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History \

e Single premium equity linked insurance in

North America

Segregated Funds in Canada
Variable Annuities in USA

e Carry guarantees on death and maturity

KGuarantee may be fixed or increasing /




/ History \

e 25 years ago, UK faced the same 1ssue

e MGWP published paper in 1980

Stochastic simulation of liabilities (and

underlying assets)

Quantile (VaR) reserve.

Early application of early Wilkie Model
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Canadian Method

e Stochastic simulation of liabilities

e CTE (Tail-VaR) reserve

e Not much hedging

If hedged, simulate and reserve for

unhedged risk

~

KEquity model : ‘freedom with calibration’/




/ Canadian Calibration Method\

e Use any model

e Check the left-tail accumulation factor
probabilities, using standard data set

e Adjust parameters to meet calibration fatness
requirement

e Table calculated using ‘Regime-Switching

\Lo gnormal —2” model /




/ Accumulation Factors \

* Let Y, represent log return in t™ month

e ]-year accumulation factors are
exp(Y+Y  +...Y 1)

e Similarly for 5-year and 10-year

e 40 years data = 4 non-overlapping

\Observations of 10-Year accumulation factoy




/ Canadian Calibration Table \

Accumulation | 2.5 %ile 5 %ile 10%i1le
Factor
1-year 0.76 0.82 0.90
S-year 0.75 0.85 1.05
10-year 0.85 1.05 1.35

N £




/ US approach \

e C3P2

e Similar to Canadian approach

e Calibration Table applied to left and right

tails

e US table derived from

\‘Stoehastic Log-Volatility’ model /
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US Calibration

~

Do1le | 1-Yr S-Yr 10-Yr 20Yr
2.5% 0.78 0.72 0.79 N/A
3% 0.84 0.81 0.94 1.51
10% 0.90 0.94 1.16 2.10
90% 1.28 2.17 3.63 9.02
95% 1.35 2.45 4.36 11.70
\97.5% 1.42 2.72 5.12 N/A /
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Some outcomes...

« UK
no more maturity guarantees

e Canada
cut back on generous guarantees
Plethora of equity models proposed
Still little hedging

« USA
Some hedging...




/ S&P 500 Total Return \
Log returns
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/ S&P data \

e not much auto-correlation

e but correlation 1s not always a good measure of

independence
e notice bunching of poor returns (eg last 2 years)
e and association of high volatility with crashes

1e large movement down more than up

A 4
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/ Some equity models .... \

* Regime Switching Log Normal (Hardy, 2001)
e GARCH(1,1)

e MARCH (Chan and Wong, 2005)
e ‘Stochastic Log Volatility’ (AAA C3-Phase 2)

* Regime Switching Draw Down (Panneton, 2003)

\Regime Switching GARCH (Gray 1996, ] FE)/
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RSLN-2

~

Y lp=u,+0,¢

REGIME 1 p,

Low Volatility o,

High Mean |,

P

P,

REGIME 2 p,

High Volatility ¢,

Low Mean U,

Yr = U, T O0&,

Yr::u2+62j
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/ The RSILN-2 Model \

e The regime process 1s a hidden Markov process

e 2 Regimes are usually enough for monthly data.
e 2 Regime model has 6 parameters:

O={W,, Wy, Gy, Gy, P12 Pay )

 Regime 1: Low Vol, High Mean, High
Persistance (small p,,)

 Regime 2: High Vol, Low Mean, Low
Persistance (large p,)
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/ GARCH(1,1)

Y, = pu+.he,

h=a,+a(Y_

—p) +

* Where €, ~ N(0,1), ud

+ Bh,_

* Given F,;, €, 1s the only stochastic element

* We generally require o+ < 1.0

~
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/ MARCH (2:0.0:2.0) \

O, w.p.a,
0, wp(l-a)
O, ~ARCH2); O, ~ ARCH (0)

hl,t — 1610 T 1611 (Yt—l o ¢1 )2 T 1612 (Yt—Z o ¢1 )2

hz,t — 1620 /

Ylez—l"'<

.




/ MARCH(2:0.0:2.0) \

* MARCH(K; p;..-,Px:d;>---qg) 1S a mixture of
K AR-ARCH models,

* p;and q; are the AR-order and ARCH-order
of the j" mixture RV

e According to Chan and Wong, provides
superior fit to 3’ and 4™ moments of

\monthly log-return disn cf RSLN /
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4 SLv N

v, =logo, =(1-@)v,_, +@logrt+ao, Z,,

U, =A+BO't+CO'2t

Y:lut O-tZ

12 12

* Z,,and Z, are standard normal RVs, with
correlation p

\- The v, process 1s constrained by upper and IOW
bounds
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4 SLv N

e According to C3P2, SLV

“Captures the full benefits of stochastic

volatility in an intuitive model suitable for
real world projections”

Stoch vol models are widely used in
capital markets to price derivatives...

\ Produces very “realistic” volatility pathy
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ﬁ{egime Switching Draw Down\

(RSDD)
YI(p,=s)=k,+0 D,  +0_ E,
D. ,=mmn(0,D, ,+Y, )

g ~N(,]),ud

p, 1s a Markov regime switching process

A 4
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RSDD

2 Regimes proposed by Panneton

D, 1s the draw-down factor

RSLN-2 1s recovered when ¢ =0, for p=1,2

Captures ‘tendency to recover’




RSGARCH

e Two GARCH regimes
e Markov switching

e After Gray (1995)




/ Does 1t matter? \

* 6 models, each being championed by

SOIMEone.

e 2 RS, 2 conditional heteroscedatic, 1
‘stochastic volatility’.

e Each fitted by MLE (-ish) to S&P500 data

e Does it make any difference to the results for

\Equity—Linked Capital Requirements? /
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ﬁ wo methods for Equity Linked\
[ife Insurance

e Actuarial Approach:

Simulate liabilities,
apply risk measure,

discount at risk-free rate

e Determines the economic capital requirement to

Qrite the contract for a given solvency stan(my

26




ﬁ wo methods for Equity Linked Lia

Insurance

 Dynamic Hedging Approach

Simulate hedge under real world measure

Estimate distribution of unhedged
liabilibility

Apply risk measure and discount at r-f rate

\Add to cost of 1nitial hedge /
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/ Example Contract \

e Single Premium GMAB, premium P
e Issue age 50, MER=3% p.y.

e Guarantee risk premium = 0.2% p.y.
e Deterministic mortality and lapses

* Assets in policyholder’s fund = F, at t

KFt follows model stock returns, less MERJ
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/ Example Contract

e Benefit on death or maturity is max(F, Gy)

* Guarantee G, at t
G =Pfor0<t<10
G=max(F,,,P) for 10 <t <20

e Payable on death or maturity

A

~

4
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/ "Actuarial Approach’

e Use stock return model to generate

distribution of PV of guarantee cost,

Or maturity)

» CTE=E[LIL>Q,],

* Q,1s the a-quantile of L

A

o L=e'! max(GF,0): T is exit date (death

~

4
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CTE for 'Actuarial’ Risk Management

RSGARCH
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GARCH
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/ Risk Measure, % of P; AA \

Model 90% CTE 95% CTE
RSDD 0.64 (0.09) 2.25 (0.16)
MARCH 2.85 (0.14) 5.22 (0.19)
SLV 3.12 (0.15) 5.47 (0.20)
GARCH 3.60 (0.19) 6.27 (0.22)
RSLN 6.50 (0.19) 9.53 (0.23)
RSGARCH | 6.33 (0.17)

9.18 (0.23) /
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Does the model matter using
the actuarial approach?




p-

Using hedging?

e Straight Black-Scholes (LN) delta hedge

r=0.05; 0=0.20

e Simulate additional cost arising from

A

Discrete hedge
Model Error
1e P-measure 1s GARCH; RSLN etc

Transactions costs

~

4
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CTE for Dynamic Hedging Risk Management
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ﬂ{isk Measure, % of single premiuh

Model 90% CTE 95% CTE
RSDD 4.20 (0.08) 4.62 (0.10)
MARCH 3.67 (0.06) 4.00 (0.09)
SLV 3.39 (0.05) 3.67 (0.09)
GARCH 4.12 (0.08) 4.52 (0.11)
RSLN 4.06 (0.08) 4.45 (0.09)
RSGARCH | 4.62 (0.12)

5.15 (0.17) /
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Does the model matter using
the hedging approach?




4 Bu

 Many companies are not hedging

* Pressure to adopt models giving lower

capital requirements

any of the models?

A

e Can we use traditional methods to eliminate

~

4
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/ Likelihood Comparison

Model # parameters Max LL
RSDD 8 1047.1
MARCH 7 1039.8
SLV 7 1032.9*
GARCH 4 1030.1
RSLN 6 1042.0
RSGARCH 8 1054.9
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/ Residual analysis

Residuals for GARCH are easy

For MARCH, use same weights as original

mixture

Residuals for RS models — weighted from

individual regimes Pr(p ly,,...,y,)

Residuals for SLV — using simulated

\V()latility paths

~

4
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RSDD Residuals q-q Plot




RSLN Residuals g-q Plot




MARCH Residuals q-q Plot




RSGARCH Residuals g-qg Plot




SLV Residuals q-q Plot




GARCH Residuals q-q Plot




a So far ... Y

e Likelihood based selection doesn’t help

much

e AIC i1s too simple, BIC depends on sample

size, LRT has technical limitations

e Residuals can be useful, but are tricky in

multifactor cases

A 4
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/ SO good... \

e The regime switching models look good on

likelihood and on residuals (all pass J-B test)

e But -- big difference in application between

rsdd and rsln or rsgarch

 What causes the big difference?

\-Which rs model should we believe? /
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1-Year Accumulation Factors

=
2
—
L
o
=
L
=
iy
o
O
(i
=
0
0
L
)
—
R

|
1.0

1-vear AF




10-Year Accumulation Factors
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/ Bootstrapping time series \

e The traditional bootstrap 1s applied to

independent observations.

* Dependent time series require different

freatment.

e Order matters.

A 4
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/ S&P 1-year Acc Factors \

* If we take 1-year factors starting in January,

empirical percentiles are (from 48

observations):
2.5%1le — 0.84
5%ile — 0.85

\ 10%i1le — 0.94 /
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/ S&P 1-year Acc Factors

e If we take 1-year factors starting in September,
empirical percentiles are (47 observations):

2.5%ile —0.75
S%ile — 0.87
10%ile — 0.89
e Ranges are: 2.5%1le (0.74, 0.89)

S%ile (0.83, 0.91)
\ 10%ile (0.89, 0.95)

~

4
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/ 1-year Acc factors \

e Can’tuse all 1-year factors because of

dependence

e If we only use (eg) January series, we are

1gnoring information

e Bootstrap the percentiles using time series

4
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bootstrap.
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/ Time series bootstrap \

e Bootstrap from original observations in blocks

of b consecutive values.

 If the blocks are too small, lose dependence
factor = results too thin tailed (if +vely
autocorrelated)

e If blocks are too large lose data, = results too
thin tailed (extreme results averaged out)
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/ Block size \

e So choose block size to maximize tail thickness.

e Other ways of selecting block size.
* No general agreement — see references.
 Randomized block length suggested.

e block resampling reduces exposure of end points —

cycle from end to start.

A 4
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1-Year AF Bootstrap; 2.5%ile
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Bootstrap Quantile Estimates

1-Year Accumulation

~

Model 2.5%1le S%1le 10%ile
Bootstrap 0.67—0.87 | 0.76 —0.91 | 0.84 —0.97
90% CI

RSDD 0.768 0.831 0.901
RSLN 0.764 0.829 0.908
RSGARCH 0.792 0.84°7 0.910

.

This doesn’t help us much.

4




/ 10-year accumulation factor \

 We can do the same thing

e But the original data only has 4 non-

overlapping observations

 minimum 10-year observed AF 1s estimate of
1/5=20%1le

\'So we bootstrap B samples of 4 observati(y

59




p-

Bootstrap Quantile Estimates
10-Year Accumulation

Model 20 Yoile
Bootstrap 90% CI 0.95—-2.83
1.706
RSDD 1.953 (1.92,1.97)
RSLN 1.773

RSGARCH

1.660 (1.63,1.68)

And this doesn’t help us much either.
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/ Oversampling \

e Bootstrapping re-samples from original data

 — Four 10-year accumulation factors from
5384 observations

 What happens if we break the rules and keep
sampling?

\-The ‘empirical distribution’ /
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 If data are independent or +vely autocorrelated

then oversampling — thin tails

A

Oversampling \

positive bias for low quantiles; negative for

high quantiles

Bias should be small for large original

sample

4
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Oversampling

 If data are +vely auto-correlated and block
size 1s not large enough to capture long down

or up periods — even thinner tails
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Oversampling

 If data are —vely auto-correlated

 But we are estimating AFs so we also look

Oversampling with small block size will

fatten tails

Overall effect depends on correlation

\at these correlations.

~

4

64



Series data

Series AF12m

Partial ACF

Partial ACF

Partial ACF

Partial ACF




/ Back to the data \

e No significant negative autocorrelations...

e So oversampling should over-estimate left

tail quantiles (on average)

* And underestimate right tail quantiles

A 4
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/ Left tail, 10-Year AFs \

Model 2.5% 3% 10%
Bootstrap 1.041 1.228 1.478
(sort of...) (1.03, 1.06) (1.20,1.25) (1.47,1.49)
RSDD 1.2°77 1.439 1.653
SLV 1.082 1.254 1.468
RSGARCH 0.905 1.086 1.315

QSLN 0.914 1.105 1.378 /
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/ Summing up \

* We need to pay attention to model

econometrics

* Huge financial implications — especially with

traditional actuarial methods

e Abusing the bootstrap offers some info

e Multiple state models for equity returns.
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