Sensitivity analysis of utility based prices and risk-tolerance wealth processes

Dmitry Kramkov, Carnegie Mellon University

Based on a paper with Mihai Sirbu from Columbia University

http://www.math.cmu.edu/ kramkov/publications.html

Outline

The prices of **non replicable** derivative securities depend on many factors:

- 1. risk-preferences of an investor:
 - (a) reference probability measure \mathbb{P}
 - (b) utility function $oldsymbol{U} = oldsymbol{U}(oldsymbol{x})$
- 2. current portfolio of the investor
- 3. trading volume in the derivatives

Goal: study the dependence of prices on trading volume.

Model of a financial market

There are d + 1 traded or liquid assets:

- 1. a savings account with zero interest rate.
- 2. d stocks. The price process S of the stocks is a semimartingale on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \le t \le T}, \mathbb{P})$.

 \mathcal{Q} : the family of local martingale measures for S.

Assumption (No Arbitrage)

$$Q \neq \emptyset$$

Contingent claims

Consider a family of m non-traded or illiquid European contingent claims with

- 1. maturity T
- 2. payment functions $f = (f_i)_{1 \le i \le m}$.

Assumption No nonzero portfolio of f is replicable:

$$\langle q,f
angle = \sum_{i=1}^m q_i f_i$$
 is replicable $\Leftrightarrow q=0$

Pricing problem

Question What is the (marginal) price $p=(p_i)_{1\leq i\leq m}$ of the contingent claims f?

Intuitive Definition The marginal price p for the contingent claims f is the **threshold** such that given the chance to buy or sell at p^{trade} an investor will

buy at
$$p^{trade} < p$$
 & sell at $p^{trade} > p$ \updownarrow do nothing at $p^{trade} = p$

Economic agent or investor

Consider an investor with a portfolio (x,q), where

x: liquid capital

 $q = (q_i)$: quantities of the *illiquid* contingent claims.

His preferences are modeled by a utility function $oldsymbol{U}$:

- 1. $U:(0,\infty) \to \mathbf{R}$, strictly increasing and strictly concave
- 2. The Inada conditions hold true:

$$U'(0) = \infty$$
 $U'(\infty) = 0$

Problem of optimal investment

The goal of the investor is to maximize **the expected utility of terminal wealth**:

$$u(x,q) = \sup_{X \in \mathcal{X}(x)} \mathbb{E}[U(X_T + \langle q,f \rangle)],$$

where $\mathcal{X}(x)$ is the set of strategies with initial wealth x.

Order structure: a portfolio (x,q) is better than a portfolio (x',q') if $u(x,q) \geq u(x',q')$.

Marginal utility based price

Definition A marginal utility based price for the claims f given a portfolio (x,q) is a vector p(x,q) such that

$$u(x,q) \geq u(x',q')$$

for any pair (x', q') satisfying

$$|x + \langle q, p(x,q) \rangle = x' + \langle q', p(x,q) \rangle.$$

In other words, given the portfolio (x,q) the investor **will not** trade the options at p(x,q).

Computation of p(x) = p(x, 0)

Define the conjugate function

$$V(y) = \max_{x>0} [U(x) - xy], \quad y > 0.$$

and consider the following dual optimization problem:

$$v(y) = \inf_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}\left[V\left(y(rac{d\mathbb{Q}}{d\mathbb{P}})
ight)
ight], \quad y > 0$$

 $\mathbb{Q}(y)$: the minimal martingale measure for y.

Computation of p(x) = p(x, 0)

Mark Davis gave heuristic arguments to show that if \boldsymbol{y} corresponds to \boldsymbol{x} in the sense that

$$x = -v'(y) \Leftrightarrow y = u'(x)$$

then

$$p(x) = \mathbb{E}_{\mathbb{Q}(y)}[f].$$

The precise mathematical results are given in a joint paper with Julien Hugonnier and Walter Schachermayer.

Computation of p(x) = p(x, 0)

Theorem (Hugonnier,K.,Schachermayer) Let x>0, y=u'(x) and X be a non-negative wealth process. The following conditions are equivalent:

1. p(x) is unique for any f such that

$$|f| \leq K(1+X_T)$$
 for some $K>0$

2. $\mathbb{Q}(y)$ exists and X is a martingale under $\mathbb{Q}(y)$.

Moreover, in this case $p(x) = \mathbb{E}_{\mathbb{Q}(y)}[f]$.

Trading problem

Assume that the investor can trade the claims at the initial time at a price p^{trade} .

Question What quantity $q = q(p^{trade})$ the investor should trade (buy or sell) at the price p^{trade} ?

Using the marginal utility based prices p(x,q) we can compute the optimal quantity from the "equilibrium" condition:

$$p^{trade} = p(x - qp^{trade}, q)$$

Sensitivity analysis of utility based prices

Main difficulty : p(x,q) is hard to compute except for the case q=0 .

Linear approximation for "small" Δx and q:

$$p(x + \Delta x, q) pprox p(x) + p'(x)\Delta x + D(x)q,$$

where p'(x) is the derivative of p(x) and

$$D^{ij}(x)=rac{\partial p^i}{\partial q^j}(x,0), \quad 1\leq i,j\leq m.$$

Quantitative questions

Question (Quantitative) How to compute p'(x) and D(x) ?

Closely related publications:

- **J. Kallsen (02)**: formula for D(x) for general semimartingale model but in a different framework of local utility maximization.
- **V. Henderson (02)**: formula for D(x) in the case of a Black-Scholes type model with basis risk and for power utility functions.

Qualitative questions

Question (Qualitative) When the following (desirable) properties hold true for **any** family of contingent claims f?

1. The marginal utility based price p(x) = p(x,0) does not depend (locally) on x, that is,

$$p'(x) = 0$$

- 2. The sensitivity matrix D(x) has full rank
- 3. The sensitivity matrix D(x) is symmetric

Qualitative questions

- 4. The sensitivity matrix D(x) is negative semi-definite: $\langle q, D(x)q \rangle < 0$.
- 5. **Stability** of the linear approximation: for any p^{trade} the linear approximation to the "equilibrium" equation:

$$p^{trade} = p(x - qp^{trade}, q)$$

that is,

$$p^{trade} pprox p(x) - p'(x)qp^{trade} + D(x)q$$

has the "correct" solution.

Risk-tolerance wealth process

Definition (K., Sirbu) A maximal wealth process $oldsymbol{R}(oldsymbol{x})$ is called the **risk-tolerance wealth process** if

$$R_T(x) = -rac{U'(\widehat{X}_T(x))}{U''(\widehat{X}_T(x))},$$

where $\widehat{X}(x)$ is the optimal solution of

$$u(x) := u(x,0) = \sup_{X \in \mathcal{X}(x)} \mathbb{E}[U(X_T)].$$

Risk-tolerance wealth process

Some properties of R(x) (if it exists):

1. Initial value:

$$R_0(x) = -rac{u'(x)}{u''(x)}.$$

2. Derivative of optimal wealth strategy:

$$rac{R(x)}{R_0(x)} = X'(x) := \lim_{\Delta x o 0} rac{\widehat{X}(x + \Delta x) - \widehat{X}(x)}{\Delta x}$$

Main qualitative result

Recall $p(x+\Delta x,q)pprox p(x)+p'(x)\Delta x+D(x)q$.

Theorem (K., Sirbu) The following assertions are equivalent:

- 1. The risk-tolerance wealth process R(x) exists.
- 2. p'(x) = 0 for any f.
- 3. D(x) is symmetric for any f.
- 4. D(x) has full rank for any (non-replicable) f .
- 5. D(x) is negative semidefinite for any f.

Existence of R(x)

Recall that $\mathbb{Q}(y)$ is the minimal martingale measure (the solution to the dual problem) for y.

Theorem (K., Sirbu) The following assertions are equivalent:

1. R(x) exists.

2.
$$\frac{d}{dy}\mathbb{Q}(y)=0$$
 at $y=u'(x)$.

In particular, R(x) exists for any x>0 if and only if $\mathbb{Q}(y)$ is the same for all y.

Second order stochastic dominance

Definition If ξ and η are nonnegative random variables, then $\xi \succ_2 \eta$ if

$$\int_0^t \mathbb{P}(\xi \geq x) dx \geq \int_0^t \mathbb{P}(\eta \geq x) dx, \ t \geq 0.$$

We have that $\xi \succeq_2 \eta$ iff

$$\mathbb{E}[W(\xi)] \leq \mathbb{E}[W(\eta)]$$

for any convex and decreasing function $oldsymbol{W}$.

Existence of R(x)

Case 1: a utility function U is arbitrary.

Theorem (K., Sirbu) The following assertions are equivalent:

- 1. R(x) exists for any x>0 and any utility function U .
- 2. There exists a unique $\hat{\mathbb{Q}} \in \mathcal{Q}$ such that

$$rac{d\widehat{\mathbb{Q}}}{d\mathbb{P}}\succeq_{\mathbf{2}}rac{d\mathbb{Q}}{d\mathbb{P}}\;\;orall \mathbb{Q}\in\mathcal{Q}.$$

Existence of R(x)

Case 2: a financial model is arbitrary.

Theorem (K., Sirbu) The following assertions are equivalent:

- 1. R(x) exists for any x > 0 and any financial model.
- 2. The utility function U is
 - (a) a power utility: $m{U}(m{x}) = (m{x}^lpha 1)/lpha$, $\, lpha < 1$, if $\, m{x} \in (0, \infty)$;
 - (b) an exponential utility: $m{U}(x) = -\exp(-\gamma x)$, $\gamma > 0$, if $x \in (-\infty, \infty)$.

Computation of D(x)

We choose

$$R(x)/R_0(x)=X'(x)$$

as a **numéraire** and denote

$$f^R = fR_0(x)/R(x)$$
 : discounted contingent claims

$$X^R = XR_0(x)/R(x)$$
 : discounted wealth processes

 $\mathbb{Q}^{m{R}}$: the martingale measure for $m{X}^{m{R}}$, that is

$$rac{d\mathbb{Q}^R}{d\widehat{\mathbb{Q}}} = rac{R_T(x)}{R_0(x)}$$

Computation of D(x)

Consider the Kunita-Watanabe decomposition:

$$P_t^R = \mathbb{E}_{\mathbb{Q}^R}\left[f^R|\mathcal{F}_t
ight] = M_t + N_t, ~~N_0 = 0,$$

where

- 1. M is $R(x)/R_0(x)$ -discounted wealth process. Interpretation: **hedging process**.
- 2. N is a martingale under \mathbb{Q}^R which is orthogonal to all $R(x)/R_0(x)$ -discounted wealth processes. Interpretation: **risk process**.

Computation of D(x)

Denote a(x) := -xu''(x)/u'(x) the relative risk-aversion coefficient of

$$u(x) = \max_{X \in \mathcal{X}(x)} \mathbb{E}[U(X_T)].$$

Theorem (K., Sirbu) Assume that the risk-tolerance wealth process $oldsymbol{R}(oldsymbol{x})$ exists. Then

$$D(x) = -rac{a(x)}{x} \mathbb{E}_{\mathbb{Q}^R} \left[N_T N_T'
ight]$$

Computation of D(x) in practice

Inputs:

- 1. Q . Already implemented!
- 2. $R(x)/R_0(x)$. Recall that

$$rac{R(x)}{R_0(x)} = \lim_{\Delta x o 0} rac{\widehat{X}(x + \Delta x) - \widehat{X}(x)}{\Delta x}.$$

Decide what to do with one penny!

3. Relative risk-aversion coefficient a(x). Deduce from mean-variance preferences. In any case, this is just a number!

Model with basis risk

Traded asset : $dS_t = S_t \left(\mu dt + \sigma dW_t
ight)$.

Non traded asset : $d\widetilde{S} = (\widetilde{\mu}dt + \widetilde{\sigma}d\widetilde{W}_t)$

Denote by

$$ho = rac{d W dW}{dt}$$

the **correlation** coefficient between S and S. In practice, we want to chose S so that

$$hopprox 1$$
 .

Model with basis risk

Consider contingent claims $f = f(\widetilde{S})$ whose payoffs are determined by \widetilde{S} (maybe path dependent).

To compute D(x) assume (as an example) the following choices:

1. $\widehat{\mathbb{Q}}$ is a martingale measure for \widetilde{S} .

2.
$$R(x)/R_0(x) = 1$$

Then

$$D_{ij}(x) = -rac{a(x)}{x}(1-
ho^2) extsf{Cov}_{\widehat{\mathbb{Q}}}(f_i,f_j).$$

Assumptions

Assumption The financial model can be completed by an addition of a finite number of securities.

Assumption There are strictly positive constants c_1 and c_2 such that $c_1 < -\frac{xU''(x)}{U'(x)} < c_2, \quad x>0$.

Assumption There is a wealth process $X \geq 0$ such that $|f| \leq X_T$ and X is a squire integrable martingale under the minimal martingale measure $\mathbb{Q}(y)$.

Summary

- For non replicable contingent claims prices depend on the trading volume.
- The following conditions are equivalent:
 - Approximate utility based prices have nice qualitative properties
 - Risk-tolerance wealth processes exist.
- We need to solve the mean-variance hedging problem, where the risk-tolerance wealth process plays the role of the numéraire.