) − p′(x)qptrade + D(x)q

has the “correct” solution.
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Risk-tolerance wealth process

Definition (K., Sirbu) A maximal wealth process R(x) is

called the risk-tolerance wealth process if

RT (x) = −
U ′(X̂T (x))

U ′′(X̂T (x))
,

where X̂(x) is the optimal solution of

u(x) := u(x, 0) = sup
X∈X (x)

E[U(XT )].
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Risk-tolerance wealth process

Some properties of R(x) (if it exists):

1. Initial value:

R0(x) = −
u′(x)

u′′(x)
.

2. Derivative of optimal wealth strategy:

R(x)

R0(x)
= X ′(x) := lim

∆x→0

X̂(x + ∆x) − X̂(x)

∆x
.
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Main qualitative result

Recall p(x + ∆x, q) ≈ p(x) + p′(x)∆x + D(x)q .

Theorem (K., Sirbu) The following assertions are equivalent:

1. The risk-tolerance wealth process R(x) exists.

2. p′(x) = 0 for any f .

3. D(x) is symmetric for any f .

4. D(x) has full rank for any (non-replicable) f .

5. D(x) is negative semidefinite for any f .
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Existence of R(x)

Recall that Q(y) is the minimal martingale measure (the

solution to the dual problem) for y .

Theorem (K., Sirbu) The following assertions are equivalent:

1. R(x) exists.

2. d
dy

Q(y) = 0 at y = u′(x) .

In particular, R(x) exists for any x > 0 if and only if

Q(y) is the same for all y .
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Second order stochastic dominance

Definition If ξ and η are nonnegative random variables,

then ξ �2 η if

∫ t

0

P(ξ ≥ x)dx ≥

∫ t

0

P(η ≥ x)dx, t ≥ 0.

We have that ξ �2 η iff

E[W (ξ)] ≤ E[W (η)]

for any convex and decreasing function W .
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Existence of R(x)

Case 1: a utility function U is arbitrary.

Theorem (K., Sirbu) The following assertions are equivalent:

1. R(x) exists for any x > 0 and any utility function U .

2. There exists a unique Q̂ ∈ Q such that

dQ̂

dP
�2

dQ

dP
∀Q ∈ Q.
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Existence of R(x)

Case 2: a financial model is arbitrary.

Theorem (K., Sirbu) The following assertions are equivalent:

1. R(x) exists for any x > 0 and any financial model.

2. The utility function U is

(a) a power utility: U(x) = (xα − 1)/α , α < 1 , if

x ∈ (0, ∞) ;

(b) an exponential utility: U(x) = − exp(−γx) ,

γ > 0 , if x ∈ (−∞, ∞) .
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Computation of D(x)

We choose

R(x)/R0(x) = X ′(x)

as a numéraire and denote

fR = fR0(x)/R(x) : discounted contingent claims

XR = XR0(x)/R(x) : discounted wealth processes

QR : the martingale measure for XR , that is

dQR

dQ̂
=

RT (x)

R0(x)
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Computation of D(x)

Consider the Kunita-Watanabe decomposition:

P R
t = EQR

[
fR|Ft

]
= Mt + Nt, N0 = 0,

where

1. M is R(x)/R0(x) -discounted wealth process.

Interpretation: hedging process.

2. N is a martingale under QR which is orthogonal to all

R(x)/R0(x) -discounted wealth processes.

Interpretation: risk process.
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Computation of D(x)

Denote a(x) := −xu′′(x)/u′(x) the relative

risk-aversion coefficient of

u(x) = max
X∈X (x)

E[U(XT )].

Theorem (K., Sirbu) Assume that the risk-tolerance wealth

process R(x) exists. Then

D(x) = −
a(x)

x
EQR

[
NT N ′

T

]
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Computation of D(x) in practice

Inputs:

1. Q̂ . Already implemented!

2. R(x)/R0(x) . Recall that

R(x)

R0(x)
= lim

∆x→0

X̂(x + ∆x) − X̂(x)

∆x
.

Decide what to do with one penny!

3. Relative risk-aversion coefficient a(x) . Deduce from

mean-variance preferences. In any case, this is just a

number!
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Model with basis risk

Traded asset : dSt = St (µdt + σdWt) .

Non traded asset : dS̃ = (µ̃dt + σ̃dW̃t)

Denote by

ρ =
dW̃dW

dt

the correlation coefficient between S and S̃ . In practice,

we want to chose S so that

ρ ≈ 1.
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Model with basis risk

Consider contingent claims f = f(S̃) whose payoffs are

determined by S̃ (maybe path dependent).

To compute D(x) assume (as an example) the following

choices:

1. Q̂ is a martingale measure for S̃ .

2. R(x)/R0(x) = 1

Then

Dij(x) = −
a(x)

x
(1 − ρ2)Cov

Q̂
(fi, fj).
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Assumptions

Assumption The financial model can be completed by an

addition of a finite number of securities.

Assumption There are strictly positive constants c1 and c2

such that c1 < −xU ′′(x)
U ′(x)

< c2, x > 0 .

Assumption There is a wealth process X ≥ 0 such that

|f | ≤ XT and X is a squire integrable martingale under

the minimal martingale measure Q(y) .
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Summary

For non replicable contingent claims prices depend on the

trading volume.

The following conditions are equivalent:

Approximate utility based prices have nice qualitative

properties

Risk-tolerance wealth processes exist.

We need to solve the mean-variance hedging problem,

where the risk-tolerance wealth process plays the role of

the numéraire.
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